On Exploit Quality Metrics

An Efficient Planning Solution

Demo

Summary

On Exploit Quality Metrics – and How to Use Them for Automated Pentesting

Carlos Sarraute

CoreLabs & ITBA PhD program Buenos Aires, Argentina

8.8 Security Conference - November 18, 2011

Carlos Sarraute

Exploit Quality Metrics for Automated Pentesting

1/50

Introduction

My company: Core Security Technologies

- Boston (USA)
 - marketing, sales, engineering
- Buenos Aires (Argentina)
 - research and development

Introduction

My company: Core Security Technologies

- Boston (USA)
 - marketing, sales, engineering
- Buenos Aires (Argentina)
 - research and development

CoreLabs: the research team

Some areas of interest:

- Vulnerability research
 - Bugweek
 - Publication of advisories
- Cyber-attack planning and simulation
- Improving OS detection using neural networks

Agenda outline

Motivation

- 2
 - On Exploit Quality Metrics
 - For different stakeholders
 - What can we measure?
- 3 An Efficient Planning Solution
 - Planning for dummies
 - Two Primitives
 - Using the Primitives in a Network Graph
 - Integrated with a Pentesting Tool

4 Demo

5 Summary

Agenda

- 2 On Exploit Quality Metrics
 - For different stakeholders
 - What can we measure?
- 3 An Efficient Planning Solution
 - Planning for dummies
 - Two Primitives
 - Using the Primitives in a Network Graph
 - Integrated with a Pentesting Tool
- 4 Demo

5 Summary

Summary

Penetration Testing?

Penetration testing

Actively verifying network defenses by conducting an intrusion in the same way an attacker would.

- Penetration testing tools have the ability to launch real exploits for vulnerabilities.
 - different from vulnerability scanners (Nessus, Retina, ...)
 - no false positives!
- Main tools available:
 - Core Impact (since 2001)
 - Immunity Canvas (since 2002)
 - Metasploit (since 2003)
 - open source, owned by Rapid7 since 2009

Demo

Summary

Need for Automation

- Reduce human labor
- Increase testing coverage
 - Higher testing frequency
 - Broader tests trying more possibilities
- Complexity of penetration testing tools
 - More exploits
 - New attack vectors (Client-Side, WiFi, WebApps, ...)
- Equip penetration testing tool with "expert knowledge"
- Construct attack plans that pivot.

On Exploit Quality Metrics

An Efficient Planning Solution

Demo

Summary

Anatomy of a Real-World Attack

On Exploit Quality Metrics

An Efficient Planning Solution

Demo

Summary

Anatomy of a Real-World Attack

On Exploit Quality Metrics

An Efficient Planning Solution

Demo

Summary

Anatomy of a Real-World Attack

On Exploit Quality Metrics

An Efficient Planning Solution

Demo

Summary

Anatomy of a Real-World Attack

Agenda

Motivation

- 2
- **On Exploit Quality Metrics**
- For different stakeholders
- What can we measure?
- An Efficient Planning Solution
 - Planning for dummies
 - Two Primitives
 - Using the Primitives in a Network Graph
 - Integrated with a Pentesting Tool
- 4 Demo

5 Summary

On Exploit Quality Metrics

An Efficient Planning Solution

Demo

Summary

Basic definitions

Vulnerability (noun) A flaw in a system that, if leveraged by an attacker, can potentially impact the security of said system

• Also: security bug, security flaw, security hole

Exploit (verb) To use or manipulate to one's advantage (Webster)

Exploit (noun) A security hole or an instance of taking advantage of a security hole

Carlos Sarraute

On Exploit Quality Metrics

An Efficient Planning Solution

Demo

Summary

Basic definitions

V in 9/9 andan started 0800 { 1.2700 9.037 847 025 9.037 846 995 const - andram / 1000 stopped 2.130476415 (3) 4.615925059(-2) 13" 5 (032) MP - MC (033) PRO 2 2. 130476415 const 2.130676415 Robys 6-2 m 033 failed spirit speed test In turn Relays Started Cosine 11,000 fest Tape (Sine check) 1100 1525 Mult + Adder Test. Relay #70 Panel (moth) in relay. 1545 F 100 clock down.

Carlos Sarraute Exploit Quality Metrics for Automated Pentesting

10/50

Exploit Code

Proof of Concept exploit - PoC (noun) A software program or tool that exploits a vulnerability with the sole purpose of proving its existence.

Exploit Code (noun) A software program or tool developed to exploit a vulnerability in order to accomplish a specific goal.

