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Abstract. Building a password cracking server that preserves the pri-
vacy of the queries made to the server is a problem that has not yet been
solved. Such a server could acquire practical relevance in the future: for
instance, the tables used to crack the passwords could be calculated,
stored and hosted in cloud-computing services, and could be queried
from devices with limited computing power.
In this paper we present a method to preserve the confidentiality of a
password cracker—wherein the tables used to crack the passwords are
stored by a third party—by combining Hellman tables and Private In-
formation Retrieval (PIR) protocols. We provide the technical details of
this method, analyze its complexity, and show the experimental results
obtained with our implementation.

1 Introduction

Suppose that you’re a hacker (or pentester) attacking a sensitive computer net-
work, and that you’ve gained access to a list of password hashes. You need
to retrieve the corresponding passwords to carry on with the attack... unfortu-
nately, you don’t have access to your Rainbow tables (because the computing
device used to carry out the attack has limited computing power and/or memory,
for example because you’re using a smartphone).

This is when you need a password cracking server, that will provide access to
the relevant parts of the Rainbow tables. But of course you don’t want to reveal
to the server (that we suppose is managed by a third party) which passwords
you are trying to crack. This is the problem that we tackle in this paper: to build
an “oblivious password cracking server” that contains tables of passwords and
hashes, and that the users can query without revealing which pairs of passwords
and hashes they are interested in. Being based upon the general ideas of rainbow
tables and Hellman tables, it has the same limitations as them regarding the
inversion of salted hashes. The pair (password, salt) has to be found, making it
more difficult to both generate the tables, store and traverse them.

The paper is structured as follows. In Section 2 we introduce some back-
ground on the ideas that we used. Section 3 provides an overview of the solution
that we propose for this problem. In Section 4 we get into the technical details
of the algorithms, in particular about the construction of the tables. Section 5
deals with the PIR protocols and provides computations of their complexity. In
Section 6 we show experimental results obtained with our prototype in Python.
We conclude the paper with ideas for future work.



2 Preliminaries

Before describing the proposed solution, we give a brief background on the ideas
that we use: hash reversing tables based on time-memory trade-offs, and Private
Information Retrieval (PIR) schemes to query the database server.

2.1 Hash Reversing Tables

A common approach in computer systems that rely on passwords for authenti-
cation is to store a cryptographic hash of the password. This approach is vul-
nerable to attacks based on precomputed tables for reversing the cryptographic
hash function.

Martin Hellman proposed in 1980 a time-space trade-off to reverse one-way
functions [7], and thus make such precomputed tables more practical. The insight
of Hellman was to compute chains of hashes and passwords, and to store only
the beginning and end of each chain.

Ron Rivest then proposed (in 1982) an improvement over the Hellman tables
[3]. The idea was to use some (distinguished) images as chain ends in order to
reduce the number of table lookups. As we will discuss in Sections 4.1 and 5.5,
these tables are particularly suited for the purpose sought in this work.

In 2003, Philippe Oeschlin proposed a new improvement over the Hellman
tables [11]. Instead of using a single reduction function for each chain, it would
use a different one for each step in the chain. Although the Rainbow tables are
faster than the Hellman tables in the general case, this is not true in the specific
case of querying the database using a PIR protocol. We will discuss the details
in Section 4.1.

2.2 Private Information Retrieval

In this work, we are interested in the case of a single database—which stores the
hash reversing tables. A single-database Private Information Retrieval (PIR)
scheme is a game between two players: a user and a database. The database
holds some public data (for concreteness, an n-bit string). The user wishes to
retrieve some item from the database (such as the i-th bit) without revealing to
the database which item was queried (i.e., i remains hidden) [12].

A PIR scheme usually consists of 5 steps:

1. Query generation (happens in the client)
2. Query transmission
3. Query processing (happens in the server)
4. Response transmission
5. Response decoding (happens in the client)

In the rest of the paper, we will note OC the client processing complexity
(steps 1 and 5), OS the server processing complexity (step 3) and OT the transfer
complexity (steps 2 and 4).

