
October 2016Nahuel Riva

Getting fun with Frida
Turbo Talk – Ekoparty

Getting fun with Frida

Agenda

Agenda
§ Intro

• What’s DBI?
• Why do we need DBI?
• How do I perform DBI? (frameworks)

§ Frida
• What’s Frida?
• Why would I need Frida?

§ Differences with other frameworks
• How do I use Frida

§ API
– Interceptor
– Stalker

§ Tools based on Frida
§ Demos

Intro

Intro – What’s DBI?
§Definition taken from:

http://uninformed.org/index.cgi?v=7&a=1&p=3

§ “Dynamic Binary Instrumentation (DBI) is a method of analyzing
the behavior of a binary application at runtime through the
injection of instrumentation code. […] makes it possible to gain
insight into the behavior and state of an application at various
points in execution.“

Intro – What’s DBI?
• Instrumentation code executes as part of the normal instruction

stream after being injected

• Instrumentation code will be entirely transparent to the
application that it's been injected to

• Instrumentation code executes at runtime

Intro – Why do we need DBI?
• As an alternative
• Debuggers
• API hooking engines

• Evolution
• More complex tasks to achieve (profiling, taint analysis, detection of

possible bugs)

Intro – How do I perform DBI? (frameworks)
§ Two main DBI frameworks:

• PIN: proprietary framework written in C/C++. Works on
Windows/Linux/OSX/Android and i386/AMD64

§ https://software.intel.com/en-us/articles/pin-a-dynamic-binary-
instrumentation-tool

• DynamoRIO: originally a proprietary framework then open sourced
(BSD). Created by HP (Dynamo optimization system) and MIT (RIO
research group). Works on Windows/Linux and i386/AMD64.

§ https://en.wikipedia.org/wiki/DynamoRIO

Intro – How do I perform DBI? (frameworks)
• In both cases, you write a Pin/DynamoRIO tool using C/C++

language and inject C/C++ code

• Compile the Pin/Dynamo tool as a .dll/.so

• Inject the library into the target process using a command-line
tool/GUI application

Intro – How do I perform DBI? (frameworks)
Pintool example (source/tools/ManualExamples/inscount0.cpp):

int main(int argc, char * argv[])
{

// Initialize pin
if (PIN_Init(argc, argv)) return Usage();

OutFile.open(KnobOutputFile.Value().c_str());

// Register Instruction to be called to instrument instructions
INS_AddInstrumentFunction(Instruction, 0);

// Register Fini to be called when the application exits
PIN_AddFiniFunction(Fini, 0);

// Start the program, never returns
PIN_StartProgram();

return 0;
}

ofstream OutFile;

// The running count of instructions is kept here

// make it static to help the compiler optimize docount

static UINT64 icount = 0;

// This function is called before every instruction is executed

VOID docount() { icount++; }

// Pin calls this function every time a new instruction is encountered

VOID Instruction(INS ins, VOID *v)

{

// Insert a call to docount before every instruction, no arguments are passed

INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR)docount, IARG_END);

}

KNOB<string> KnobOutputFile(KNOB_MODE_WRITEONCE, "pintool",

"o", "inscount.out", "specify output file name");

Intro – How do I perform DBI? (frameworks)

// This function is called when the application exits

VOID Fini(INT32 code, VOID *v)

{

// Write to a file since cout and cerr maybe closed by the application

OutFile.setf(ios::showbase);

OutFile << "Count " << icount << endl;

OutFile.close();

}

Intro – How do I perform DBI? (frameworks)

Intro – How do I perform DBI? (frameworks)
§ For example, Pin can be executed as follow:

• pin.bat -t pintool.dll [pintoolargs] --program.exe [programargs]

• pin.bat -pid<programpid> -t pintool.dll [pintoolargs]

Intro – How these frameworks work?
• JIT compiler
• Input: binary code
• Output: equivalent code with introspection code
• The code is generated only when it is needed

• The only code that is executed is the code generated by the
JIT compiler

• The original code remains in memory just as a reference but it
is never executed

Frida

Frida – What’s Frida?
• Dynamic instrumentation toolkit

• Scriptable
• Execute Javascript programs inside another process. It uses V8 and

Duktape and JavaScriptCore (deprecated) engines.

• Multi-platform and multi-arch
• Windows/Mac/Linux/Android/iOS/QNX – i386/AMD64/ARM/ARM64

• It has bindings for Python, .NET, C and Node.js

• Open-source (LGPL v2)

Frida – Why would I need Frida?
• For reverse engineering in general
• Dynamic binary instrumentation
• Debugging

• To develop introspection tools very quickly to help you in the
RE process

Frida – Pros & Cons against other frameworks
§Pros
• It has bindings for other

languages like .NET, Python, C
• No need to compile the tool
• Rapid tool development
• Continuous development (new

features and bug fixing)

§Cons
• Less mature than other DBI

frameworks (contains bugs)
• Lack of some functionality
• Less granularity than other

frameworks

How do I use Frida?

