
Finding bugs and publishing

advisories – the Core Security way

Carlos Sarraute
Core Security Technologies

and Ph.D. program in Informatics Engineering, ITBA

H2HC São Paulo, 27/28 Nov 2010

Brief presentation

 My company: Core Security Technologies

– Boston (USA)

• marketing and sales

– Buenos Aires (Argentina)

• research and development

 About me:

– M.Sc. in Mathematics from UBA

– I have worked as researcher in CoreLabs since 2000

– One of my focus areas: applying Artificial Intelligence

techniques to solve problems from the security field

• OS detection using neural networks

• Automated attack planning (see H2HC‟09 presentation)

Outline

1. Bug fishing activities

2. The bug reporting and

publication process

3. How we have improved our

process

Bug fishing activities

First bug being found (9/9/1945)

Core’s vulnerability research

 Core founded in 1996 in Buenos Aires, Argentina

– involved in security research and vulnerability discovery

ever since

 Early adopters of the public disclosure process of

software bugs (mid 1990s)

 146 advisories published (stats based on this sample)

– plus papers and technical articles

 Several hundredths of bugs reported.

 Coordinated bug reports with Microsoft, Cisco, Sun, SGI,

IBM, Digital, HP, all Linux vendors, BSD, etc.

 CVE Numbering Authority (CNA)

Why do we look for bugs?

 The end goal is to help vulnerable users & organizations

understand and mitigate risk

 Not a revenue generating activity

– Brand and technical recognition

 Knowledge acquisition and transfer

– Good way to learn about information security

 Research activity

– Advancement of the discipline

 Sometimes bugs are found without looking for them

Audit (researcher)

When do we find bugs?

Bugweek

Writing another exploit

Audit (Core)

Research

project

Pentest

37%

26%

16%

0

5

10

15

20

25

30

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Bug finding context – evolution

Bugweek

Writing an

exploit

Audits

Research project
Pentest

advisories

year

How do we find bugs?

Research

Manual fuzzing

Source code auditBinary audit

(reversing)

Fuzzing

Intuition

29%

27%

16%

13%

0

5

10

15

20

25

30

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Methodologies – evolution

Manual fuzzing

Source code

audit

Binary audit

Intuition

Fuzzing

advisories

year

The Bugweek

 Main vulnerability research activity

 All the security professionals of the company dedicate

one week to bughunting

– From developers to exploit writers & QA analysts

 Prior to the Bugweek, employees are invited to

workshops

– Source code audit, fuzzing, webapps security, etc.

 More learning and working material

– Bug Fisher Manual

– Documentation of previous Bugweeks

– Tools and fuzzers written in previous years

– Repository of Degenerated Files

The Bugweek teams

 Employes are organized into teams

– ~20 teams of ~5 persons

– The captain has technical skills

– We used Integer Linear Programming to define the teams

• Input: each captain “bids” on who he wants in his team

 Result: a set of teams that mix skill sets from different

departments

– Team building experience

– Knowledge transfer

– For example, a GUI developer with little security

background gets the chance to work with an expert exploit

writer

– Each team decides its targets and methodologies

The Bug reporting and

publication process

Actors in the Security Ecosystem

Researcher

Discovery

Black

market

White

market

Vendor

Users

Disclosure

Patch

Exploit

Private profit

/ criminal

$ $

CERT

Limited

Disclosure

Subscribers

$

$

Bugs in the Bug reporting process

Bug
created

Discovery
PoC /
Exploit Report

Notified
Repro-
duce

Patch Testing Release

Publish
advisory

Update

Window of exposure

Bug

deployed

Researcher

Vendor

User

Vulnerability Lifecycle dynamics

Stefan Frei et al. Modelling the Security Ecosystem - The Dynamics of (In)Security

Disclosure guidelines

 Keep in mind the objectives of the advisory

– Final objective: Inform users of the vulnerability

– Short term objective: Inform vendor of the bug

• With enough info to reproduce the bug

– Broader objective: Inform the security community

• Understand root cause of the bug

• Analyze variants of the bug

• Discuss exploitation techniques

 Keep it simple

– The process is resource-consuming (mostly time)

