
Abusing GDI for ring0
exploit primitives:

Nicolas A. Economou
Diego Juarez

Abusing GDI for ring0
exploit primitives:

AGENDA
■ Review of Kernel Protections

■ Arbitrary Write: Explanation

■ Current ways of abusing kernel arbitrary writes

■ Review PvScan0 technique

■ Explain PvScan0 extended technique

✓ Break Windows 10 (Anniversary Update) KASLR

■ Conclusions

Abusing GDI for ring0
exploit primitives:

PROTECTION MECHANISMS

■ Integrity Levels: call restrictions for applications running in Low
Integrity Level – since Windows 8.1

■ KASLR: Address-space layout randomization (ASLR) is a
well-known technique to make exploits harder by placing various
objects at random, rather than fixed, memory addresses.

■ SMEP: Supervisor Mode Execution Prevention allows pages to be
protected from supervisor-mode instruction fetches. If enabled,
software operating in supervisor mode cannot fetch instructions
from linear addresses that are user mode reachable.

WHAT IS AN
ARBITRARY WRITE ?

Abusing GDI for ring0
exploit primitives:

ARBITRARY WRITE

■ An arbitrary write is the result of exploiting a bug, it allows an
attacker to place data under his control at an address of his
choosing. (AKA Write-What-Where)

■ Can be used to disrupt execution flow (write function pointer,
vftable, etc), and sometimes even be turned into a read/write
primitive (re-using internal data structures to your advantage).

✓ Examples: Heap overflows, many kinds of memory corruption
and use-after-free bugs.

CURRENT
TECHNIQUES

Abusing GDI for ring0
exploit primitives:

OBSTACLES

■ Integrity levels appeared in Windows Vista

■ Low Integrity Level in Windows 8.1 suppressed all the kernel
addresses returned by NtQuerySystemInformation

■ The most affected exploits are Local Privilege Escalation launched
from sandboxes (like IE, Chrome, etc).

Abusing GDI for ring0
exploit primitives:

CALL RESTRICTIONS

Running in Medium Integrity Level

✓ You know where the kernel base is,
process tokens, some kernel structs, etc.

✓ Exploitation tends to be “trivial”

Running in Low Integrity Level

✕ You can’t rely on
NtQuerySystemInformation

✕ You need a memory leak
(second vulnerability)
to get a predictable kernel
address.

✕ Without memory leaks
exploitation tends to be
much harder.

Abusing GDI for ring0
exploit primitives:

LATESTS TECHNIQUES
■ use GDI objects:

Abusing GDI for ring0 exploit primitives
Diego Juarez
Windows Kernel Exploitation : This Time Font hunt you down in 4 bytes
KEEN TEAM

■ use Windows Paging Tables:
Getting Physical: Extreme abuse of Intel based Paging Systems
Nicolas A. Economou - Enrique E. Nissim

■ use Windows HAL’s HEAP:
○ Bypassing kernel ASLR – Target: Windows 10 (remote bypass)

Stéfan Le Berre - Heurs

https://www.coresecurity.com/system/files/publications/2016/10/Abusing%20GDI%20for%20ring0%20exploit%20primitives-2015.pdf
https://www.coresecurity.com/system/files/publications/2016/10/Abusing%20GDI%20for%20ring0%20exploit%20primitives-2015.pdf
http://www.slideshare.net/PeterHlavaty/windows-kernel-exploitation-this-time-font-hunt-you-down-in-4-bytes
https://www.coresecurity.com/system/files/publications/2016/05/CSW2016%20-%20Getting%20Physical%20-%20Extended%20Version.pdf
https://www.coresecurity.com/system/files/publications/2016/05/CSW2016%20-%20Getting%20Physical%20-%20Extended%20Version.pdf
https://drive.google.com/file/d/0B3P18M-shbwrNWZTa181ZWRCclk/edit?pref=2&pli=1
https://drive.google.com/file/d/0B3P18M-shbwrNWZTa181ZWRCclk/edit?pref=2&pli=1

Why GDI OBJECTS?

Abusing GDI for ring0
exploit primitives:

Why GDI objects ?

■ Easy to understand/manipulate

■ Kernel object addresses leaked to user-mode processes

■ Common structure for all Windows versions

■ Technique first discussed by KEEN TEAM (as far as we know)

http://www.slideshare.net/PeterHlavaty/windows-kernel-exploitation-this-time-font-hunt-you-down-in-4-bytes

WHAT CAN BE
DONE ?

Abusing GDI for ring0
exploit primitives: WHAT CAN BE DONE?

