
The burgeoning bug
population has
enhanced public
awareness about
security. Here, the
author outlines
common bug
hunting methods
and techniques for
actually finding
bugs.

SECURITY & PRIVACY–2002 11

Iván Arce, Core Security Technologies

Bug Hunting: The Seven Ways
of the Security Samurai

In 2001, the CERT Coordination Center (www.cert.org) received reports of 2,437
software security flaws in widely used software. This marked a significant increase
over previous years and mirrored the findings of several other security-tracking
agencies (see, for example, reports at http://www.nipc.gov/cybernotes/2001/
cyberissue2001-26.pdf and www.securityfocus.com).

The effect of this burgeoning bug-finding fever has permeated the world in very inter-
esting ways, ranging from the development of software programs that exploit vulnerabil-
ities to increased mainstream press coverage to heated debates in the information secu-
rity community over how to disclose findings. Of course, the increase in bugs also gave
the technology industry itself a stream of bad publicity—and fodder for aggressive mar-
keting campaigns.

Despite all this, little has been said about the actual bug finding process itself. As the “Myth
vs. Reality” sidebar describes, the practice is shrouded in misinformation. Although the gen-
eral public is well acquainted with terms like “hacker,” “bug,” and “virus,” neither they nor
many information security professionals themselves know how bug hunters find vulnerabil-
ities or what systematic techniques they use. Here, I’ll offer an overview of that process.

BUG HUNTING BASICS
You might think I’m letting the cat out of the bag by disclos-
ing the obscure and seemingly magical set of bug-finding tricks
used daily by a small, elite cadre within the larger information
security community. Sadly, there is no such bag of magical
spells to disclose. Although bug finding requires technical
skills, experience, and an investigative (and often paranoid)
mindset, it is far from being an obscure art approachable only
by enlightened individuals.

To systematically find bugs, individuals do need

• common sense (to know what to look for),
• dedication (to spend endless hours poking through soft-

ware code), and
• a bit of luck (to find meaningful results).

Also helpful are a touch of arrogance, a handful of tricks and
tools, and considerable social skills for effective teamwork. In
fact, the required qualities don’t differ much from those a typ-
ical human being needs to live well in modern society.

For our purposes here, I define bug hunting as a systematic
process in which one or more individuals try to find security
flaws in a predetermined set of “technologies,” including soft-
ware products, hardware devices, algorithms, formal proto-
cols, and real-world networks and systems. Constraints on the
practice might include time, resource availability, technical
expertise, money, work experience, and so on.

The goals of bug hunting also vary and are sometimes con-
tradictory. A person might hunt bugs, for example, to

• perform technical due diligence on a given technology;
• assess the security of an organization’s information tech-

nology infrastructure;
• incrementally increase a given component’s security;
• identify and fix potential holes that might endanger orga-

nizations, communities, or countries; or
• find new ways to break into systems and networks for var-

ious legitimate or illegitimate reasons.

The best bug hunting approach includes a methodology or
guideline that minimizes effort and optimizes results.
Nonetheless, the literature offers little guidance and few stan-
dardization or best-practices efforts are under way (one of the
few is OWASP’s Web Application Security Testing Frame-
work at www.owasp.org/testing/).

BUG HUNTING: THE SEVEN WAYS
Despite the lack of formal documentation, common techniques
and methodologies exist for hunting bugs. Here, I outline seven
that we regularly use at Core Security Technologies.

SOURCE CODE AUDIT
As the building block for a software program or device
firmware, source code is highly valuable to bug hunters, as is

frequent interaction with the code’s development and main-
tenance team.

To do an audit, bug hunting teams carefully read the com-
plete source code and identify and document each bug they
find. The first and most effective approach is to find and ana-
lyze known bad programming practices within the code. (For
an overview of good and bad programming practices, see the
Secure Programming Standards Methodology Manual at
http://uk.osstmm.org/spsmm.htm.)