• Possible goals: denial of service, arbitrary execution of code, etc

Reference: [Arc05]

Agenda

Motivation

- 2
- On Exploit Quality Metrics
- For different stakeholders
- What can we measure?
- 3 An Efficient Planning Solution
 - Planning for dummies
 - Two Primitives
 - Using the Primitives in a Network Graph
 - Integrated with a Pentesting Tool
- 4 Demo

5 Summary

Users' profiles

• Bad Guy (Botnet Master)

- Needs the exploit to be fast.
- Will likely be running multiple instances.
- Will run against multiple platforms in an automatic and massive fashion.
- **Penetration Tester** (or Bad Guy seeking a specific objective)
 - Someone trying to manually break into specific systems.
 - Maximize reliability in exploits for specific targets.
 - Exploit must survive real-world conditions
 - \longrightarrow unreliable or congested networks,
 - \longrightarrow high workload on the target computer.
 - Exploit should resist changes in application configurations.

Summary

Engineering profiles I

- Framework Developer (Kernel, User Interface, etc.)
 - Interested in quality from a "software engineering" approach.
 - Quality also means including the documentation needed by that system.

Quality Assurance Analyst

- Documentation leading to a better assessment of the real capabilities of an exploit:
 - \longrightarrow Set of platforms and software versions targeted.

 \longrightarrow Important configuration changes that must be made for the exploit to work.

- Documentation will be used to design and/or execute test suites.
- Regression testing: make sure those exploits for Windows 95 continue to work!

Engineering profiles II

Exploit Writer

Support as many platforms as possible:

 \longrightarrow platform = combination of OS versions and application versions.

 \rightarrow optimal = support all vulnerable platforms.

The exploit as a piece of software easy to maintain and improve:

 \longrightarrow code easy to understand \Rightarrow less effort to add a platform or change the shellcode.

- Information about protections bypassed on each platform
- Well documented from a technical standpoint, especially when obscure techniques are used.

Agenda

Motivation

- On Exploit Quality Metrics
 For different stakeholders
 - What can we measure?
 - An Efficient Planning Solution
 - Planning for dummies
 - Two Primitives
 - Using the Primitives in a Network Graph
 - Integrated with a Pentesting Tool
- 4 Demo

5 Summary

An Efficient Planning Solution

Demo

Summary

Simple measurements

• Average running time

- Straightforward to measure.
- Some exploits require brute forcing

 \longrightarrow sometimes that can be upgraded to more clever techniques

Success rate or Probability of success

- Success rate of testing an exploit repeatedly against a given platform.
- Approximate different capacities, such as resilience to machine load, network load, or different configurations.

Network traffic generated

- User required interaction
 - Determining if the exploitation of a bug will be "interactive" or unattended is an important piece of documentation.

Summary

More complex measurements I

- Targets exploited / known vulnerable targets
 - A vulnerability affects a set of platforms, for example, Windows XP SP2 and SP3 can be affected.
 - Variations in libraries in intra-service-pack patches or when different languages are supported may affect the exploit.

• Resilience to changes in configuration and machine load

- Exploit for a vuln may only work with the default configuration.
- Exploit use methods (such as hardcoded address) that are sensitive to minor changes in memory layout.
- Exploits are more reliable when non-default configurations are used during development, and when they are tested in real-life use conditions.

Summary

More complex measurements II

Number of bypassed protections

- It's useful to know which security measures were bypassed.
- Indication of how much knowledge was put into that exploit.
- Results in better maintainability.
- Resilience to network traffic
 - Network traffic can affect a remote vulnerability due to timing issues,
 - ... or when complex interactions are required to trigger the vuln.
 - Building proper testing environments is challenging.

Summary

More complex measurements III

Payload mutability

- Some exploits will only work with a proof of concept payload.
- The more versatile an exploitation technique is, the more adaptability the exploit will have.
- Used libraries in OS
 - Which specific part of the whole runtime and OS affect the exploit?
 - Helps back porting vulnerabilities to target more platforms.
 - Helps in gaining a better understanding of exploitability of vulnerabilities in a given OS.

On Exploit Quality Metrics

An Efficient Planning Solution

Demo

Summary

How do we measure those values?

Use the Exploit Testing team infrastructure.

- 748 virtual machines with different OS and applications.
- Automated execution of all the exploits against vulnerable images... every night!
- Statistics are extracted from the database of executions.
- ② Get feedback from users.
 - Anonymized feedback program in Core Impact.

Summary

Agenda

Motivation

- 2 On Exploit Quality Metrics
 - For different stakeholders
 - What can we measure?