It is important to note that OS has to be at least O(n) to assure that no
information is leaked to the server [12]. More details about current PIR schemes
are given in Section 5.1.



3 Our Proposed Solution

We give in this section an overview of the solution. The fundamental idea is
to store Hellman tables with distinguished end-points in a series of databases
accessible using a PIR protocol (see Figure 1). When a user of this system
attempts to find the password corresponding to a given hash, she makes a series
of PIR queries to retrieve the beginning and end of the chains corresponding to
the hash being reversed.

Fig. 1. Scheme of the proposed solution.

Let P be the space of passwords, H the space of hashes, and H : P → H a
one-way function used to transform a plain-text p ∈ P into a hash h ∈ H. We use
D ⊆ P to denote the set of passwords we are interested in, and N for the number
of passwords in D. In order to quickly find in D the password corresponding to
a given hash with probability α, we compute and store in the server a set of
M Hellman tables with distinguished end-points, using M different reduction
functions, and whose chain length is on average M . The parameter M depends
on α and on the size of D, and is in the order of N1/3 (see Section 4.1 for details).

Once the tables are generated, in order to calculate the inverse of the hash
h ∈ H, the corresponding end-point for each reduction function ri is calculated
and looked up in the tables. For each end-point found in a table, the chain is



searched through looking for the preimage of h. If the search is successful, the
corresponding password p such that h = H(p) is found.

Since PIR protocols are computationally expensive, our solution is to make a
single query to the database for each table. A query in a PIR protocol retrieves
a set of consecutive bits from the database. In order to make a single PIR query
per table, the chains are stored in a closed hash table3 sorted by the chain end-
point. If a collision between the ends of two chains in the same table is found, one
of the chains is discarded and another chain is calculated. We chose to discard
colliding chains because we have to do exactly one PIR query per table to assure
that the server does not gain information regarding the password. This was an
important design decision, and is one of the contributions of this work.

To ensure that the table can be calculated in the same running order (as the
regular Hellman tables with distinguished end-points), each hash table is given
βM slots. The parameter β > 1 is used to expand the hash table, in order to
have enough spare buckets and avoid collisions while generating the table.

4 The Algorithms in Detail

4.1 Generating the Tables

Algorithm 1 shows the procedure used by the table provider to calculate the
Hellman tables with distinguished end-points.

Algorithm 1: Calculate tables

Input: α,M
Output: tables

1 tables ← empty list()
2 for i ∈ [0,M) do
3 table ← new array(size = α ·M , default = EMPTY ENTRY)
4 chain count ← 0
5 chain index ← 0
6 while chain count < M do
7 end ← calculate end point(redfun(index), password for(chain index))
8 bucket idx ← bucket for(end)
9 if table[bucket idx] == EMPTY ENTRY then

10 bucket idx = (chain index, end)
11 chain count += 1

12 chain index += 1

13 tables.append(table)

14 return tables

In our implementation, the generation of the tables depends on: (i) the alpha-
bet used by the passwords, (ii) the length of the passwords, and (iii) the desired
probability α of cracking the passwords. Of course, the tables also depend on

3 In a closed hash table, each bucket holds at most one entry.



the hash function H to be reversed, on the reduction functions used to create
the chains, and on the parameter β.

In the following subsections, we give the relevant details of the different ver-
sions of time-space trade-offs used for hash reversing. We also discuss why the
Hellman tables with distinguished end-points were most suited for this applica-
tion.

Hellman Tables. In [7] Hellman proved that by making a table of size N2/3 a
one-way function H : P → H can be reversed in O(N2/3) operations where N
is the size of the function domain.

Let M be both the number of reduction functions and the number of steps
of a chain. The probability of success of finding the preimage of a hash obtained

from the table domain can be estimated as α = 1− e−M3

N [11]. This means that
in order to have a success probability α, M should be computed as:

M = − 3
√

ln(1− α) ·N (1)

The scheme consists in chaining M results by defining M reduction functions
ri : H → P. Each function ri is used to generate M chains. Each chain is cal-
culated by applying the composition of these functions M times. The beginning
and the end of each chain are stored in the table.