In the next (and often overlooked) stage, bug hunters reread
the source code to obtain an in-depth understanding of its

design and purpose, which helps them find security bugs that
are intrinsic to design and implementation.

The source code audit method, also known as RTFS (“read
the fine source”), is well suited for experienced bug hunting
teams, but does not require extensive knowledge of all of the
underlying technologies.

As the amount of code or the software complexity increases,
source code auditing can become painfully time-consuming
and resource intensive. A viable shortcut is to select and audit
a representative set of code, such as the source code of the soft-
ware’s basic components or critical modules. Also, having the
development team provide support and answer design and
implementation questions can accelerate the process and
almost always guarantees the best results.

REVERSE ENGINEERING: DEBUG & DISASSEMBLY
When the source code is not available, bug hunters must take
a different approach. If the software is relatively small or sim-
ple, reverse engineering might work.

To find bugs using the reverse engineering approach, two
things are crucial: software debugging and disassembly. Debug-
ging entails actively monitoring the software’s execution to
understand its functions and how it carries them out. Software
developers regularly use this technique to find and fix software
bugs (security-related or not) when a program misbehaves or
when a bug manifests itself during program execution, but
they’ve detected no problems with the source code.

Bug hunters apply the same idea. They select program inputs
and follow their execution path, thereby gaining an under-
standing of the input’s progression and identifying security
bugs. The team can change inputs to force the program into
other execution paths that might yield new findings. However,
it’s impossible to debug a program and follow every possible
execution path. (I leave proof of this as an exercise to the
reader.)

Using this debugging technique, teams commonly find secu-
rity bugs arising from invalid input processing or mishandling
exception conditions (errors) caused by invalid inputs.

Disassembly entails obtaining and then analyzing source code
from an executable image of the software product. How is this
different from a source code audit? Disassembly yields source
code in assembler, the lowest-level programming language for
the software’s microprocessor architecture. Furthermore, the
code can be very complex and generally differs from the high-
level programming language source code that produced the
executable image (though it performs the same functions).
Also, development team members’ input is less important,
because they developed the software in high-level language
and thus have less understanding of how the software’s fea-
tures, functions, and components relate to disassembled code.

To disassemble an executable image into assembler source
code, the bug hunter uses a disassembler tool that interprets the
executable image format and translates it into assembly code
for the architecture it runs on. The tool must therefore “know”
about the underlying microprocessor programming features.
Some disassemblers offer additional features, such as recog-
nizing disassembled code constructs that correspond to com-

12 SUPPLEMENT TO COMPUTER

Myth vs. Reality

The absence of available information about how real peo-
ple find bugs in real-world systems has led many industry peo-
ple to create myths convenient for their own purposes, rang-
ing from marketing strategies to technological elitism.

MYTH: Only very bright, knowledgeable people can find secu-
rity bugs. Bug finders are the elite celebrities of the informa-
tion security world.
REALITY: You don’t have to be a genius to find a security bug.
The most important bug hunting factors are the ability to put
past experiences into practice and a willingness to labor for
long hours, often with no results. That said, to find bugs sys-
tematically and quickly, it helps to have considerable security
knowledge, a streamlined mental process, and an efficient
team to get directly to the root of problems.

MYTH: There is always a shady (if not illegal) motivation
behind the search for security bugs. Bug hunters are black-
hatted crackers trying to find ways into our networks and per-
sonal information. Or, conversely, bug hunters always mean
well and are working for a better, more secure world.
REALITY: Security bugs are often accidental, and the people
who hunt bugs have varied motivations. For example, look-
ing for bugs in a software product is a good way for con-
sumers to assess the product’s security before buying it, or for
testers to identify weaknesses overlooked in the development
process. Finding security bugs in a network architecture is
required in certain security consulting offerings; it is part of
day-to-day security maintenance work and mandatory for
improving system security.

