Abusing the Windows WiFi native API to create
a Covert Channel

Andrés Blanco, Ezequiel Gutesman
Core Security Technologies

April 13, 2011

Abstract

Communications over wireless channels have been perfectioned in the
last years mainly improving performance and speed features. Security in
this field has been a concern since the first 802.11 draft, having evolved
by adding security features based on different crypto systems. In this
paper we focus on the construction of a covert channel, exploitable in
any system, between any endpoint and a specially crafted endpoint. The
channel built can be started even while an active connection is established
between a computer and a wireless Access Point, with one unique network
device. This functionality allows an attacker that compromised a wireless
enabled endpoint to extract available information and avoid detection. We
will describe the design behind the channel structure and a fully functional
implementation.

1 Introduction

Several factors must be considered in order to develop a functional “guest”
covert channel “hosted” in any medium or protocol. First, one must decide
which legitimate information units from the “host” protocol will be used to
carry the covert channel messages. Second, the limitations of the covert channel
such as speed or bandwidth are directly established by the first choice. This
work has as its main purpose to design a covert channel over 802.11, giving
connectivity to the attacker’s machine from a low-privilege application running
on the victim’s machine.

Our purpose was to establish a communication between two peers, A and B.
Assuming:

e Peer A represents the victim and could be connected to a legitimate wire-
less network.

e We have a userland process runnning on peer A, no privilege escalation
seems to be possible. We want to establish a connection through wireless
medium with this process.

e Peer B is the attacker’s machine, fully controlled. The only requirements
for this peer is that it must have injection capabilities, being able to inject
for example, management frames (i.e., raw injection).

e There could be other peers, say A’ that could also be connected through
the covert channel.

The next sections describe the decisions taken in the design, a description of
the abused features inside the Windows WiFi native API and how the channel
could be used in a real scenario.

2 802.11 Management Frames Overview

A radical difference exists between wired and wireless networks. While trying
to identify a network station or when an identified network station wants to
connect with a network several steps must be followed. 802.11 management
frames are used to perfom tasks that may be trivial in wired networks but
that in a wireless medium require some special attention. For example, mobile
stations searching for connectivity must locate compatible Access Points (AP).
After identifying the network, the mobile station must be authenticated by the
AP and once authenticated it must associate with it in order to get access to
the network. In a wired environment some of these tasks are performed by
simply throwing a cable between the station and a central node (e.g., a network
switch).

2.1 Structure of Management Frames

All types of management frames (see [80205]) share the same header information
in the Medium Access Control (MAC) layer but differ in their body. This
structure is illustrated in figure 1.

Source address (SA) and destination address (DA) are used to define the
frame’s direction. Some management frames are used to maintain properties
inside a Basic Service Set (BSS!). The BSSID field is used in order to limit the
effect of broadcast and multicast. Theoretically, only broadcast and multicast
frames from the BSSID that the mobile station is currently associated with
should be passed to MAC management layer, the only exception for this rule
are the beacon frames.

We will focus on the process of AP announcing & discovery. This process in-
volves both the mobile station and the AP and use special types of managenemt
frames: the Beacon, Probe Request and Probe Response frames.

1The building block of 802.11 networks. A BSS is a set of stations that are logically
associated with each other [80205].

) 6 6 6 9 0-2312 4
Frame DA SA BSSID Sed Frame pCS
ctl ctl Body

+ Duration

Figure 1: MAC 802.11 management frame header.

2.2 Interesting Management Frame Sub-Types

Beacon Frames This management frames announce the presence of a net-
work. They are transmitted in regular intervals and carry information about the
network (such as the security algorithm used, transmission properties, etcetera).
The BSS is defined through the beacon range. As shown in figure 2 Beacons
add 3 mandatory fields to the common MAC header shared by all Management
frames: Timestamp, Beacon Interval, Capability bitmap and SSID.

8 2 2 Variable

Timestamp BeaconCap. SSID
Interval Info

Figure 2: Beacon frame body mandatory fields.

Beacons are received from any client inside the beacon range. In MS Win-
dows systems, some fields can be read by userland processes, giving different
“Network monitors” access to the information present in the beacons, this is a
crucial property that will be very useful for our purposes.

Probe Request Frames Mobile stations scanning for available (and ussually
known) networks send probes. In a Probe Request frame the stations could
specify the requested SSID and the rates supported by the station. In order for
a station to be able to join a BSS, it has to support all the rates supported by
the BSS and announced in the Beacon frames. Figure 3 shows the fields in a
Probe Request frame.

