
Abusing GDI 
for ring0 exploit primitives.

Diego Juarez - Exploit Developer

Ekoparty 2015



Abusing GDI for ring0 exploit primitives.

Bio

● Developer at Core Security since 2002
Joined IMPACT’s EWT in 2003.

● Found some vulnerabilities over the years
CVE-2010-2741 / CVE-2010-0766
CVE-2009-3578 / CVE-2009-3576
CVE-2008-1602 / [...]

● Co-Authored “VGA Persistent Rootkit” with 
Nicolas Economou.
Presented at Ekoparty 2012.
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Previous work

● Windows Kernel Exploitation : This Time Font hunt 
you down in 4 bytes
KEEN TEAM

● I Got 99 Problem But a Kernel Pointer Ain’t One
Alex Ionescu

● Easy local Windows Kernel exploitation
Cesar Cerrudo

● Etc... 
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Introduction:

While researching about a recently patched Windows font vulnerability I came 
across a very elegant technique for turning the usual write-what-where bug into a 
full read-write primitive.

I didn’t invent this, I’m not sure who did, as far as I understand it, it could have 
been used since 1999, but I thought it was insanely cool, and wanted to share it.

A cool trick for a vast amount of ring0 exploits from Windows 2000 to Windows 10.
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As per previous work, we know some sections of Win32k are mapped on user 
space.  One of those can be found at PEB.GdiSharedHandleTable.
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By knowing a GDI handle, we can know the offset of its entry in the table.

Say we call CreateBitmap and it returns HBITMAP = 0x0F050566.

0xFFFFF90140a21000
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So, what’s at pKernelAddress?

For 32bit BMF_TOPDOWN bitmaps all we care about is pvScan0, a pointer to pixel data (start of 1st scanline), 
and what user mode reachable GDI functions like GetBitmapBits and SetBitmapBits ultimately operate on.
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Although we cannot access BASEOBJECT or SURFOBJ members from user mode 
code, nothing stops us from calculating their address.

pvScan0 offset = pKernelAddress + 0x50

This is interesting, because controlling this single pointer can give us memcpy() of any 
virtual address, and comes free with a very convenient way to invoke this functionality 
from ring3…even at LOWINTEGRITY.
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Let's say for example you have a ring0 write-what-where that can only 
be triggered once, here's what you can do:

● Create 2 bitmaps (Manager/Worker)

● Use handles to lookup GDICELL, compute pvScan0 address

● Use vulnerability to write Worker’s pvScan0 offset address as Manager's pvScan0 value.

● Use SetBitmapBits on Manager to select address.

● Use GetBitmapBits/SetBitmapBits on Worker to read/write previously set address.

How? 
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hManager = 0x93050769 hWorker = 0x20050555
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hManager = 0x93050769 hWorker = 0x20050555
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hManager = 0x93050769 hWorker = 0x20050555

ffff90142348000 + 50 fffff90142352000 + 50

pvScan0 offset
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hManager = 0x93050769 hWorker = 0x20050555

ffff90142348000 + 50

ffff90142348050

fffff90142352000 + 50

fffff90142352050

PUT THIS

AT THIS 
ADDRESS

pvScan0 offset
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hManager = 0x93050769 hWorker = 0x20050555

ffff90142352050

fffff90142352050
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hManager = 0x93050769 hWorker = 0x20050555

ffff90142352050 ffffe0000c66a2c0
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hWorker = 0x20050555

ffffe0000c66a2c0
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Tools of the trade:

While researching about GDI structures I found I lacked an appropriate tool to make sense of it all, specially 
when I needed to spray GDI objects all over the place.

I knew about gdikdx.dll, but that was last seen 10+ years ago. And nothing replacing it to my knowledge works 
on x64. So I crafted something that turned out to be usable for me and might be usable for others.
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GDIObjDump:

Is a WinDbg/Kd extension to dump 
information about the GDI handle table 
and it's referenced kernel structures.
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GDIObjView:

Is a stand alone application that loads binary 
dumps made with GDIObjDump and shows a 
graphical representation of the GDI table. 

It allows you to sort and filter the GDI entries 
in a bunch of ways, and click individual cells 
to view the contents of their kernel structure.
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DEMO
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QUESTIONS?



THANK YOU