Low Integrity Level
■ Calculate all our kernel

addresses and trigger
ring0 arb write.

Partial arbitrary write (single BYTE/BIT)
*Depending on the bit position

Example: or byte ptr [rax],value

✓ You can use what we are going to
present

Full arbitrary write (DWORD/QWORD)

■ Overwrite GDI objects
○ Kernel GDI objects addresses are

known from user mode.

You don’t control the value?
*Might still be able to use this

Partial arbitrary write (WORD)

■ Overwrite GDI objects
○ Dependant on the low part of the

object address
*sometimes it is not possible.

Reviewing PvScan0
TECHNIQUE

Abusing GDI for ring0
exploit primitives: PvScan0 Technique

Abusing GDI for ring0
exploit primitives: PvScan0 Technique

By knowing a GDI handle, we can know the offset of its entry in the table.

Say we call CreateBitmap and it returns HBITMAP = 0x0F050566.

0xFFFFF90140a21000

○

Abusing GDI for ring0
exploit primitives: PvScan0 Technique

■ So, what’s at pKernelAddress?
○ a SURFACE object.

All we care about here is PvScan0,
a pointer to pixel data, and what
GetBitmapBits and SetBitmapBits
ultimately operate on.

Abusing GDI for ring0
exploit primitives: PvScan0 Technique

Although we cannot access SURFACE, BASEOBJECT or SURFOBJ members
from user-mode code, nothing stops us from calculating their address.

PvScan0 offset = pKernelAddress + 0x50

This is interesting, because controlling this single pointer can give us memcpy() of any
virtual address, and comes free with a very convenient way to invoke this functionality
from ring3…even at LOW INTEGRITY.

Abusing GDI for ring0
exploit primitives: PvScan0 Technique

■ Create 2 bitmaps (Manager/Worker)

■ Use handles to lookup GDICELL, compute pvScan0 address

■ Use vulnerability to write Worker’s pvScan0 address as Manager's
pvScan0 value.

■ Use SetBitmapBits on Manager to select address.

■ Use GetBitmapBits/SetBitmapBits on Worker
to read/write previously set address.

Abusing GDI for ring0
exploit primitives: PvScan0 Technique

■ Create 2 bitmaps (Manager/Worker)

■ Use handles to lookup GDICELL, compute pvScan0 address

■ Use vulnerability to write Worker’s pvScan0 address as Manager's
pvScan0 value.

■ Use SetBitmapBits on Manager to select address.

■ Use GetBitmapBits/SetBitmapBits on Worker
to read/write previously set address.

✓ SURFACE LOOKUP

✓ READ/WRITE primitive

Abusing GDI for ring0
exploit primitives: PvScan0 Technique

hManager = 0x93050769 hWorker = 0x20050555

ffff90142348000 + 50

ffff90142348050

fffff90142352000 + 50

fffff90142352050

PUT THIS

AT THIS
ADDRESS

pvScan0 offset

Abusing GDI for ring0
exploit primitives: PvScan0 Technique

hManager = 0x93050769 hWorker = 0x20050555

fffff90142352050

fffff90142352050

Abusing GDI for ring0
exploit primitives: PvScan0 Technique

hManager = 0x93050769 hWorker = 0x20050555

fffff90142352050 ffffe0000c66a2c0

Abusing GDI for ring0
exploit primitives: PvScan0 Technique

hWorker = 0x20050555

ffffe0000c66a2c0

PvScan0 Extended
TECHNIQUE

Abusing GDI for ring0
exploit primitives: PvScan0 Extended

✕ Not ALL arbitrary writes allow use of the PvScan0 technique

Writes of uncontrollable values can’t be used to overwrite
the PvScan0 property.

We will demo a kernel pool overflow where it’s not possible
to overwrite the PvScan0 property. (MS16-039/CVE-2016-0165)

✓ We are going to show a way to use what we already know
to make successful use of the technique on 99.9%
of kernel arbitrary writes

○ It adds a new step to the original technique

○ It consists of an overwrite of a different SURFOBJ property

Abusing GDI for ring0
exploit primitives: PvScan0 Extended

■ Keen Team touched on the subject at their
presentation named above.

■ We use/described this technique in the blogpost
“MS16-039 – “Windows 10” 64 bits Integer Overflow
exploitation by using GDI objects".

Abusing GDI for ring0
exploit primitives: PvScan0 Extended

If we call CreateBitmap:

An then we call GetBitmapBits/SetBitmapBits
SURFACE bounds will be validated by:

✕ It means we can’t access beyond the object
limits (as expected)

Abusing GDI for ring0
exploit primitives: PvScan0 Extended

PvScan0 always* points only a few bytes ahead, the pixel data
pointed to by PvScan0 is contiguous to the SURFOBJ header.