On the other hand, bug hunters from company Y might be
tasked with finding vulnerabilities in company X’s software
and disclosing the information so that their own competing
product looks better on the market. There are also individual
bug hunters who seek fame or a good job, and of course,
there are also those who seek to commit crimes of property
or malice.

MYTH: The person that finds a security bug knows everything
there is to know about it—including how to exploit it.
REALITY: More often that not, security bugs are found by
people who lack a clear understanding of the bug. Under-
standing why a bug exists, how and when it manifests itself,
and how to fix it properly requires much additional effort that
does not necessarily relate to the actual bug-finding process.
Also, more often than not, the bug finder knows neither
exactly how to exploit the bug nor the exploitation’s poten-
tial scope or side effects. Most bug finders are unaware of the
full, global implications of their discoveries.

monly used constructs in high-level languages or the underly-
ing microprocessor architecture.

Armed with feature-rich debuggers and disassemblers, an
auditor can engage the bug hunting process in a promising
way. Compared with source code auditing, reverse engineer-
ing is more resource-intensive and requires the most techni-
cally skilled bug hunters to achieve good results. Success also
depends on the target software’s complexity and size; disas-
sembling a large application or major chunks of an OS might
be too resource intensive. Finally, reverse engineering is ille-
gal in the US under certain conditions as a result of the Digi-
tal Millennium Copyright Act, which was born of at best
innocuous and at worst flawed attempts to prevent the under-
standing and disclosure of trade secrets or intellectual prop-
erty. (The DMCA is available at www.loc.gov/copyright/
legislation/dmca.pdf; for details of its aftermath, see http://
sci.newsfactor.com/perl/story/13187.html.)

REVERSE ENGINEERING: NETWORK TRAFFIC
When source code is unavailable, or when the target technol-
ogy is large or complex (such as a proprietary operating system)
or interacts with other network components, bug hunters must
understand the technology’s global interactions and identify
problems therein. To do so, they can use a network sniffer—
a software program that captures all the packets traversing the
network off the wire—to spot possible flaws in the communi-
cation mechanism.

Bug hunters need not always fully understand the commu-
nication protocols involved. Modifying and replaying the cap-
tured traffic or generating spurious traffic can reveal security
bugs. Searching for bugs based on component communication
analysis typically requires an expert bug hunter who under-
stands networking protocols and their use in real-world sce-
narios. It requires less low-level expertise at the platform or
OS level.

BLACK-BOX SECURITY TESTING
In some cases, bug hunters have no information about how the
target technology works and cannot access it for reverse engi-
neering. This might be the case with firmware stored in tam-
per-resistant devices, network appliances, or even software
products. Here, bug hunters can treat the target technology
as a black box—a device that accepts certain inputs and pro-
duces a set of outputs. Basically, they know the device’s pur-
pose, but not how it works.

But not even a black box operates in the vacuum: it has a
defined environment such as an OS, computer network, or
physical location. By modifying different inputs or environ-
mental conditions, bug hunters can review the outputs and
determine if the black box is operating securely—that it’s doing
what it is intended to do and nothing else.

For example, say our bug hunters have a Web server as a
black box. They’d first send it certain inputs (URL requests)
and obtain certain outputs (Web pages). Next, they’d send it
malformed requests or alter the server program’s network or
OS. The Web server’s outputs should be the same as expected
under normal operating conditions; if not, the server likely has

a bug. The bug hunters would then determine whether the
bug was a security bug.

The key is to alter the environment and inputs to reveal
security bugs, which typically result from bad design and
implementation practices. Here, bug hunters’ expertise and
experience come into play: They look for known security bugs,
such as buffer overflows, format string bugs, race conditions,
cross-site scripting bugs, authorization and authentication
flaws, and denial of service bugs. (For a more detailed classifi-
cation, see http://online.securityfocus.com/cgi-bin/vulns-
item.pl?section=help&id=4146.)