3 An Efficient Planning Solution

- Planning for dummies
- Two Primitives
- Using the Primitives in a Network Graph
- Integrated with a Pentesting Tool

4 Demo

5 Summary

Summary

Agenda

Motivation

- 2 On Exploit Quality Metrics
 - For different stakeholders
 - What can we measure?
- 3 An Efficient Planning Solution
 - Planning for dummies
 - Two Primitives
 - Using the Primitives in a Network Graph
 - Integrated with a Pentesting Tool

4 Demo

5 Summary

On Exploit Quality Metrics

An Efficient Planning Solution

Demo

Summary

Simple brain teaser

In which order would you execute these exploits?

An obvious problem					
	Action	Time	Probability		
	Exploit ₁	8 <i>s</i>	0,85	-	
	Exploit ₂	100 <i>s</i>	0,05	-	

An Efficient Planning Solution

Demo

Summary

Simple brain teaser

In which order would you execute these exploits?

An obvious problem					
	Action	Time	Probability		
	Exploit ₁	8 <i>s</i>	0,85	-	
	Exploit ₂	100 <i>s</i>	0,05	-	

And maybe not so obvious

Action	Time	Probability
Exploit ₁	8 <i>s</i>	0,05
Exploit ₂	100 <i>s</i>	0,85

Summary

Solution

We suppose the actions are independent, so the expected total running times are:

$$t_1 + (1 - p_1) \cdot t_2 <^? t_2 + (1 - p_2) \cdot t_1$$

We suppose the actions are independent, so the expected total running times are:

$$t_1 + (1 - p_1) \cdot t_2 <^? t_2 + (1 - p_2) \cdot t_1$$

$$t_1 + t_2 - p_1 \cdot t_2 <^? t_2 + t_1 - p_2 \cdot t_1$$

We suppose the actions are independent, so the expected total running times are:

$$t_{1} + (1 - p_{1}) \cdot t_{2} <^{?} t_{2} + (1 - p_{2}) \cdot t_{1}$$
$$t_{1} + t_{2} - p_{1} \cdot t_{2} <^{?} t_{2} + t_{1} - p_{2} \cdot t_{1}$$
$$p_{2} \cdot t_{1} <^{?} p_{1} \cdot t_{2}$$

We suppose the actions are independent, so the expected total running times are:

$$t_{1} + (1 - p_{1}) \cdot t_{2} <^{?} t_{2} + (1 - p_{2}) \cdot t_{1}$$

$$t_{1} + t_{2} - p_{1} \cdot t_{2} <^{?} t_{2} + t_{1} - p_{2} \cdot t_{1}$$

$$p_{2} \cdot t_{1} <^{?} p_{1} \cdot t_{2}$$

$$\frac{t_{1}}{p_{1}} <^{?} \frac{t_{2}}{p_{2}}$$

An Efficient Planning Solution

Demo

Summary

Solution and second brain teaser

Best order					
	Action	Time	Probability	t/p	
	Exploit ₁	8 <i>s</i>	0,05	160	
	Exploit ₂	100 <i>s</i>	0,85	117,6	

Carlos Sarraute

An Efficient Planning Solution

Demo

Summary

Solution and second brain teaser

Best order

Action	Time	Probability	t/p
Exploit ₁	8 <i>s</i>	0,05	160
Exploit ₂	100 <i>s</i>	0,85	117,6

What happens with more?

Action	Time	Probability
Exploit ₁	8 <i>s</i>	0,05
Exploit ₂	100 <i>s</i>	0,85
Exploit ₃	40 <i>s</i>	0,50
Exploit ₄	2 <i>s</i>	0,01

An Efficient Planning Solution

Demo

Summary

Solution and second brain teaser

Best order

Action	Time	Probability	t/p
Exploit ₁	8 <i>s</i>	0,05	160
Exploit ₂	100 <i>s</i>	0,85	117,6

What happens with more?

Action	Time	Probability	t/p	Order
Exploit ₁	8 <i>s</i>	0,05	160	3
Exploit ₂	100 <i>s</i>	0,85	117,6	2
Exploit ₃	40 <i>s</i>	0,50	80	1
Exploit ₄	2 <i>s</i>	0,01	200	4

Carlos Sarraute

Summary

Agenda

Motivation

- 2 On Exploit Quality Metrics
 - For different stakeholders
 - What can we measure?

An Efficient Planning Solution

- Planning for dummies
- Two Primitives
- Using the Primitives in a Network Graph
- Integrated with a Pentesting Tool

4 Demo

5 Summary

On Exploit Quality Metrics

An Efficient Planning Solution

Demo

Summary

The Choose primitive

Problem

 $\{A_1, \ldots, A_n\}$ independent actions that result in a goal g. Each A_k has probability of success p_k and running time t_k . **Task:** Find order of execution to minimize total running time.