– Always have clear deadlines

 Minimize harm / protect users

Communication is key

 Vendor learns about the vulnerability

 Researcher learns about the vendor‟s analysis of the

vulnerability and the patch development process

– Continued communications between vendor and

researcher are fundamental

 Users learn about the flaw and evaluate

countermeasures

In Core‟s case, communications are handled by a

dedicated Advisories Team (6 persons)

– Working part-time on advisories

– De-coupled from discoverers / researchers

When a bug is a security bug?

 The OpenBSD story (CVE-2007-1365)

– Alfredo Ortega found a vulnerability that results in a

memory corruption in OpenBSD‟s kernel

• In the code that handles IPv6 packets

• By sending ICMPv6 fragmented packets, an attacker can

overflow mbuf structures (in kernel memory) that could allow

remote arbitrary code execution.

– OpenBSD team did not consider it a security problem

– OpenBSD team quickly developed a fix

• Fix commited without warning

• Labelled as a “reliability fix”

– Discussions with Theo de Raadt

• Theo: “Pablumfication” of the term “security vulnerability”

The OpenBSD story (cont.)

 One week later... Core developed a PoC that

demonstrated remote code execution in kernel, by

exploiting the mbuf overflow.

 OpenBSD had to change the homepage:

Only two remote holes in the default install, in a heck of

a long time!

 Conclusion: be conservative

– Exploitable = there exists one way to exploit the bug

– Not exploitable = all the exploitation techniques will fail

How much technical information?

 Debate that has been going on for the last 10 years.

 Publish enough technical details to facilitate accurate

and precise assessment of risk.

 Research and publish potential workarounds and

alternative mitigation strategies.

– Patching is not the only possible way to address software

security bugs

– The official vendor is not the only possible solution

provider.

 A fully working exploit is not necessary

– A simple PoC is enough to reproduce the exploitable

condition

What bug are we talking about?

 Advisories should have enough technical details to

uniquely identify the bug

 The Windows Creation vulnerability story (CVE-2010-

1897):

– June 2010, typical Patch Tuesday… the exploit writer

Nicolas Economou investigates MS10-032 to reproduce

the vulnerability

• Problem: the patch doesn‟t patch!

• Several mails with MSRC later, we come to the conclusion

that we are speaking about a different bug

• The bug is in a different function than the original issue and

occurs due to a different, previously unknown, issue with the

window handle

The Release modes

 Coordinated release

– Advisory and fixes are released simultaneously

– We try to publish all advisories in a coordinated way

 User release

– When the vendor doesn‟t respond

– Or the vendor won‟t fix the bug

– Or researcher and vendor don‟t agree on the timeframe

 Forced release

– When a third party releases info about the bug

– Or one of the stakeholders leaks info about the bug

– Or the bug is exploited in the wild

0

5

10

15

20

25

30

35

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Proportion of release modes

Coordinated release

User release

Forced release

72%

23%

5%

year

advisories

Some “user release” cases

 When the vendor is unresponsive

– Autodesk 3D Studio, Corel Paint Shop, AOL ICQ, etc...

 The “Movie Maker and Producer” story (CVE-2010-0265)

– Damian Frizza found a bug in the function

IsValidWMToolsStream() of Movie Maker that leads to

remote code execution.

– Also present in Producer (add-on for Office)

– After 6 months and 18 interactions...

• Patches were ready for Movie Maker

• MS wanted to match the release of fixes for Producer with

the release of new product version (Office 2010)

• And postpone release of patches and advisory publication to

an undetermined date

• Core respectfully disagrees “user release”

The VirtualPC Hyper-hole story (1/3)

 The VirtualPC Hyper-hole story

– In Virtual PC, the Virtual Machine Monitor (VMM) is

responsible for mediating access to hardware resources

– The bug found by Nico Economou: VMM allows the Guest

OS to read/write few memory areas above 2GB limit

– The Guest OS kernel DOESN‟T know this memory area

Kernel SpaceUser Space ?HOST

GUEST Virtual Machine

2 GB 2 GB

256 MB

!