Black box analysis typically requires considerable experience
and time from the bug hunting team, though it does not usu-
ally require deep technical skills. An exception to this is when
the target technology is a very specialized device that performs
an obscure task.

BRUTE FORCE
Automated tools offer a variation on the black-box testing
approach. The idea here is to automatically try every possible
bug-exposing input to the target program. This requires less
expertise and relies on good testing tools. However, it might
miss fundamental design flaws or semantic attacks (bugs related
to the inputs’ meaning, rather than the inputs themselves).
Also, bug hunters might end up with innocuous bugs—secu-
rity flaws that are present in the technology, but unimportant
in standard use.

TOP-DOWN ANALYSIS
Top-down analysis starts from a high-level overview of the
target technology and drills down to details once the team sus-
pects specific weaknesses. With this approach, bug hunters
first gather and analyze documentation and all available design
materials for the target technology and any related technolo-
gies. This might include design specifications, protocol spec-
ifications, white papers, formal descriptions of underlying cryp-
tosystems, or Request for Comments issued by the Internet
Engineering Task Force.

From such documentation, bug hunters identify both the-
oretical problems in the target technology’s design and known
problems in its related technologies. They then look at the
technology in more detail to confirm or deny the existence of
the theoretical bugs.

This approach requires experience in the information secu-
rity field, a high-level understanding of many technologies,
and a more academic approach to their problems. Its advantage
is that it yields results quickly; however, it can lead to many
dead ends and identify theoretical flaws that don’t exist in the
real world.

INFORMATION GATHERING
Finally, the quick and lazy—but often highly rewarding—
approach is to search for bug reports or symptoms on all pos-
sible sources, including Internet search engines, user mailing
lists, newsgroups, product documentation and release notes,
and product-support knowledge bases. Doing so gives bug
hunters hints and sometimes specific information about pos-

SECURITY & PRIVACY–2002 13

sible security bugs; they can then attempt to verify their exis-
tence in the target technology.

For example, a Web search for “product X” and, say,
“SIGSEGV”—which indicates an abnormal program termi-
nation in a Unix OS and is symptomatic of certain security
bugs, such as buffer overflows or formatting string bugs—will
yield hundreds of results. The bug hunter can then refine the
search for specific security-related terms. Next, the hunter
might actually reproduce the bug or research the reported
problems to verify their validity.

This method provides quick results and requires no great
expertise or experience in the security field. However, the
approach is not a good long-term strategy: it is unsystematic
and can often lead the bug hunter on blind searches for secu-
rity bugs without any guarantee of timely success.

BUG HUNTING: METHODOLOGY
The techniques above deal with the technical details of bug
hunting. However, good methodology is also needed if bug
hunters are to find bugs quickly and with minimum effort, and
to do so consistently over time. To outline such a methodology,
we must consider the constraints on the bug hunting process,
including time limitations, available security expertise, tech-
nology resources, tool availability, and legal implications.

In addition, there are several criteria for any systematic a
bug hunting effort.

• A clear definition of the target technology. Example definitions
include: a default installation of Microsoft Windows 2000
Advanced Server OS for the Intel platform, running on spe-
cific hardware; the Apache Web server version 1.3.22 stan-
dard distribution for Linux, including all the default
modules; a proprietary application in its production envi-
ronment, including its current configuration and all the
related software and hardware.

• Process documentation. Everyone involved in the process must
understand what is being done, what is known about the tar-
get technology, and what directions they might follow dur-
ing the process to more easily find security bugs. Documen-
tation is always crucial, but is particularly so if the project
involves many individuals with different expertise and expe-
rience, or people working in physically separate locations.

• Results documentation. Documenting the results and clearly
stating what was left out of the process provides useful infor-
mation for future work.

• Diversification. Relying on a single technique or person to hunt
bugs is a bad idea and will produce limited results. Always use
a mixture of techniques and a team of two or more people.