To recover the preimage of a given image y ∈ H, for each i apply ri◦H at most
M times, until the end of a chain is found or all the posibilities are exhausted. If
the end of a chain is found, the chain is generated from the beginning to retrieve
the preimage of y. All the chains with the same reduction function ri form the
table Ti.

Hellman Tables with Distinguished End-Points. The idea of [3] was to
use some (distinguished) images as chain ends. For instance all images y such
that y ≤ K. The parameter K is chosen such that the average chain length is
M (from Equation 1).

This improvement reduces the number of table lookups to M in the worst
case (instead of M2 in the original Hellman tables) and makes it easier to detect
collisions between chains4. These are the tables and values that we use in our
implementation.

Rainbow Tables. Instead of using a single reduction function for each chain,
Rainbow tables use a different one for each step in the chain [11]. In this paper
we do not use this approach because each of the PIR queries would be made
to a table of size O(M2), instead of a table of size O(M) (as in Hellman tables
with distinguished end-points). Section 5.5 completes the comparison between
the two approaches.

4 Just compare chain ends when calculating them, and recalculate on collision. If the
chain is too large, assume a cycle was formed and discard the chain



4.2 Password Cracker Routines

Algorithm 2: Crack password routine

Input: hash
Output: password or not found message

1 ends ← empty list()
2 index ← 0
3 while index < M do
4 ends.append(calculate end point(redfun(index),hash))

5 starts ← empty list()
6 index ← 0
7 foreach end ∈ ends do
8 starts.append( fetch start PIR(end, index) )
9 index ← index +1

10 index ← 0
11 foreach start ∈ starts do
12 if start != START NOT FOUND then
13 solution ← find preimage(start, redfun(index), hash)
14 if solution then
15 return solution

16 index ← index +1

17 return PREIMAGE NOT FOUND

Algorithm 2 shows the routines used by the password cracker (on the client’s
side). It first calculates all the posible chain buckets for all the M tables on
the server for the hash being reversed. Then, it looks up the buckets on the
table provider (lines 7-9), which returns the end of the chain associated with
this bucket and the beginning of the chain. Finally, using this information, it
searches through the matching chains and finds the hash preimage.

It is important to notice that the PIR queries made to the table provider
are always one for each table, thus ensuring that it gets no extra information
regarding the password being cracked. Each individual query is protected by the
private information retrieval scheme.

Algorithm 3: fetch start PIR routine

Input: end, index
Output: fetched start

1 pir db ← select pir db(index)
2 bucket idx ← bucket for(end)
3 fetched start, fetched end ← fetch bucket(end, pir db)
4 if fetched end != end then
5 return START NOT FOUND

6 return fetched start



Algorithm 3 shows how the PIR database is used. Each query to the table
provider is aimed at a different PIR database, and each database corresponds to a
Hellman table. After the database is selected, the client calculates the associated
bucket for the distinguished end-point. Finally, the client queries the database,
which returns a pair (fetched start, fetched end). If the fetched end is the same
as the end queried, then the start is returned. If not, then the chain is not in the
table queried.

5 Complexity Calculation

5.1 PIR Protocols

In this section, we provide the details of some single-database PIR schemes.
Recall from Section 2.2 that OC denotes the client processing complexity, OS
the server processing complexity and OT the transfer complexity.

Naive PIR. A very simple scheme for private information retrieval is to simply
send the entire database to the client. The problem with this solution is that
OT = O(n) where n is the size of the database. Also OS = OC = O(n).

Classic PIR. This is the first single-database PIR scheme published [4]. We
will analyze the non-recursive version defined in the first part of the paper. It is
based on the Quadratic Residuosity Assumption (QRA) [9, 5, 10, 13]. The client
sends

√
n numbers to the server where all the numbers but one are squares. The

server, for each row in the database, multiplies the number if and only if it is
“1” and answers with the

√
n multiplication results. Then the client chooses the

result of interest and calculates whether it is a square. The requested bit is 0 if
it is a square (and 1 if not).