On Exploit Quality Metrics

An Efficient Planning Solution

Demo

Summary

The Choose primitive

Problem

 $\{A_1, \ldots, A_n\}$ independent actions that result in a goal g. Each A_k has probability of success p_k and running time t_k . **Task:** Find order of execution to minimize total running time.

Solution

Order actions according to t_k/p_k (in increasing order).

Carlos Sarraute

On Exploit Quality Metrics

An Efficient Planning Solution

Demo

Summary

The Combine primitive

Definition

We call *strategy* a group of actions that are executed in a fixed order.

Problem

 $\{G_1, \ldots, G_n\}$ are strategies that result in a goal g. **Task:** Minimize total time.

Carlos Sarraute

Exploit Quality Metrics for Automated Pentesting

30/50

An Efficient Planning Solution

Demo

Summary

Expected probability and time

If the actions of *G* are $\{A_1, \ldots, A_n\}$ then: The expected running time of *G* is

$$T_G = t_1 + p_1 t_2 + p_1 p_2 t_3 + \ldots + p_1 p_2 \ldots p_{n-1} t_n$$

The probability of success is simply

$$P_G = p_1 p_2 \dots p_n$$

Solution

Sort the strategies according to T_G/P_G . In each group, execute actions until one fails or all the actions are successful. Complexity of planning: $O(n \log n)$

On Exploit Quality Metrics

An Efficient Planning Solution

Demo

Summary

The **Combine** primitive (cont)

Groups of actions with an AND relation (order is not specified).

On Exploit Quality Metrics

An Efficient Planning Solution

Demo

Summary

The **Combine** primitive (cont)

Groups of actions with an AND relation (order is not specified).

Carlos Sarraute

Exploit Quality Metrics for Automated Pentesting

32/50

On Exploit Quality Metrics

An Efficient Planning Solution

Demo

Summary

References (for this section)

- [Sar09a] New Algorithms for Attack Planning
 - FRHACK Conference, France. Sept 7/8, 2009.
- [Sar09b] Probabilistic Attack Planning in Network + WebApps Scenarios
 - H2HC Conference, São Paulo, Brazil. Nov 28/29, 2009.

Carlos Sarraute

Summary

Agenda

Motivation

- 2 On Exploit Quality Metrics
 - For different stakeholders
 - What can we measure?

3 An Efficient Planning Solution

- Planning for dummies
- Two Primitives

• Using the Primitives in a Network Graph

Integrated with a Pentesting Tool

4 Demo

5 Summary

On Exploit Quality Metrics

An Efficient Planning Solution

Demo

Summary

First level: fixed source and target

Given a source machine and a target machine, the problem is to find a path in an Attack Tree:

- Action node: connected by AND relation with its requirements —> use Combine primitive.
- **2** Asset node: connected by OR relation with the actions that provide that asset \rightarrow use *Choose* primitive.

Carlos Sarraute

An Efficient Planning Solution

Demo

Summary

Second level: graph of machines

Use First level procedure to compute Time(u, v) and Prob(u, v) for all $u, v \in V$ and then ...

Algorithm 1 Modified Dijkstra's algorithm

```
T[s] = 0, P[s] = 1
T[v] = +\infty, P[v] = 0 \quad \forall v \in \mathcal{V}, v \neq s
S \leftarrow \emptyset
Q \leftarrow \mathcal{V} (where Q is a priority queue)
while Q \neq \emptyset do
      u \leftarrow \arg \min_{x \in O} T[x]/P[x]
      Q \leftarrow Q \setminus \{u\}, S \leftarrow S \cup \{u\}
      for all v \in \mathcal{V} \setminus S adjacent to u do
             T' = T[u] + P[u] \times Time(u, v)
             P' = P[u] \times Prob(u, v)
             if T'/P' < T[v]/P[v] then
                     T[v] \leftarrow T'
                    P[v] \leftarrow P'
return \langle T, P \rangle
```

An Efficient Planning Solution

Demo

Summary

Agenda

Motivation

- 2 On Exploit Quality Metrics
 - For different stakeholders
 - What can we measure?