Variable Variable Variable

SSID Supported Extended,
Rates Supported
Rates

Figure 3: Probe Request frame body fields.

Probe Response Frames Once a Probe Request is received by a network
with compatible parameters it sends a Probe Response frame. The responsiblity
of answering a Probe Request lies on the station that sent the last Beacon frame.
While in infrastructure networks this responsibility goes to the AP.

The structure of a Probe Response carries the same information found in a
Beacon frame adding some specific fields which give details about the channel,
such as frequency hopping properties.

3 Previous Work

The idea of a covert channel over 802.11 has been mentioned in previous works
[Oud] and some of them [LB] have made different implementations (e.g. Raw
covert) that needed special driver patches or worked for some OSs or drivers.
Raw Covert [LB] used control ACK frames to encapsulate a proprietary proto-
col, it had some limitations on the drivers used and was designed to communicate
two “hidden” peers. The present covert channel implementation uses some ideas
presented by previous work but never seen implemented. It works on any Win-
dows operating system (starting from Windows XPT™service pack 2 through
Windows 7T™™) without any specific driver. The main difference between the
present work and previous prototypes is that the covert channel implemented
can be established even from a compromised host that has an active 802.11
conection.

It is intended, for example, to be reliable in a post-exploitation phase?, easy
to use as an alternative communication channel with a compromised host.

According to Lampson [Lam73] a communication channel is covert “if it was
neither designed nor intended to transfer information at all; it uses entities not
normally viewed as data objects to transfer information from one subject to
another” [Kem83].

Hiding information inside network protocols [HS96] has been broadly studied
and resulted in a more specific definition for covert channels including proper-
ties such as indistinguishability and detectability. This means a covert channel
cannot be distinguished among normal traffic, no matter whether it’s encrypted
or not.

In the context of the implementation of this covert channel we should say
that if we encrypt the information contained inside the 802.11 frames, we could
pass as undetectable , this has a relation with the work presented in [DZMO05]
that explains that Windows XP injects Probe Requests with random data inside
the SSID IE. So it would be difficult to distinguish between real probes or the
covert channel implementation. For the purpose of the PoC encryption features
were not included.

4 Covert Channel Design

The main purpose in the construction of a wireless channel is to take advantage
of some particular OS-level functionalities related to wireless connectivity by
using them for a covert communication channel. The particularity of these
functionalities is that they can be used without having special privileges or
enabling special driver modes on the wireless cards such as the monitor mode.

2The tasks performed after taking control over a system, with either high or low privileges.

% ((.)) x)
w““i

Peer A (victim) Peer B (attacker) Peer A’
|

Beacon «hello/channelopen» Beacon «hello/channelopen»

Probe Request «connect»

Probe Response «channel opened»

Probe Request «data»

Probe Response «ACK»

Probe Request «data»

Probe Response «ACK»

Probe Response «data»

Probe Request « ACK»

Probe Response «data»

Probe Request « ACK»

|
f Ed
| I
f |
| I
| I
I |
| I
| I
| I
| I
! I
| I
I |
I I
I |
| I
I I
| I
| I
| I
| I
f |
I I
| I
| I
| I
L |
| I
| I
| I

e v I vy 1 v ¥

Figure 4: Channel messages between peer A (victim), peer B (attacker) and a
potential victim.

Figure 4 shows one possible scenario where this channel could be used to
connect two peers, A and B, where peer A has an active connection with an
AP. There is a tiny protocol which controls the channel.

In order to exchange information we will use the types of management frames
described in section 2.2 as our channel packages. For this purpose, the channel
must be encapsulated into valid management frames.

Management frames share the same MAC layer header and depending on the
frame subtype, they specify different information elements which carry specific
information for each subtype.

Probe Request frames are the management frame subtypes used to com-
municate from the victim to the attacker’s machine. According to the 802.11
specification [80205], a client sends Probe Requests when it tries to find available
(previously known) networks.

Since Probe Request are part of the management frame type they have a
BSSID field which is a 6-octet MAC address that identifies the AP that the client
is trying to connect to. The information element carried inside Probe Requests
is the SSID element, a 32-byte element used to carry the “friendly name” of the

network (e.g. the one seen while browsing networks from a connection manager
while reading Beacon frames from the AP).

With these two fields we have a total of 38 bytes for each packet in our
channel. Table 4 specifies how these bytes are used.

’ Mgmt. Field \ Byte \ Value ‘

BSSID 0 ~ 2 | Signature
3 Flags
4 ~5 | Seq. No.
SSID 0 ~ 32 | Packet Data

Table 1: 802.11 Packet fields mapping.