14 SUPPLEMENT TO COMPUTER

Real-world bug hunts:
A sampling

As the following examples show, bug
hunters have applied the methods and
techniques described here in the real
world with great success.

The OpenBSD security audit
In the summer of 1996, the OpenBSD
project began a systematic source-code
audit looking for bugs, using several of
the techniques described in this article.
In less than a year, the teams found and
fixed thousands of security bugs, and
discovered and formalized whole new
security bug classes. This systematic bug
search, along with the incredibly quick
response time on bug fixes, earned
OpenBSD a reputation as the most
secure general-purpose OS available. A
detailed account of their bug hunting
process is at www.openbsd.org/security.
html#process.

“Netscape engineers are weenies”
In April, 2000, independent security
expert Rain Forest Puppy published a
report detailing how Alf Serer found
the string, “Netscape engineers are wee-
nies!” within a Microsoft Windows NT
4.0 OS component. The string was part
of the authorization mechanism to
access server-side components of Win-
dows-based Web sites, and posed a secu-
rity risk to many Web servers. The find-
ing triggered a storm of e-mail

exchanges in the security community
debating whether or not it was definite
proof of the flaw’s existence. Given the
nature of both the bug and the string,
the finding generated significant press
coverage. Claims that the finding did
not expose a security bug prompted Ger-
ardo Richarte and Alberto Soliño to do
a quick audit of the component in ques-
tion. This soon revealed the existence of
yet another, more serious security bug.
Throughout the process, several indi-
viduals around the world applied re-
verse engineering techniques and pro-
cedures, unveiling the problem within
hours. A full account of the incident is at
h t t p : / / a r c h i v e s . n e o h a p s i s . c o m /
archives/ntbugtraq/2000-q2/0035.html.

MySQL authentication bug
In October 2000, Core Security Tech-
nologies (CST) published a report
detailing a security vulnerability in the
widely used MySQL database engine.
Using a time-constrained source code
audit of the database engine and
assembly-line teamwork, we produced
extensive details of the security prob-
lem and how attackers might exploit
it. The complete report is available at
www.corest.com/common/showdoc.
php?idx=125&idxseccion=10.

SSH CRC-32 insertion attack
In June 1998, CST’s Ariel Futoransky dis-
covered a basic design flaw in the com-

munication protocol for the Secure Shell
(SSH) software package while reading
the product’s design and protocol spec-
ifications. SSH provides strong authen-
tication and secure communications
over insecure networks and is widely
used to achieve secure log-in to remote
computers over a network. A few days
later, Futoransky and CST’s Emiliano
Kargieman audited the SSH package’s
source code and confirmed the bug’s
existence. They worked on a fix and sent
it to SSH developers, who incorporated
it into virtually all software packages
that implemented the SSH version 1 pro-
tocol. This is a good example of top-
down analysis, coupled with peer audit-
ing of source code. The bug report
is available at www.corest.com/common/
showdoc.php?idx=131&idxseccion=10.

SSH “deattack overflow” bug
In February 2001, information security
firm Bindview published a report detail-
ing Michal Zalewski’s findings describ-
ing an obscure bug in CST’s fix to the SSH
insertion attack discovered in 1998. The
bug existed in all SSH software packages
that incorporated the 1998 fix. This is a
good example of how two rotating
teams can discover bugs overlooked or
introduced by each other. Bindview’s
problem report is available at http://
razor.bindview.com/publish/advisories/
adv_ssh1crc.html.

There are several options for organizing a systematic hunt,
depending on time and resources. Following are five of the
most common approaches.

LONE RANGER MODE (ONE PERSON OR MORE)
The most basic approach for an exhaustive security bug search
is to dedicate an individual or team to the process on an ongo-
ing basis. In this scenario, each person’s sole responsibility is
to find security bugs in all target technologies. With a team,
each member covers all technologies independently, and
exchanges his or her findings with the other members. This
process is obviously best suited for long-term efforts; it does
not take into consideration strict time constrains or expecta-
tions for short-term results.

