
Abusing GDI
for ring0 exploit primitives.

Diego Juarez - Exploit Developer

Ekoparty 2015

Abusing GDI for ring0 exploit primitives.

Bio

● Developer at Core Security since 2002
Joined IMPACT’s EWT in 2003.

● Found some vulnerabilities over the years
CVE-2010-2741 / CVE-2010-0766
CVE-2009-3578 / CVE-2009-3576
CVE-2008-1602 / [...]

● Co-Authored “VGA Persistent Rootkit” with
Nicolas Economou.
Presented at Ekoparty 2012.

Abusing GDI for ring0 exploit primitives.

Previous work

● Windows Kernel Exploitation : This Time Font hunt
you down in 4 bytes
KEEN TEAM

● I Got 99 Problem But a Kernel Pointer Ain’t One
Alex Ionescu

● Easy local Windows Kernel exploitation
Cesar Cerrudo

● Etc...

Abusing GDI for ring0 exploit primitives.

Introduction:

While researching about a recently patched Windows font vulnerability I came
across a very elegant technique for turning the usual write-what-where bug into a
full read-write primitive.

I didn’t invent this, I’m not sure who did, as far as I understand it, it could have
been used since 1999, but I thought it was insanely cool, and wanted to share it.

A cool trick for a vast amount of ring0 exploits from Windows 2000 to Windows 10.

Abusing GDI for ring0 exploit primitives.

As per previous work, we know some sections of Win32k are mapped on user
space. One of those can be found at PEB.GdiSharedHandleTable.

Abusing GDI for ring0 exploit primitives.

By knowing a GDI handle, we can know the offset of its entry in the table.

Say we call CreateBitmap and it returns HBITMAP = 0x0F050566.

0xFFFFF90140a21000

Abusing GDI for ring0 exploit primitives.

So, what’s at pKernelAddress?

For 32bit BMF_TOPDOWN bitmaps all we care about is pvScan0, a pointer to pixel data (start of 1st scanline),
and what user mode reachable GDI functions like GetBitmapBits and SetBitmapBits ultimately operate on.

Abusing GDI for ring0 exploit primitives.

Although we cannot access BASEOBJECT or SURFOBJ members from user mode
code, nothing stops us from calculating their address.

pvScan0 offset = pKernelAddress + 0x50

This is interesting, because controlling this single pointer can give us memcpy() of any
virtual address, and comes free with a very convenient way to invoke this functionality
from ring3…even at LOWINTEGRITY.

Abusing GDI for ring0 exploit primitives.

Let's say for example you have a ring0 write-what-where that can only
be triggered once, here's what you can do:

● Create 2 bitmaps (Manager/Worker)

● Use handles to lookup GDICELL, compute pvScan0 address

● Use vulnerability to write Worker’s pvScan0 offset address as Manager's pvScan0 value.

● Use SetBitmapBits on Manager to select address.

● Use GetBitmapBits/SetBitmapBits on Worker to read/write previously set address.

How?

Abusing GDI for ring0 exploit primitives.

Let's say for example you have a ring0 write-what-where that can only
be triggered once, here's what you can do:

● Create 2 bitmaps (Manager/Worker)

● Use handles to lookup GDICELL, compute pvScan0 address

● Use vulnerability to write Worker’s pvScan0 offset address as Manager's pvScan0 value.

● Use SetBitmapBits on Manager to select address.

● Use GetBitmapBits/SetBitmapBits on Worker to read/write previously set address.

How?

Abusing GDI for ring0 exploit primitives.

hManager = 0x93050769 hWorker = 0x20050555

Abusing GDI for ring0 exploit primitives.

hManager = 0x93050769 hWorker = 0x20050555

Abusing GDI for ring0 exploit primitives.

hManager = 0x93050769 hWorker = 0x20050555

ffff90142348000 + 50 fffff90142352000 + 50

pvScan0 offset

Abusing GDI for ring0 exploit primitives.

hManager = 0x93050769 hWorker = 0x20050555

ffff90142348000 + 50

ffff90142348050

fffff90142352000 + 50

fffff90142352050

PUT THIS

AT THIS
ADDRESS

pvScan0 offset

Abusing GDI for ring0 exploit primitives.

hManager = 0x93050769 hWorker = 0x20050555

ffff90142352050

fffff90142352050

Abusing GDI for ring0 exploit primitives.

hManager = 0x93050769 hWorker = 0x20050555

ffff90142352050 ffffe0000c66a2c0

Abusing GDI for ring0 exploit primitives.

hWorker = 0x20050555

ffffe0000c66a2c0

Abusing GDI for ring0 exploit primitives.

Tools of the trade:

While researching about GDI structures I found I lacked an appropriate tool to make sense of it all, specially
when I needed to spray GDI objects all over the place.

I knew about gdikdx.dll, but that was last seen 10+ years ago. And nothing replacing it to my knowledge works
on x64. So I crafted something that turned out to be usable for me and might be usable for others.

Abusing GDI for ring0 exploit primitives.

GDIObjDump:

Is a WinDbg/Kd extension to dump
information about the GDI handle table
and it's referenced kernel structures.

Abusing GDI for ring0 exploit primitives.

GDIObjView:

Is a stand alone application that loads binary
dumps made with GDIObjDump and shows a
graphical representation of the GDI table.

It allows you to sort and filter the GDI entries
in a bunch of ways, and click individual cells
to view the contents of their kernel structure.

Abusing GDI for ring0 exploit primitives.

DEMO

Abusing GDI for ring0 exploit primitives.

QUESTIONS?

THANK YOU