Section 5 further describes implementation details on the Windows WiFi
native API [Win].

5 Implementation Details

As described in section 4, we need to be able to process information from Beacon
and Probe Response frames and send information through Probe Request frames.
In Microsoft Windows systems the Native Wifi API provides all the functionality
needed. The key functions to create the covert channel are the following:

e WlanScan

e WlanGetNetworkBssList

The WlanScan function is used to inject data through Probe Request frames
and WlanGetNetworkBssList to read data from Beacon and Probe Response
frames. With this two functions we have a channel.

The signature of WlanScan follows:

DWORD WINAPI WlanScan(

_in HANDLE hClientHandle,

_in const GUID *pInterfaceGuid,
__in_opt const PDOT11_SSID pDotl1Ssid,
__in_opt const PWLAN_RAW_DATA pIeData,
__reserved PVOID pReserved

)

As we can see above, there are two parameters that can set data inside the
Probe Request frame. The pDot11Ssid parameter that sets the SSID Informa-
tion Element and the pIeData that sets a custom Information Element.

In the case of pDot11Ssid parameter we have a pointer to a DOT11_SSID
structure:

typedef struct _DOT11_SSID {

ULONG uSSIDLength;

UCHAR ucSSID[DOT11_SSID_MAX_LENGTH] ;
} DOT11_SSID, *PDOT11_SSID;

This structure has two members:

e uSSIDLength: The length, in bytes, of the ucSSID array.

e ucSSID: The SSID. DOT11_SSID_MAX LENGTH is set to 32.

This imposes the 32 bytes data limit.
In the case of pIeData parameter we have a pointer to a WLAN_RAW_DATA
structure:

typedef struct _WLAN_RAW_DATA {
DWORD dwDataSize;
BYTE DataBlob[1];

} WLAN_RAW_DATA, *PWLAN_RAW_DATA;

This structure has two members:

e dwDataSize: The size, in bytes, of the DataBlob member. The maximum
value of the dwDataSize may be restricted by the type of data stored in
the WLAN_RAW_DATA structure.

e DataBlob: The data blob.

In this case we have a limitation of 240 bytes that is defined by the DOT11_PSD_IE_MAX _DATA_SIZE
constant. As a side note we should notice that injecting data on an Information
Element works only in drivers that support it.
The WlanGetNetworkBssList function is going to return the data acquired
through Beacon and Probe Response frames. This can be seen as the INPUT
side of the channel. It has the following parameters:

DWORD WINAPI WlanGetNetworkBssList(

__in HANDLE hClientHandle,

__in const GUID *pInterfaceGuid,
__opt const PDOT11_SSID pDotl1Ssid,
__in DOT11_BSS_TYPE dot11BssType,
__in BOOL bSecurityEnabled,
__reserved PVOID pReserved,

__out PWLAN_BSS_LIST *ppWlanBssList

)

For our purposes, the most important parameter of this function is the last
one, the pointer to a WLAN_BSS_LIST structure:

typedef struct _WLAN_BSS_LIST {
DWORD dwTotalSize;
DWORD dwNumberOfItems;
WLAN_BSS_ENTRY wlanBssEntries[1];
} WLAN_BSS_LIST, *PWLAN_BSS_LIST;

2The pIeData only works with some drivers. A workaround could be that the protocol
could test if the driver supports the injection of the pIeData and in the case it works set the
application to use this extra data setting a bigger MTU.

This structure is a list of WLAN_BSS_ENTRY structures each one containing the
information of the BSS3:

typedef struct _WLAN_BSS_ENTRY {
DOT11_SSID dot11Ssid;
ULONG uPhyId;
DOT11_MAC_ADDRESS dot11Bssid;
DOT11_BSS_TYPE dot11BssType;
DOT11_PHY_TYPE dot11BssPhyType;

LONG 1Rssi;

ULONG uLinkQuality;
BOOLEAN bInRegDomain;

USHORT usBeaconPeriod;
ULONGLONG ullTimestamp;
ULONGLONG ullHostTimestamp;
USHORT usCapabilityInformation;
ULONG ulChCenterFrequency;
WLAN_RATE_SET wlanRateSet;

ULONG ulleOffset;

ULONG ulleSize;

} WLAN_BSS_ENTRY, *PWLAN_BSS_ENTRY;

Since this structure provides a lot of information about the BSS it could be
used as input data for the channel.

