

Adventures in Embedded Device Exploration and Exploitation

Bobby Kuzma, CISSP Systems Engineer

October 21, 2016

About this talk

This talk is:

- An introduction to embedded device hacking
- An inventory of useful tools, and how to Macguyver around them.
- A tale of some of the things I've learn, and screwed up

This talk is not:

 A case study or deep dive. Come back this afternoon for "Oh Dear... vulnerability hunting in access controls"

Hi! I'm Bobby.

I show people how to use things. Like Pentesting Software.

I get to pentest things.

I break stuff and call it research.

And I love my job.

What's the Problem?

Ethernet and 802.11 chips are stupid cheap:

- Thousands^WMillions of new "network enabled" devices
- Embedded systems programming is very different...
- "Experience" is a problem

Basically...

Internet of Things

Internet of Code

What kind of "things"

- Industrial Control
- Access control and physical security
- Cameras
- Power management
- Environmental Controls
- Appliances
- Printers
- MRI Machines
- IV Drug Pumps

Who owns the Embedded Devices?

A subject for Meditation...

Security Practices for Embedded Devices are stuck in the 90s...

And not the good part of the 90s.

Common Problems to hunt

- Default passwords
- Hardcoded, undocumented passwords
- Command injection
- SQL Injection
- No update path
- Crappy or non-existent crypto
- Key Management? Say What?

Show me the... Hardware

Hospira Lifecare PCA pump

- Unauthenticated Telnet as root
- Hardcoded Passwords
- Plain text wireless creds
- Directly editable drug database
- Common keying

HID Edge/VertX Card readers

- Unauthenticated Command Injection allows doors to be unlocked
- Vulnerable base OS

Cisco ASA Firewalls

- Memory Corruption
- And other goodies

Sounds fun. How can I play?

Find something to hack on!

Look at what's new, or interesting, or cheap.

Check out recent research and conference presentations

Protip: Get at least 3 of them, especially if it's from China

Identify the Attack Surface

Where does data enter or exit?

Management software or web services...

Examine the firmware

Examine the hardware

Take it apart...

Look for interesting chips...

Look for interesting breakouts, vias, or pads

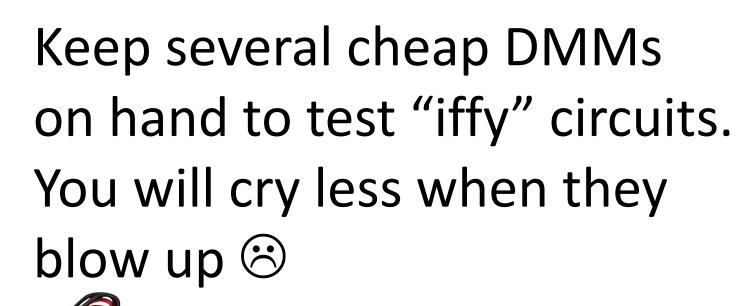
Good screwdrivers and tips, including security bits

Figure out what's what

- Lots of pins: Interesting
- Big chips: Interesting
- Google everything printed on the chip
- Datasheets are your friend

Protip: Magnification is good. So is getting your eyes checked.

Multimeters



\$300 at many, many places ->

Protip:

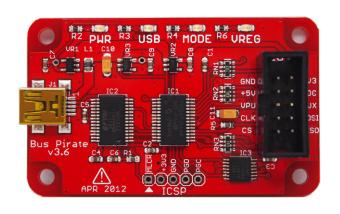
Get the firmware

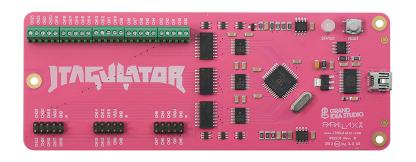
The easy way: Firmware is downloadable from the website

The middle way: Reverse Engineer management software to get URL

The hard way: Hardware hacking: UART, JTAG, SPI, Chip Off, Glitching

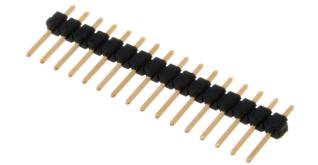
Step 3 – The Hard Way


Start with the easy, and less invasive methods first.


How Dangerous?	Method
Mostly Harmless*	UART
	JTAG
Watch your ground!	Probing flash chip leads
Magic Smoke Release	Chip-off flash reading
Probable	Microcontroller glitching attacks

^{*}I may or may not have accidentally destroyed several hundred dollars worth of targets

Protip: Learn to solder. Please.



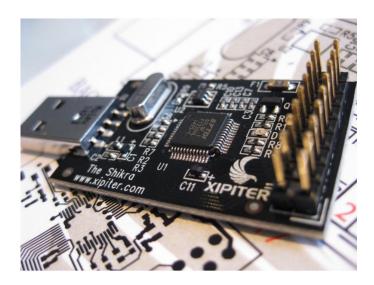
The BusPirate \$30

The JTAGULATOR \$150 controlled soldering rig ->

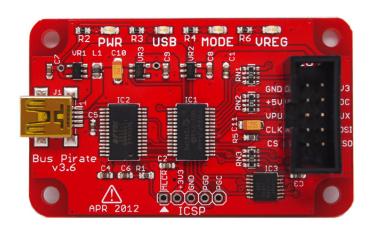
Decent temperature controlled soldering rig -> \$90-ish

Protip: MacGuyvering

No JTAGulator, no problem.


Turn device OFF

Use multimeter in continuity mode, datasheet, and magnifier to trace pins to confirm JTAG pinout



DSLogic Pro \$100

The Shikra \$45

BusPirate \$27

Protip: MacGuyvering

The BusPirate can be turned into a low fidelity logic analyzer with the right firmware.

ChipQuik Alloy \$17ish

TMN-5000 EEPROM/Flash Programmer \$300

Chip adapter \$40-70

Protip: MacGuyvering

You can use a BusPirate or Shikra and an adapter to dump flash memory.

Useful Tools – Last Ditch

ChipWhisperer \$300

Extract the firmware

Binwalk is awesome and free.

DECIMAL	HEX	DESCRIPTION
1288	0x508	CFE boot loader, little endian
65536	0x10000	Broadcom 96345 firmware header, header size: 256, firmware version: "8", board id: "6348GW-10", ~CRC32 header checksum: 0x7FBD17C6, ~CRC32 data checksum: 0xF44DBF79
65792	0x10100	Squashfs filesystem, big endian, version 2.0, size: 2623358 bytes, 420 inodes, blocksize: 65536 bytes, created: Thu Sep 17 18:07:36 2009
3426366	0x34483E	Sercomm firmware signature, version control: 0, download control: 0, hardware ID: "DG834GT", hardware version: 0x16, starting code segment: 0x0, code size: 0x7300

Audit and Reverse Engineer

If you're lucky, it's a Linux or unix-like RTOS

Look for weird services

Hardcoded passwords

Certificates or keys

Audit and Reverse Engineer

Disassembly tools are needed to dive deeper:

- ILSpy for .NET assemblies
- IDA Pro Supports almost every CPU architecture. Expensive
- BinaryNinja New, supports x86,x64, and ARM. Extensible.
- Radare2 Open Source, robust. Free, but learning curve.

You found something, now what?

Hardware manufacture can be... squirrelly.

Coordinated disclosure should be your first option...

Full disclosure is a very big hammer. Use it sparingly.

Have fun!

Step Fin

And now...

Continue the discussion

bkuzma@coresecurity.com

@BobbyAtCore

http://www.coresecurity.com