3 An Efficient Planning Solution

- Planning for dummies
- Two Primitives
- Using the Primitives in a Network Graph
- Integrated with a Pentesting Tool

4 Demo

5 Summary

An Efficient Planning Solution

Demo

Summary

Anatomy of a Planning-Based Attack

Attack Planning, as used in Core Impact (and in Core Insight Enterprise):

[LSR10]; a.k.a. "Cyber Security Domain" [BGHH05]

An Efficient Planning Solution

Demo

Summary

Experimental results I

- Memory consumption of the planner (in MB) versus number of machines in the target network.
- Memory consumption is linear.

Carlos Sarraute

An Efficient Planning Solution

Demo

Summary

Experimental results II

- Planner running time versus number of machines in the target network.
- Planner running time is cuadratic.

Carlos Sarraute

Exploit Quality Metrics for Automated Pentesting

40/50

An Efficient Planning Solution

Demo

Summary

Experimental results III

- Relative plot, clearly showing the cuadratic growth of planning time.
- Scales up to 1000 machines.

Carlos Sarraute

Exploit Quality Metrics for Automated Pentesting

41/50

On Exploit Quality Metrics

An Efficient Planning Solution

Demo

Summary

References (for this section)

- [SRL11] An Algorithm to find Optimal Attack Paths in Nondeterministic Scenarios
 - C. Sarraute, G. Richarte, J. Lucangeli
 - AlSec workshop, ACM CCS, Chicago. October 21, 2011.
- See also [LI05, NJ04, Sch99, Sch00]

Carlos Sarraute

Agenda

Motivation

- 2 On Exploit Quality Metrics
 - For different stakeholders
 - What can we measure?

3 An Efficient Planning Solution

- Planning for dummies
- Two Primitives
- Using the Primitives in a Network Graph
- Integrated with a Pentesting Tool

Demo

5 Summary

In Exploit Quality Metrics

An Efficient Planning Solution

Demo

Summary

Demo time!

Carlos Sarraute

Exploit Quality Metrics for Automated Pentesting

44/50

Agenda

Motivation

- 2 On Exploit Quality Metrics
 - For different stakeholders
 - What can we measure?

3 An Efficient Planning Solution

- Planning for dummies
- Two Primitives
- Using the Primitives in a Network Graph
- Integrated with a Pentesting Tool

4 Demo

5 Summary

Summary

We have presented:

- An analysis of the factors that affect exploits quality.
- An attack model based on a selection of factors:
 - Average running time
 - Probability of success
 - Details of the vulnerable platform (OS and application versions)
 - Connectivity requirements.
- An efficient planning solution, **integrated** to a penetration testing framework.
- An evaluation of our implementation that shows the feasability of planning and verifying attacks in real-life scenarios.

On Exploit Quality Metrics

An Efficient Planning Solution

Demo

Summary

That's all folks!

Thanks for your attention! Questions?

carlos @ coresecurity . com http://corelabs.coresecurity.com/

Thanks to Gerardo Richarte, Pedro Varangot and Ariel Waissbein for their ideas and contributions.

References I

Ivan Arce.

On the quality of exploit code: An evaluation of publicly available exploit code.

In RSA Security Conference, San Francisco, CA, 2005.

Mark S. Boddy, Johnathan Gohde, Thomas Haigh, and Steven A. Harp. Course of action generation for cyber security using classical planning. In *Proc. of ICAPS'05*, 2005.

Richard Lippmann and Kyle Ingols.

An annotated review of past papers on attack graphs. Technical Report ESC-TR-2005-054, Lincoln Laboratory, MIT, 2005.

Jorge Lucangeli, Carlos Sarraute, and Gerardo Richarte. Attack Planning in the Real World.

In Workshop on Intelligent Security (SecArt 2010), 2010.

References II

S. Noel and S. Jajodia.

Managing attack graph complexity through visual hierarchical aggregation.

In *Proceedings of the 2004 ACM workshop on Visualization and data mining for computer security*, pages 109–118. ACM New York, NY, USA, 2004.

Carlos Sarraute.

New algorithms for attack planning.

In FRHACK Conference, Besançon, France, 2009.

Carlos Sarraute.

Probabilistic Attack Planning in Network + WebApps Scenarios.

In H2HC Conference, Sao Paulo, Brazil, 2009.

Bruce Schneier.

Attack trees.

Dr. Dobb's journal, 24(12):21-29, 1999.

Carlos Sarraute

References III

Bruce Schneier.

Secrets & lies: digital security in a networked world, chapter 21. John Wiley & Sons, Inc. New York, NY, USA, 2000.

Carlos Sarraute, Gerardo Richarte, and Jorge Lucangeli.

An algorithm to find optimal attack paths in nondeterministic scenarios. In ACM Workshop on Artificial Intelligence and Security (AISec'11), at ACM CCS Conference, 2011.