The VirtualPC Hyper-hole story (2/3)

 Affected processes: ALL

 Affected guests: ALL

 Vulnerable Versions: - Virtual PC 2004, 2007, Virtual Server

- XP Mode in Windows 7

KERNEL LSASS.EXE

KERNEL SVCHOST.EXE

KERNEL EXPLORER.EXE

KERNEL CALC.EXE

KERNEL ETC.EXE

.

?

The Hyper-hole

The VirtualPC Hyper-hole story (3/3)

 Lots of interactions with MSRC (40 mails in total!) to

discuss if this is a security issue. Conclusion:

– It allows an attacker to bypass DEP and SafeSEH.

• MSRC: These are defense-in-depth mechanisms

– In specific conditions it causes vulnerabilities that were

deemed not exploitable to become exploitable.

• Example: gera‟s abo2 is indeed exploitable when running in

Windows XP Mode on Windows 7

– Design problem, very difficult to fix.

– MS will not issue a security bulletin.

– Advisory published as “user release” on March 16, 2010.

 STILL UNPATCHED!

Improving our process

Open XML advisory format

 Format used internally by Core Advisories team,

developed by Fernando Miranda

 We are releasing it for the community at
http://corelabs.coresecurity.com/index.php?module=Wiki&action=vie

w&type=tool&name=Open_XML_Advisory_Format

 Easily convertible to text, HTML, wiki format, ...

 Files included:

– advisory-schema-OXAF-v22.xsd

– advisory-template-OXAF-v22.xml

– common-OXAF-v22.xsl

– xml2html-OXAF-v22.xsl

– xml2txt-OXAF-v22.xsl

– xml2wiki-OXAF-v22.xsl

http://corelabs.coresecurity.com/index.php?module=Wiki&action=view&type=tool&name=Open_XML_Advisory_Format
http://corelabs.coresecurity.com/index.php?module=Wiki&action=view&type=tool&name=Open_XML_Advisory_Format
http://corelabs.coresecurity.com/index.php?module=Wiki&action=view&type=tool&name=Open_XML_Advisory_Format
http://corelabs.coresecurity.com/index.php?module=Wiki&action=view&type=tool&name=Open_XML_Advisory_Format

Some XML fields

 <title>Virtual PC Hypervisor Memory Protection

Vulnerability</title>

 <author fullname="Nicolás Economou" nick="nico"/>

 <created year="2009" month="08" day="19"/>

 <advisory id="CORE-2009-0803" local="Yes"

remote="No">

 <discovered-during>writing-exploit</discovered-

during>

 <metodology>binary-code-audit</metodology>

 <release-mode>user-release</release-mode>

 <published-date year="2010" month="03" day="16"/>

Use industry standards

 CVE = Common Vulnerabilities and Exposures

– <track-ids>

<id from="cve">2010-1002</id>

<id from="bugtraq">38764</id>

</track-ids>

 CWE = Common Weakness Enumeration

– <vulnerability-class><cwe id="285">Improper

Access Control</cwe></vulnerability-class>

 To be added: CPE = Common Platform Enumeration

 More at “Making security measurable”:

http://measurablesecurity.mitre.org/

http://measurablesecurity.mitre.org/

Simple references (LaTex style)

 In the text:

As an example, the abo2 exercise from gera's Insecure
Programming page <xref target='abos'/> is shown below.

 In the references section:

<reference label='abos'>
gera's Insecure Programming by Example<break-line/>
<eref target='http://community.corest.com/~gera/
InsecureProgramming/'/>
</reference>

 The references are numbered and cross-linked

automatically when rendering the output as text or HTML

 Encourage the writer to add references!