Using this scheme the complexities are OS = n and OT = OC = O(
√
n).

Fast PIR. This scheme was published in 2007, and is based on the hidden-lattice
problem [2]. The authors claim in [1] to have implemented the first practical
computational PIR scheme, processing in the server 2 Gbits/s.

In this scheme, n = O(e·log(e)), where n is the number of bits in the database
and e is the number of entries in the database. Letting f−1 be the inverse of
f(x) = x · log(x), we have that OS = n, OT = OC = O(f−1(n)). Even though
this scheme has worse client and transmission complexity, its authors claim that
it works in practice better than classic PIR.

5.2 Password Cracker (the Client)

When a password cracker attempts to break a password, it sends M queries
to the table provider and for each response it iterates through the entire chain
(of size M) looking for the preimage. Assuming that a step in the chain can



be calculated in O(1), the complexity for each query is OC + M , where OC is
the client side complexity of a single query in the PIR scheme used. The time
complexity to find a preimage is thus M × (OC +M).

We calculate below the complexity OC for the 3 PIR schemes outlined in
the previous section. We denote S the size of the database being queried (in our
solution S = βM).

Naive: The complexity OC is O(S).
Classic: The complexity OC is O(

√
S).

Fast: The complexity OC is O(f−1(S)), where f(x) = x · log(x).

As a consequence, in the three cases, the total complexity for the password
cracker is dominated by O(M2). It is interesting to note that the complexity is
not affected by the fact that we query the database through a PIR protocol.

5.3 Table Provider (the Server)

For the server, there are two stages: (i) generating the tables, and (ii) answering
queries. During the second stage, when the client attempts to crack a password,
it makes M queries. Therefore, on the server side, the time complexity of a pass-
word crack attempt is O(M ×OS) where OS is the server processing complexity
of a single query in the PIR scheme used. Recall from the previous sections that
OS = O(βM) = O(M), so the total complexity is O(M2).

Let us analyze now the complexity of generating and storing the tables. We
prove below that the table calculation is bounded in space by βM2 and in time
by β′M3 where β and β′ do not depend on M .

Expected Number of Chain Calculations. When the Hellman tables are
calculated and stored in the table provider, our design decision was to store each
Hellman table in a closed hash table, and to discard the chains when a collision
is detected (see Algorithm 1). Assuming that the hash function we are trying to
invert is cryptographically strong, it is safe to assume that the all the buckets
are equiprobable and independent for a chain.

Say that we are calculating a table with M entries in a hash table of size
k = βM (where β > 1) and that there are i slots occupied with already calculated
chains. The probability of a collision between the next chain to be calculated and
the ones already stored is i/k. Therefore, the number of chains to be calculated
follows a geometric probability distribution with expected value k/k−i. So the
expected number of chain calculations for each table (EC) is calculated as follows:

EC =

M−1∑
i=1

k

k − i
= k

M−1∑
i=1

1

k − i

Let k = βM , we obtain

EC = βM

M−1∑
i=1

1

βM − i



Let j = βM − i, we get

EC = βM

βM−M+1∑
j=βM−1

1

j
= βM

βM−1∑
j=1

1

j
−
βM−M+1∑

j=1

1

j


By approximating the harmonic series partial sums as log(n):

EC ' βM (log(βM − 1)− log(βM −M + 1))

Then ∀M > C, ∃ c > 1 such that:

EC ≤ βM (log(βM)− log(c (β − 1)M))

= βM (log(β) + log(M)− log(β − 1)− log(M)− log(c))

= βM (log(β)− log(β − 1)− log(c))

Proving that ∀β > 1, ∃β′ such that EC ≤ β′M . This means that when M
increases, if the ratio of unused space is kept constant in the closed hash, the
time used to calculate the table increases linearly or sublinearly.