BASEOBJECT

pixel data

P
v
S
c
a
n
0

SURFOBJ

S
i
z
l
B
i
t
m
a
p

...

*doesn’t HAVE to, but does

...

SURFACE

Abusing GDI for ring0
exploit primitives: PvScan0 Extended

The SURFOBJ.sizlBitmap property (x,y size)

Abusing GDI for ring0
exploit primitives: PvScan0 Extended

■ The SURFOBJ.sizlBitmap property represents width
and height of the SURFACE

■ If sizlBitmap.cx and/or sizlBitmap.cy are overwritten
✓ The SURFACE can be enlarged

■ It means we get read/write access beyond the
bounds of the pixel data buffer!

Abusing GDI for ring0
exploit primitives: PvScan0 Extended

■ The idea is to turn on some bits to enlarge
the SURFACE.

✓ We can use any* arbitrary write, aligned
or not, controllable or undefined:

QWORD (8-byte) - DWORD (4-byte)
WORD (2-byte) - BYTE (1-byte)

single BIT!

✕ *NULL writes can’t be used ☹

Abusing GDI for ring0
exploit primitives: PvScan0 Extended

Extending a SURFACE

SURFACE

other objects

other objects

pixel data

pixel data

S
i
z
l
B
i
t
m
a
p

other objects

S
i
z
l
B
i
t
m
a
p

SURFACE

(before corruption)

(after corruption)

Abusing GDI for ring0
exploit primitives: PvScan0 Extended

■ MS16-039 (CVE-2016-0165) exploit after heap overflow

Abusing GDI for ring0
exploit primitives: PvScan0 Extended

■ One possible strategy is to make two SURFACE objects adjacent in
memory by doing a very simple heap spray

■ After modifying the SURFACE 1 sizlBitmap, the idea is to overwrite
PvScan0 on the adjacent SURFACE 2

✓ arbitrary read/write primitive !

S
i
z
l
B
i
t
m
a
p

SURFACE 2

P
v
S
c
a
n
0

✓ relative read/write primitive

SURFACE 1

pixel data pixel data

Abusing GDI for ring0
exploit primitives: PvScan0 Extended

✓ IMPORTANT: Any adjacent kernel structure could be effortlessly
manipulated after enlarging a SURFACE

■ Finally, it’s interesting to say that:
SURFOBJ.cjBits is set to
However, this property is not used to validate SURFACE bounds
after the header is corrupted!

MS16-039
LIVE DEMO

■ Target:
Windows 10 x64 v1511

 Scenario:
Running in Low Integrity Level

 Objective:
Get SYSTEM privileges by using
PvScan0 Extended technique

Windows 10 v.1607
 FIX

Abusing GDI for ring0
exploit primitives:

■ at Black Hat USA 2016 Microsoft announced the
Windows 10 Anniversary Update (v.1607)

■ Three very important KASLR bypasses were fixed
✕ Randomized Windows Paging Tables
✕ Killed GdiSharedHandleTable kernel address leak
✕ SIDT/SGDT access virtualized under Hyper-V

■ Let’s check
“Windows 10 Mitigation Improvements”
Microsoft presentation

Windows 10 v1607 Fix

Abusing GDI for ring0
exploit primitives: Windows 10 v1607 Fix

Abusing GDI for ring0
exploit primitives: Windows 10 v1607 Fix

Abusing GDI for ring0
exploit primitives:

v.1511 v.1607

GDICELL.pKernelAddress
✓ Kernel pointer

GDICELL.pKernelAddress
✕ Not really a pointer

Windows 10 v1607 Fix

Abusing GDI for ring0
exploit primitives: Windows 10 v1607 Fix

Abusing GDI for ring0
exploit primitives: Windows 10 v1607 Fix

✕ We really lost our “user-mode friendly”
SURFACE LOOKUP mechanism

 SURFOBJ

✓✓ Lets find a new one!

BYPASSING
Windows 10 v. 1607

 KASLR

Abusing GDI for ring0
exploit primitives:

■ Structure user32!gSharedInfo

○ check
Alex Ionescu@Recon 2013 and
Tarjei Mandt@BH 2011 for info on this.