– Write the advisory as a technical report

Detailed timelines – motivation

 In the last 10 years we have seen a lot of debate around

disclosure policies

– Full disclosure, responsible disclosure, limited disclosure,

no disclosure

 One size doesn‟t fit all

– Correct procedure determined on a case by case basis

 We need to understand better the disclosure process

– Enforce process transparency.

– Document and publish communications between

stakeholders.

The timeline in the XML

<timeline>

<event year="2009" month="08" day="19" what="team-

interaction">

<core/> notifies the Microsoft team of the

vulnerability and sends a brief technical report.

</event>

<event year="2009" month="08" day="19" what="vendor-

interaction">

The Microsoft team acknowledges the vulnerability

report.

</event>

...

<event year="2010" month="03" day="16" what="advisory-

published">

Advisory <advisory-id/> is published.

</event>

</timeline>

More event types in the timeline

 advisory-started

 advisory-finished

 advisory-published

 advisory-cancelled

 conference-call

 exploit-in-the-wild

 id-requested

 id-assigned

 team-interaction

 team-research-started

 team-research-finished

 vendor-interaction

 vendor-research-started

 vendor-research-
finished

 patch-available

 wont-patch

Values extracted from the Advisory timeline

 Elapsed time (from notification to publication)

 Release mode

 Number of interactions = mails and phone calls

exchanged with the vendor (and other stakeholders)

 Number of times the publication date was rescheduled

 From the vendor side

– time to reproduce the vulnerability

– time to assess exploitability

– time to develop fixes

– time to test fixes

0

5

10

15

20

25

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

A
d

v
is

o
ri

e
s

Weeks elapsed (notification to disclosure)

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120 140 160 180 200 220 240

A
c
u

m
u

la
te

d
 p

e
rc

e
n

ta
g

e

Days elapsed (notification to disclosure)

Our sample – duration of the process

2 months

73 %

6 months

95 %

median = 4,6 weeks mean = 7,8 weeks

slowest 5%

0

2

4

6

8

10

12

14

2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70

A
d

v
is

o
ri

e
s

Number of interactions

Our sample - number of interactions

median = 12,5 mean = 16,22

max = 67 interactions!

Benefits of having a standard format

 Easier parsing of advisories information

 Easier tracking of ongoing advisories

– Advisories dashboard (trac plugin)

 Automate publication workflow

 Encourage researchers to share information in a

consistent way

 Facilitate the scientific study of the lifecycle of the bugs

Summary

 Coordinated release is desirable

– Not always possible (forced and user release)

 Include precise technical information of the bug

 Document the disclosure process

– Detailed and structured timelines

– Statistical study of the process

– Put the discussion around disclosure policies on technical

ground

 Use the Open XML advisory format!

The Bibliography

References 1/3

 Rain Forest Puppy. (2000). Full Disclosure Policy (RFPolicy) v2.0.

http://www.wiretrip.net/rfp/policy.html

 @stake. (2000). @stake Security Advisory Disclosure Policy.

 Ivan Arce. (2001). Vulnerability Reporting: Bugs in the bug reporting process. TISC Insight,

Volume 3, Issue 3

 Steve Christey, Chris Wysopal. (2002). Responsible Vulnerability Disclosure Process.

http://tools.ietf.org/html/draft-christey-wysopal-vuln-disclosure-00

 Stefan Frei, Bernhard Tellenbach, Bernhard Plattner. (2008). 0-Day Patch - Exposing Vendors

(In)security Performance. Black Hat 2008.

 Stefan Frei, Dominik Schatzmann, Bernhard Plattner, Brian Trammel. (2009). Modelling the

Security Ecosystem - The Dynamics of (In)Security. Workshop on the Economics of Information

Security (WEIS), London, June 2009.