5.4 Transfer Complexity

The transfer complexity of a password crack attempt is O(M ×OT ) where OT is
the transfer complexity of a single query in the PIR scheme used. We calculate
this complexity for the 3 PIR schemes outlined in Section 5.1. Again we denote
S the size of the database being queried (here S = O(M)).

Naive: The time complexity for a single query is O(S). So the total complexity
for the transfer is O(M2).

Classic: The time complexity for a single query is O(
√
S). So the total com-

plexity for the transfer is O(M3/2).
Fast: The time complexity for a single query is O(f−1(S)), where f(x) = x ·

log(x). So the total complexity for the transfer is O(M · f−1(M)).

5.5 Comparison with Other Approaches

Brute-force. If the password cracker brute forces the password she will not have
transfer costs but she will have to iterate through the entire preimage space. So
the processing costs for the password cracker will be in the order of M3.

Rainbow Tables. This approach is much slower because in order to use a
Rainbow table each query must be made against M2 entry points, instead of
the M entry points for each table when using Hellman tables with distinguished
end-points, and each PIR query resource usage depends on the number of entries
in the table (see Section 5.1).



6 Implementation and Experimental Results

We have made a prototype that implements the solution described in this paper
with the naive and classic PIR schemes. Namely we implemented hash reversing
for the hash function MD5. We considered passwords using an alphabet A of 6
letters, and passwords lengths of 4, 5 and 6 characters. We also choose β = 4.

We focused our performance evaluation on the following parameters: (i) the
length ` of the passwords (4 ≤ ` ≤ 6), and (ii) the desired probability α of revers-
ing the hashes (0.4 ≤ α ≤ 0.9). By varying ` and α, we obtain different values
for M (the size of the database). Recall from Section 4.1 that M is computed as

M = − 3
√

ln(1− α) ·N

where N is the total number of passwords considered. In this case N = |A|`.
More concretely, N = 1296 for ` = 4, N = 7776 for ` = 5, and N = 46656 for
` = 6.

Fig. 2. Total running time as a function of M (the size of the database).

Figure 2 shows the total runtime of the solution as a function ofM (each point
represents the runtime to crack 100 passwords). The tests were performed on a
Linux virtual machine. The guest has one CPU and 1.5 Gb of RAM. The host is
also running Linux, it has 8 Gb of RAM and an Intel Xeon CPU @ 3.30GHz. The
figure shows that the running time grows with M , but also depends on ` (the



points are grouped in three “clusters” corresponding to ` = 4, 5, 6). The results
obtained are coherent with the estimated complexities. However we think that
more extensive testing is needed to validate this approach.

We believe that our implementation still has lots of room for improvement.
To begin with, the implementation is in pure Python, and thus much slower
than its equivalent in C++ for example. Because of that, we are using small
primes (of 20 bits) to implement classic PIR. We also think that the reduction
function could be optimized. We discuss further ideas for improvement in the
next section.

7 Conclusion and Future Steps

In this paper we tackle a problem that, as far as we know, has not been studied
before. We propose a first solution for building an “oblivious password cracking
server”, that preserves the privacy of the queries made to the server. Even though
the expected performance of this password cracker is still not sufficient to use
it in real life scenarios, this scheme provides perfect privacy, and is better (in
terms of complexity) than other potential approaches that we considered.

A natural future step for this project is to benefit from the recent advances
in PIR research. For instance, Ian Goldberg and his group at the University
of Waterloo have developed a PIR library in C++ (called Percy++), which
implements protocols based on [6]. Recently, they have used it to develop PIR
protocols for electronic commerce that they claim to be “practical” (presented
in 2011 at the ACM CCS conference [8]). We believe that using Percy++ the
results obtained here could be greatly improved.

Another promising direction is to exploit the fact that the solution proposed
is inherently parallelizable. Each PIR database could run in a different host, and
the client work could also be trivially parallelized. An additional improvement
would be to run the password cracking server “in the cloud”, with the possibil-
ity of adding processors on demand. To conclude, we hope that the first step
presented here will inspire other researchers as well.
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