TIME-CONSTRAINED PEER AUDIT (TWO TO THREE PEOPLE)
In this approach, two or three people audit the same technol-
ogy together, sharing resources and tools. They might sit
together at a computer, with one auditing while the others
watch and provide advice and fresh ideas. This methodology
predates similar Extreme Programming techniques (www.
extremeprogramming.org) and ensures that the target tech-
nology is examined from different viewpoints and thus that
fewer bugs will be overlooked. This method is particularly use-
ful when time is tight and team members have similar skills
and experience.

ASSEMBLY-LINE TEAMWORK (TWO OR MORE PEOPLE)
When you have people with varying degrees of security exper-
tise or many technologies that must be audited quickly, it’s a
good idea to form a bug hunting team of people with specific
skills. Such a team might include

• a seasoned security auditor with general knowledge about
various technologies;

• a highly skilled person with in-depth, low-level knowledge
of specific technologies, such as assembler for x86 or reverse
engineering;

• an academic with theoretical cryptography knowledge; and
• a QA analyst or software developer.

Given this team, the security auditor might do a cursory
technology audit to spot possible weaknesses, then pass the
technology to the person most suitable for dealing with that
weakness. That person would further expand on the initial
audit, identify bugs, and pass it on again. The process ends
when a security bug is positively identified and the team has
proof of its existence. Meanwhile, the high-level security audi-
tor has already moved on to the next technology and put
another assembly line in motion.

Although this method might miss several bugs in a specific
technology, overall, it results in the discovery of many secu-
rity bugs.

TOURNAMENT (TEAMWORK)
For a more comprehensive effort, you can form several bug
hunting groups (organized as in previous examples), select a

set of target technologies, and assign a subset of them to each
group. You can then implement a tournament-like process,
encouraging groups to find as many bugs as possible in a given
time period. The group that finds the most, wins the tourna-
ment (and maybe a prize).

Although this is a highly efficient way to find numerous secu-
rity bugs in a short time period, achieving well-documented
and researched results requires the commitment of many peo-
ple, considerable logistical effort, and strong project manage-
ment during the tournament. You should also establish rules
and procedures to score a “bug finding” in advance and ensure
they are followed throughout the process.

ROTATING TEAMS
In this approach, several teams look at the same software in
rotation. The first team does an audit, reports bugs, and gets
them fixed, then the second (and possibly a third) team does the
same. Thereafter, the first team starts over again and the cycle
is repeated until an established time limit is reached. Or, if it
is an ongoing part of the software development process, the
cycle is repeated indefinitely. This process guarantees that
almost all bugs will be found and fixed; what one team misses,
another will catch. Another advantage is that teams can audit
and (if necessary) amend the previous team’s bug fixes.

U sing a systematic approach, you can find many secu-
rity bugs in a short time. Doing so provides tangible
benefits to system security and is a necessary step in

any short-term attempt to close security gaps.
Some people argue that bug hunting would be unnecessary

if the technology itself was better built, and that that’s where
more serious effort is needed. However, past history and expe-
rience have shown that security bugs will always exist, no mat-
ter how good the security QA program. Given this, we must
integrate both strict security QA programs and systematic bug
finding processes as we develop and maintain the technologies
that will drive our world into the future.

ACKNOWLEDGMENTS
I thank all the people who contributed with thoughts and ideas for this
article, all those who encouraged me to write it, and my colleagues at
Core Security Technologies who, during the past five years, provided
me the raw material for this article, and also showed almost unbear-
ably great technical knowledge, security expertise, and passionate ded-
ication to their work.

Iván Arce is CTO and cofounder of Core Security Technologies, an in-
formation security company based in New York. Since starting the com-
pany in 1996, he has managed bug hunting teams at CST and been
involved in the discovery of hundreds of security bugs. Contact him at
ivan.arce@corest.com.

SECURITY & PRIVACY–2002 15