Frida – How do I use Frida?
• First, you need to install it:

• Windows:
§C:\Users\travesti>pip install frida

• Linux:
§ travesti@palermo:~$ sudo pip install frida

§ Then …

Frida – How do I use Frida?
• As easy as this:

§ >> import frida
§ >> session = frida.attach(“notepad.exe")
§ >> print([x.name for x in session.enumerate_modules()])

§ [u'notepad.exe', u'ntdll.dll', u'kernel32.dll', u'KERNELBASE.dll', u'ADVAPI32.dl
§ l', u'msvcrt.dll', u'sechost.dll', u'RPCRT4.dll', u'GDI32.dll', u'USER32.dll', u
§ 'LPK.dll', u'USP10.dll', u'COMDLG32.dll', u'SHLWAPI.dll', u'COMCTL32.dll', u'SHE
§ LL32.dll', u'WINSPOOL.DRV', u'ole32.dll', u'OLEAUT32.dll', u'VERSION.dll', u'IMM
§ 32.DLL', u'MSCTF.dll', u'actuser.dll', u'acdetoured.dll', u'msvcp60.dll', u'CRYP
§ TBASE.dll', u'uxtheme.dll', u'dwmapi.dll', u'CLBCatQ.DLL', u'frida-agent-64.dll'
§ , u'DNSAPI.dll', u'WS2_32.dll', u'NSI.dll', u'WINMM.dll', u'PSAPI.DLL', u'ntmart
§ a.dll', u'WLDAP32.dll']

Frida – Architecture

Frida – JavaScript API
§ Its Javascript API has different components to interact with a process

(http://www.frida.re/docs/javascript-api):

• console
• Process
• Module
• Memory
• Thread
• Socket
• File
• Instruction

Frida – JavaScript API - Console
§ console: used for output.

• console.log(line)
• console.warn(line)
• console.error(line)

Frida – JavaScript API - Process
§Process: functions and properties used to interact with a

process.

• Process.arch, Process.platform
• Process.isDebuggerAttached
• Process.enumerateThreads(callbacks)
• Process.findModuleByAddress(address)
• Process.findModuleByName(name)
• Process.enumerateModules(callbacks)
§ […]

Frida – JavaScript API - Module
§Module: used to interact with modules residing in the process.

• Module.enumerateImports(name, callbacks)
• Module.enumerateExports(name, callbacks)
• Module.enumerateRanges(name, protection, callbacks)
• Module.findBaseAddress(name)
• Module.findExportByName(module|null, exp)
§ […]

Frida – JavaScript API - Memory
§Memory: used to interact with memory pages residing in a

given process.

• Memory.scan(address, size, pattern, callbacks)
• Memory.alloc(size)
• Memory.copy(dst, src, n)
• Memory.protect(address, size, protection)
• Memory.read*/write*
• MemoryAccessMonitor (monitor read/write/execute)
§ […]

Frida – JavaScript API - Thread
§ Thread: used to interact with threads from a process.

• Thread.backtrace([context, backtracer])
• Thread.sleep(delay)

Frida – JavaScript API - Socket
§Socket: used to handle sockets.

• Socket.type(handle)
• Socket.localAddress(handle)
• Socket.peerAddress(handle)

Frida – JavaScript API - File
§ File: used to handle file I/O.

• File(filePath, mode)
• write
• read
• flush
• close

Frida – JavaScript API - Instruction
§ Instruction: used to get information about a given instruction

from process’s code.

• Instruction.parse(target)

Frida – Interceptor/Stalker
• Frida has two main components exposed trough its API:

• Interceptor
• Normal operation mode (hooking)
• No stealthiness

• Stalker
• Instrumentation per-se
• Stealth (kind of)
• Lack of functionality (CALL/RET)
• More details: https://medium.com/@oleavr/anatomy-of-a-code-tracer-

b081aadb0df8

Frida – How do I use Interceptor?
• Interceptor example:

Frida – Interceptor example output

Frida – Interceptor at low level (API hook)

Frida – Interceptor stub

Frida – Stalker
• Stalker example:

Frida – How Stalker works?
• Stalker at low level:

• Hint: See gum_exec_ctx_obtain_block_for in frida-
gum/gum/backend-x86/gumstalker-x86.c

Tools based on Frida

Tools based on Frida
• frida-cli: command line interpreter which emulates an IPython

console for rapid prototyping and easy debugging.

Tools based on Frida
• frida-ps: command line tool for listing processes.

Tools based on Frida
• frida-trace: command like tool to dynamically trace function

calls.

Tools based on Frida
• frida-heap-trace: trace RtlAllocateHeap, RtlFreeHeap and

RtlReAllocateHeap function calls and arguments and log them
to a file.

§Combine it with Villoc to create a map for all the heap
movements

§ https://github.com/poxyran/misc/blob/master/frida-heap-trace.py

Tools based on Frida
§ https://github.com/wapiflapi/villoc

Tools based on Frida
• fridump: Universal memory dumper tool. Aimed to dump

accessible memory regions from any platform supported by
Frida.

https://github.com/Nightbringer21/fridump

Tools based on Frida

Tools based on Frida
§ frida-extract: FridaExtract is a Frida.re based RunPE extraction

tool. Using FridaExtract you can automatically extract and
reconstruct a PE file that has been injected using the RunPE
method.

https://github.com/OALabs/frida-extract

Tools based on Frida
§ frida-discover: tool for discovering internal functions in a

program. Eg: Cryptoshark: https://github.com/frida/cryptoshark

Tools based on Frida
Cryptoshark and frida-discover are based on Frida’s Stalker

API.

They dynamically instrument every thread in a given process and
stalk every called function during process execution trying to
discover internal functions like statically linked functions.

Conclusions

Conclusions
§When to use Frida? If you …

• Don’t want to download a compiler and compile every time you
make a change
• Need to quickly write an introspection tool
• Need low granularity (this may change in the near future)
• Need multi-OS/Arch support

§ Then …

Conclusions

Additional information

Additional information
• Questions to:

§ https://twitter.com/oleavr

• Frida news and docs:

§ http://www.frida.re/

• Frida source code:

§ https://github.com/frida

• Frida resources:

§ https://github.com/dweinstein/awesome-frida

Acknowledgments & Greetings

Acknowledgments & Greetings
• Ole André V. Ravnås
• For answering all my question about Frida

• Francisco Falcón
• For the feedback about this presentation

Questions?

Thank you.