 Oulu University Secure Programming Group (OUSPG). Vulnerability disclosure publications and

discussion tracking.

https://www.ee.oulu.fi/research/ouspg/Disclosure_tracking

 Making security measurable

http://measurablesecurity.mitre.org/

http://www.wiretrip.net/rfp/policy.html
http://tools.ietf.org/html/draft-christey-wysopal-vuln-disclosure-00
http://tools.ietf.org/html/draft-christey-wysopal-vuln-disclosure-00
http://tools.ietf.org/html/draft-christey-wysopal-vuln-disclosure-00
http://tools.ietf.org/html/draft-christey-wysopal-vuln-disclosure-00
http://tools.ietf.org/html/draft-christey-wysopal-vuln-disclosure-00
http://tools.ietf.org/html/draft-christey-wysopal-vuln-disclosure-00
http://tools.ietf.org/html/draft-christey-wysopal-vuln-disclosure-00
http://tools.ietf.org/html/draft-christey-wysopal-vuln-disclosure-00
http://tools.ietf.org/html/draft-christey-wysopal-vuln-disclosure-00
http://tools.ietf.org/html/draft-christey-wysopal-vuln-disclosure-00
http://tools.ietf.org/html/draft-christey-wysopal-vuln-disclosure-00
https://www.ee.oulu.fi/research/ouspg/Disclosure_tracking
http://measurablesecurity.mitre.org/

References 2/3

 Bruce Schneier. (Sept 15, 2000). Full Disclosure and the Window of Exposure.

http://www.schneier.com/crypto-gram-0009.html#1

 Bruce Schneier. (Nov 15, 2001). Full Disclosure.

http://www.schneier.com/crypto-gram-0111.html#1

 Michal Zalewski. (April 27, 2010). Responsibilities in vulnerability disclosure.

http://lcamtuf.blogspot.com/2010/04/responsibilities-of-disclosure.html

 Michal Zalewski. (July 21, 2010). "Testing takes time".

http://lcamtuf.blogspot.com/2010/07/testing-takes-time.html

 Chris Evans et al. (July 20, 2010). Rebooting Responsible Disclosure: a focus on protecting end

users.

http://googleonlinesecurity.blogspot.com/2010/07/rebooting-responsible-disclosure-focus.html

 Matt Thomlinson. (July 22, 2010). Announcing Coordinated Vulnerability Disclosure.

http://blogs.technet.com/b/msrc/archive/2010/07/22/announcing-coordinated-vulnerability-

disclosure.aspx

http://www.schneier.com/crypto-gram-0009.html
http://www.schneier.com/crypto-gram-0009.html
http://www.schneier.com/crypto-gram-0009.html
http://www.schneier.com/crypto-gram-0009.html
http://www.schneier.com/crypto-gram-0009.html
http://www.schneier.com/crypto-gram-0111.html
http://www.schneier.com/crypto-gram-0111.html
http://www.schneier.com/crypto-gram-0111.html
http://www.schneier.com/crypto-gram-0111.html
http://www.schneier.com/crypto-gram-0111.html
http://lcamtuf.blogspot.com/2010/04/responsibilities-of-disclosure.html
http://lcamtuf.blogspot.com/2010/04/responsibilities-of-disclosure.html
http://lcamtuf.blogspot.com/2010/04/responsibilities-of-disclosure.html
http://lcamtuf.blogspot.com/2010/04/responsibilities-of-disclosure.html
http://lcamtuf.blogspot.com/2010/04/responsibilities-of-disclosure.html
http://lcamtuf.blogspot.com/2010/07/testing-takes-time.html
http://lcamtuf.blogspot.com/2010/07/testing-takes-time.html
http://lcamtuf.blogspot.com/2010/07/testing-takes-time.html
http://lcamtuf.blogspot.com/2010/07/testing-takes-time.html
http://lcamtuf.blogspot.com/2010/07/testing-takes-time.html
http://googleonlinesecurity.blogspot.com/2010/07/rebooting-responsible-disclosure-focus.html
http://googleonlinesecurity.blogspot.com/2010/07/rebooting-responsible-disclosure-focus.html
http://googleonlinesecurity.blogspot.com/2010/07/rebooting-responsible-disclosure-focus.html
http://googleonlinesecurity.blogspot.com/2010/07/rebooting-responsible-disclosure-focus.html
http://googleonlinesecurity.blogspot.com/2010/07/rebooting-responsible-disclosure-focus.html
http://googleonlinesecurity.blogspot.com/2010/07/rebooting-responsible-disclosure-focus.html
http://googleonlinesecurity.blogspot.com/2010/07/rebooting-responsible-disclosure-focus.html
http://blogs.technet.com/b/msrc/archive/2010/07/22/announcing-coordinated-vulnerability-disclosure.aspx
http://blogs.technet.com/b/msrc/archive/2010/07/22/announcing-coordinated-vulnerability-disclosure.aspx
http://blogs.technet.com/b/msrc/archive/2010/07/22/announcing-coordinated-vulnerability-disclosure.aspx
http://blogs.technet.com/b/msrc/archive/2010/07/22/announcing-coordinated-vulnerability-disclosure.aspx
http://blogs.technet.com/b/msrc/archive/2010/07/22/announcing-coordinated-vulnerability-disclosure.aspx
http://blogs.technet.com/b/msrc/archive/2010/07/22/announcing-coordinated-vulnerability-disclosure.aspx
http://blogs.technet.com/b/msrc/archive/2010/07/22/announcing-coordinated-vulnerability-disclosure.aspx