6 Attack Vectors

Technological complexity in daily-used devices turned the traditional perspec-
tive of the network boundaries obsolete [Ric08]. The scenario where an attacker
penetrates an infrastructure from the “only” connection that joins the outer
world with, for example, an enterprise network cannot be taken seriously.

Client side attacks, web application attack vectors and connectivity provided
by mobile devices and portable computers, among others, opened new ways of
compromising the networks, presenting new challenges to the ones in charge of
protecting them.

The presented work can be used as a way out (or way in, depending on
which side you are standing) from the classical perimeter notion. An already
compromised computer, which could have been an employee’s notebook attacked
while surfing the web in a coffee shop can be used as a gate to a given private
network. It could be running a “channel deamon” listening for available wireless
networks that when receiving a special crafted packet opens the connection
through the covert channel without the users notice.

In penetration testing terms, compromised machines (e.g., running network
agents or advanced payloads [Cac02, Met]) could loose connectivity and might
use wireless covert channels to try to establish a connection back to the penetra-
tion tester console, bypassing all the security infrastructure the network could
have (e.g., firewalls and traffic rules). Figure 5 shows a possible scenario where
a wireless covert channel could be useful.

3basic service set.

[#5]][]

8 |

=

Figure 5: Sample network boundaries scenario for covert channel attacks.

Another example could be compromising a machine with a client-side exploit
using a pen drive as the attack vector and connecting back from the compro-
mised target. In this scenario, if the machine lacks a network connection, the
attack will fail. Using the covert channel could allow communication with the
target without any connection besides the wireless covert channel.

Figure 6: Sample of an offline attack using the covert channel.

7 Conclusions

Limitations exist both on the INPUT and OUTPUT data we can use for the
channel which have a direct impact on its bandwidth.

The most significative advantage of using the WiFi Native API is that no
special privileges are required and the state of the Wireless Network Interface
is not a limitation, since it can be joined to a wireless network or not. Morover,
it works with any Wireless Network Interface that works in MS Windows with
no special drivers.

Another important advantage for using this API is that the end user never
notices that someone is using the Wireless Network Interface, and the only
“sign” of the channel existance are the network names injected in the beacons
that announce the existence of the channel, which have an empty value. Once
the channel is open, directed probe responses and probe requests are used to
communicate, so a “normal” user (i.e., anyone not looking for a covert channel)
would not detect it.

With this advantages we could say that implementations of this covert chan-
nel are a good options besides similar attacks usign Soft AP and that are a real
threat for network security.

8 Future Work

There are various features to be implemented in the prototype code. First, multi
client support has to be added in order to be able to communicate different
clients with one server (attacker).

Cryptographic armoring can be also implemented although the small band-
with of the channel should be analyzed in order to decide which cryptographic
scheme to adopt.

Another operating system clients (the piece of code running on the attacked
system) can also be implemented but still need deeper research. We currently
focused in MS Windows systems in order to take advantage of the Native WiFi
API provided in such systems.

References

[80205] 802.11 Wireless Networks, The Definitive Guide. O’ Reilly, 2005.

[Cac02] Maximiliano Caceres. Syscall proxying - simulating remote execution.
Corelabs Technical Report, 2002.

[DZMO05] D.A. Dai Zovi and S.A. Macaulay. Information assurance workshop.
proceedings from the sixth annual ieee smc, 2005.

[HS96] T.G.Handel and M. T. Sandford. Lecture Notes in Computer Science,
chapter Hiding dat. Springer Berlin / Heidelberg, 1996.

[Kem83] Richard A. Kemmerer. Shared resource matrix methodology: an ap-
proach to identifying storage and timing channels. ACM Trans. Com-
put. Syst., 1(3):256-277, 1983.

10

[Lam73] Butler W. Lampson. A note on the confinement problem. Commun.

[LB]

[Met]
[Oud]

[Ric08]

[Win]

ACM, 16(10):613-615, 1973.

Franck Veysset Laurent Butti. Wi-fi advanced stealth. In Black Hat
Briefings USA 2006.

Meterpreter payload. URL: http://www.metasploit.com/.

Laurent Oudot. Wlan and stealth issues. In Black Hat Briefings
Furope 2005.

Gerardo Richarte. Evolution of penetration testing, 2005 to 2013.
SANS What Works in Penetration Testing & Ethical Hacking Summit.
Las Vegas, NV, May 31 - June 9, 2008., 2008.

Windows wifi native api reference. URL:
http://msdn.microsoft.com/en-us/library /ms706275(v=VS.85).aspx.

11