○ ReactOS
https://www.reactos.org/wiki/Techwiki:Win32k/SHAREDINFO

Array of HANDLEENTRY structures
Object index is obtained by
object_handle & 0xFFFF

BYPASSING v1607 KASLR

https://recon.cx/2013/slides/Recon2013-Alex%20Ionescu-I%20got%2099%20problems%20but%20a%20kernel%20pointer%20ain't%20one.pdf
https://recon.cx/2013/slides/Recon2013-Alex%20Ionescu-I%20got%2099%20problems%20but%20a%20kernel%20pointer%20ain't%20one.pdf
https://media.blackhat.com/bh-us-11/Mandt/BH_US_11_Mandt_win32k_WP.pdf
https://media.blackhat.com/bh-us-11/Mandt/BH_US_11_Mandt_win32k_WP.pdf
https://www.reactos.org/wiki/Techwiki:Win32k/SHAREDINFO
https://www.reactos.org/wiki/Techwiki:Win32k/SHAREDINFO

Abusing GDI for ring0
exploit primitives:

■ Objects indexed by this table: User Objects
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724515(v=vs.85).aspx

BYPASSING v1607 KASLR

https://msdn.microsoft.com/en-us/library/windows/desktop/ms724515(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724515(v=vs.85).aspx

Abusing GDI for ring0
exploit primitives:

■ User Objects < 4KB
POOL TYPE 0x21 (PagedPoolSession)
POOL TYPE 0x29 (PagedPoolSession+0x8(?!))

■ User Objects => 4KB (Large Pool)
NonPagedPool

But we need GDI objects, so what’s the point ?

✓ GDI objets use the SAME heap as User Objects!
○ GDI Objects < 4KB

POOL TYPE 0x21 (PagedPoolSession)

○ GDI Objects => 4KB (Large Pool)
NonPagedPool

BYPASSING v1607 KASLR

Abusing GDI for ring0
exploit primitives:

■ Knowing the previous, it’s possible to predict GDI
ALLOCATIONS in KERNEL SPACE

■ So, if we:
✓ Alloc a USER object (we know its KADDRESS)
✓ Free the same USER object
✓ Alloc a GDI object with size equal to USER object

■ We have a high probability to infer where the GDI
object was allocated (Free List mechanism!)

BYPASSING v1607 KASLR

Abusing GDI for ring0
exploit primitives:

Alloc GDI object

BYPASSING v1607 KASLR

PROPOSED ALGORITHM

Alloc USER object A
Free USER object A

Alloc USER object B
Free USER object B

ADDRESS(A) == ADDRESS(B)
No Yes

Abusing GDI for ring0
exploit primitives:

■ KMALLOC/KFREE primitives

○ For objects < 4KB
KALLOC: win32u!NtUserConvertMemHandle()
KFREE: win32u!NtUserSetClipboardData() +

EmptyClipboard()

○ For objects >= 4KB
KALLOC: user32!CreateAcceleratorTableA()
KFREE: user32!DestroyAcceleratorTable()

BYPASSING v1607 KASLR

Abusing GDI for ring0
exploit primitives:

■ Allocations >= 4KB are aligned to
0xXXXXXXXX’XXXXX000 (12 bits)

■ The granularity is 4KB
(E.g 5KB request returns 8KB buffer)

■ If allocations are big, it’s less likely that a freed
chunk will randomly be reused by the Windows
kernel during exploitation

BYPASSING v1607 KASLR

■ Try to use >= 4KB objects if
possible. ■ KMALLOC/KFREE primitives

 For objects >= 4KB
KALLOC: user32!CreateAcceleratorTableA()
KFREE: user32!DestroyAcceleratorTable()

Abusing GDI for ring0
exploit primitives: BYPASSING v1607 KASLR

(OLD) GdiSharedHandleTable SURFACE LOOKUP mechanism

Abusing GDI for ring0
exploit primitives: BYPASSING v1607 KASLR

(NEW) gSharedInfo SURFACE LOOKUP mechanism

KMALLOC/KFREE/KMALLOC
LIVE DEMO

■ Target:
Windows 10 x64 v1511

 Scenario:
Running in Low Integrity Level

 Objective:
- Show kernel allocations

FINAL
LIVE DEMO

■ Target:
Windows 10 x64 v1607

 Scenario:
Running in Low Integrity Level

 Objective:
- Simulate a kernel arb.write
- Bypass KASLR using GDI objects
- Get “system” privileges

CONCLUSIONS

Abusing GDI for ring0
exploit primitives:

CONCLUSIONS

■ KASLR can be still bypassed in all Windows versions.

■ User objects table (gSharedInfo->aheList) shouldn’t leak a real
kernel pointer.

■ GDI objects addresses can be inferred via user objects.

■ SURFOBJ.cjBits should be used to validate the BITMAP size.

QUESTIONS ?

THANK YOU

2016