References 3/3

 CVE Numbering Authorities

http://cve.mitre.org/cve/cna.html

 Alfredo Ortega. (13 March 2007). OpenBSD's IPv6 mbufs remote kernel buffer overflow (CVE-

2007-1365)

http://www.coresecurity.com/content/open-bsd-advisorie

 Damian Frizza. (9 March 2010). Windows Movie Maker and Microsoft Producer

IsValidWMToolsStream() Heap Overflow

http://www.coresecurity.com/content/movie-maker-heap-overflow

 Nicolas Economou. (16 March 2010). Virtual PC Hypervisor Memory Protection Vulnerability

http://www.coresecurity.com/content/virtual-pc-2007-hypervisor-memory-protection-bug

 Nicolas Economou. (10 August 2010). Microsoft Windows CreateWindow function callback

vulnerability (CVE-2010-1897)

http://www.coresecurity.com/content/microsoft-windows-createwindow-function-callback-bug

 Nicolas Economou. (16 Sept 2010). 2x1 Microsoft Bugs: 'Virtual PC hyper-hole-visor' + 'Windows

Creation Vulnerability (MS10-048)„. In Ekoparty 2010.

http://corelabs.coresecurity.com/index.php?module=Wiki&action=view&type=publication&name=2

x1_Microsoft_Bugs_Virtual_PC_hyper-hole-visor_Windows_Creation_Vulnerability_MS10-048

http://cve.mitre.org/cve/cna.html
http://www.coresecurity.com/content/open-bsd-advisorie
http://www.coresecurity.com/content/open-bsd-advisorie
http://www.coresecurity.com/content/open-bsd-advisorie
http://www.coresecurity.com/content/open-bsd-advisorie
http://www.coresecurity.com/content/open-bsd-advisorie
http://www.coresecurity.com/content/movie-maker-heap-overflow
http://www.coresecurity.com/content/movie-maker-heap-overflow
http://www.coresecurity.com/content/movie-maker-heap-overflow
http://www.coresecurity.com/content/movie-maker-heap-overflow
http://www.coresecurity.com/content/movie-maker-heap-overflow
http://www.coresecurity.com/content/movie-maker-heap-overflow
http://www.coresecurity.com/content/movie-maker-heap-overflow
http://www.coresecurity.com/content/virtual-pc-2007-hypervisor-memory-protection-bug
http://www.coresecurity.com/content/virtual-pc-2007-hypervisor-memory-protection-bug
http://www.coresecurity.com/content/virtual-pc-2007-hypervisor-memory-protection-bug
http://www.coresecurity.com/content/virtual-pc-2007-hypervisor-memory-protection-bug
http://www.coresecurity.com/content/virtual-pc-2007-hypervisor-memory-protection-bug
http://www.coresecurity.com/content/virtual-pc-2007-hypervisor-memory-protection-bug
http://www.coresecurity.com/content/virtual-pc-2007-hypervisor-memory-protection-bug
http://www.coresecurity.com/content/virtual-pc-2007-hypervisor-memory-protection-bug
http://www.coresecurity.com/content/virtual-pc-2007-hypervisor-memory-protection-bug
http://www.coresecurity.com/content/virtual-pc-2007-hypervisor-memory-protection-bug
http://www.coresecurity.com/content/virtual-pc-2007-hypervisor-memory-protection-bug
http://www.coresecurity.com/content/virtual-pc-2007-hypervisor-memory-protection-bug
http://www.coresecurity.com/content/virtual-pc-2007-hypervisor-memory-protection-bug
http://www.coresecurity.com/content/microsoft-windows-createwindow-function-callback-bug
http://www.coresecurity.com/content/microsoft-windows-createwindow-function-callback-bug
http://www.coresecurity.com/content/microsoft-windows-createwindow-function-callback-bug
http://www.coresecurity.com/content/microsoft-windows-createwindow-function-callback-bug
http://www.coresecurity.com/content/microsoft-windows-createwindow-function-callback-bug
http://www.coresecurity.com/content/microsoft-windows-createwindow-function-callback-bug
http://www.coresecurity.com/content/microsoft-windows-createwindow-function-callback-bug
http://www.coresecurity.com/content/microsoft-windows-createwindow-function-callback-bug
http://www.coresecurity.com/content/microsoft-windows-createwindow-function-callback-bug
http://www.coresecurity.com/content/microsoft-windows-createwindow-function-callback-bug
http://www.coresecurity.com/content/microsoft-windows-createwindow-function-callback-bug
http://corelabs.coresecurity.com/index.php?module=Wiki&action=view&type=publication&name=2x1_Microsoft_Bugs_Virtual_PC_hyper-hole-visor_Windows_Creation_Vulnerability_MS10-048
http://corelabs.coresecurity.com/index.php?module=Wiki&action=view&type=publication&name=2x1_Microsoft_Bugs_Virtual_PC_hyper-hole-visor_Windows_Creation_Vulnerability_MS10-048
http://corelabs.coresecurity.com/index.php?module=Wiki&action=view&type=publication&name=2x1_Microsoft_Bugs_Virtual_PC_hyper-hole-visor_Windows_Creation_Vulnerability_MS10-048
http://corelabs.coresecurity.com/index.php?module=Wiki&action=view&type=publication&name=2x1_Microsoft_Bugs_Virtual_PC_hyper-hole-visor_Windows_Creation_Vulnerability_MS10-048
http://corelabs.coresecurity.com/index.php?module=Wiki&action=view&type=publication&name=2x1_Microsoft_Bugs_Virtual_PC_hyper-hole-visor_Windows_Creation_Vulnerability_MS10-048
http://corelabs.coresecurity.com/index.php?module=Wiki&action=view&type=publication&name=2x1_Microsoft_Bugs_Virtual_PC_hyper-hole-visor_Windows_Creation_Vulnerability_MS10-048
http://corelabs.coresecurity.com/index.php?module=Wiki&action=view&type=publication&name=2x1_Microsoft_Bugs_Virtual_PC_hyper-hole-visor_Windows_Creation_Vulnerability_MS10-048
http://corelabs.coresecurity.com/index.php?module=Wiki&action=view&type=publication&name=2x1_Microsoft_Bugs_Virtual_PC_hyper-hole-visor_Windows_Creation_Vulnerability_MS10-048

Thank you!

Carlos Sarraute carlos@coresecurity.com

http://corelabs.coresecurity.com

mailto:carlos@coresecurity.com

