One firmware to monitor 'em all.

Andrés Blanco Matias Eissler
Core Security Technologies

August 23, 2012

Abstract

In the last years mobile devices usage has turned massive. These de-
vices, in general, follow the IEEE 802.11 standard for wireless connectivity.
Broadcom is one of the most important semiconductor companies in the
wireless and broadband communication business. Some of their WiFi so-
lutions (BCM4325 & BCM4329 chipsets) are included in great part of the
mobile devices market, including vendors like Apple, Samsung, Motorola,
Sony, Nokia, LG, Asus and HTC. In this paper we describe the process
of modification of the firmware program on these cards. The presented
results could open new possibilities to the information security commu-
nity such as access to baseband components without intervention of the
operating system and the capabilities to store information within the net-
work card’s internal memory among others. As the reader explores the
present work we go through the internals of the firmware program, our
reverse engineering process and show, as a proof of concept, how to set
these cards on monitor mode.

1 Introduction

Operating systems provide security by means of layered sets of levels of trust.
However peripheral’s firmware program code is executed on a separate physical
CPU, with its own internal memory, thus firmware program has access to the
system hardware without involving the operating system. Code executed with
this access level has, regarding hardware interaction, higher privileges than those
of an “administrator” or “root” user. Such access level can be obtained on most
mobile devices, by simple modifications of unprotected (i.e. not signed) files.
Network card firmware code modification introduces several possibilities.
Previous research works show advances in the field of firmware modification: di-
rect access to other peripherals, such as video card GPU [Tri08], stealth agents
that could act as a relay for pivoting attacks [Tril0], network card flash compo-
nents used as persistence mechanisms to host firmware rootkits [Del10] and fire-
wall bypassing schemes [Tril0]. Other possibilities were suggested: the so-called
“attacks from below” [Tril0] which would allow not only new attack vectors
against the operating system and network card driver modules but also informa-
tion disclosure of cryptographic material on the host system [DPVL10]. Other
works focused on directly accessing the hardware allowed connection with DMA
controllers to gain control of modern operating systems [AD10] and even when

2011 2010
Company Units \ Share (%) | Units \ Share (%)
Nokia 422.,478.3 23.8 | 461,318.2 28.9
Samsung 313,904.2 17.7 | 281,065.8 17.6
Apple 89,263.2 5.0 | 46,598.3 2.9
LG Electronics 86,370.9 4.9 | 114,154.6 7.1
ZTE 56,881.8 3.2 | 29,686.0 1.9
RIM 51,541.9 2.9 | 49,651.6 3.1
HTC 43,266.9 2.4 | 24,688.4 1.5
Huawei 40,663.4 2.3 | 23,814.7 1.5
Motorola 40,269.0 2.3 | 38,553.7 2.4
Sony Ericsson 32,597.5 1.8 | 41,819.2 2.6
Others 597,326.9 33.7 | 485,452.0 30.4
Total 1,774,564.1 100.0 | 1,596,802.4 100.0

Table 1: Worldwide Mobile Device Sales to End Users by Vendor in 2011 (Thou-
sands of Units) - Source: Gartner (February 2012)

the protection of an I0/MMU was present, vulnerabilities have been demon-
strated and exercised to provide access to operating system memory [SLND10].

We will focus on mobile devices and WiFi technology where adoption has
grown exponentially over the last years. These devices evolved from simple
gadgets into complex pocket computers available to almost any person. Making
use of every capability in these devices can provide the information security
community with a portable tool and above all, a really interesting target for
multi-stage attacks. It is important to mention that nowadays most uses of
mobile devices rely on internet connectivity and wireless 802.11 networks are
used as one of the main connection methods.

Broadcom cards are particularly interesting since they are included in a
variety of devices including Apple iPhone 4, HTC Nexus One, Samsung Galaxy
Tab, Motorola Xoom, Sony Xperia Play, Nokia Lumia 800, Asus Transformer
Prime and LG Optimus 2X. As shown in Table 1 only these vendors together
sum more than 50% of 2011 device sales, although this statistics cover all brand
models and might include cell phones with no wireless capabilities (see Appendix
A for a more complete vendor list.)

To demonstrate successful modification of the firmware program, we will
provide monitor mode, not currently implemented on these type of network
cards. Monitor mode provides security researchers with the capability of cap-
turing management, control and data frames that are not specifically destined
to a given station. This mode presents an effective method of passive informa-
tion gathering, that can be used for example, to attack WEP and WPA-PSK
cryptosystems [TB09] and [Kor04b, Kor04a]. While on monitor mode network
interface cards also provide additional information related to the physical con-
ditions at the moment of frame reception such as RSSI, Rx Power and Preamble
information among others.

The program source code of Broadcom firmwares is not publicly available
and reversing this chipsets’ firmware is of great value since it enables modifica-
tions on the code to allow full control of the cards’ capabilities.

The paper is organized as follows: Section 2 provides an overview of the
architecture of Broadcom wireless cards, Section 3 describes how the firmware
is designed (most of this information was gathered during the reversing pro-
cess). Section 4 describes the approach taken in the reversing process to enable
firmware modification as described in Section 5 and exemplified in Section 6
which describes how we enabled monitor mode. Finally, Sections 7 and 8 out-
line the conclusions and future work.

2 Architecture

The BCM4325 & BCM4329 integrate a complete IEEE 802.11 system with
Bluetooth and FM radio receiver into a single card, designed for mobile devices
that require low power consumption. The hardware consists of an ARM general
purpose CPU, both persistent and volatile memory, a set of cores, a SDIO bus
connection and, of course, antennas. Cores are organized into several functional
modules which provide a layered service to various aspects related to the recep-
tion, decoding, encoding and transmission of network frames. They also handle
the transitions of the data-link protocol state machine and the underlying phys-
ical layer details associated with the device radio operation. Some interesting
core components include the PHY core by which the physical low level details of
the antennas power, reception thresholds, temperatures, frequencies and bands
are configured. The MAC core manages part of the data-link layer protocol
implementation and, as we will see, main modes of operation of the adapter.
SDIO core instruments the communication with the device and on the other
end of the SDIO bus the adapter driver manages the communication with the
operating system.

Figure 1: Communication between internal card components.

| Memory mapped registers | Interrupt/DMA controller

3 Firmware

As mentioned in Section 2, network interface cards (NICs) implement the phys-
ical layer protocol of communication. BCM4325 & BCM4329 also implement
the data-link layer portion of the 802.11 protocol. To provide greater flexibility,
a general purpose CPU is often included. The single program that is loaded
and executed by this CPU is what is generally known as ’the firmware’.

The firmware program is split into several segments or regions, each region
containing code and data. We suppose this is due to space constraints. We will
call Region 1 to the segment of the firmware program uploaded by the operating
system driver at boot time. Another region (starting at SI_ARMCM3_ROM as shown
in Listing 1 on BCM4329) is mapped into a higher memory address on the card’s
internal memory and hence not directly accessible for inspection, we will call
this Region 2.

Region 1 of the firmware program is usually available as a binary file on
the mobile devices’ (smartphone or tablet) file-system. Alternatively on older
versions in 105, a specific program named 'wifiFirmwareLoader’ contained the
firmware program as data. On Apple devices this file can be found at /us-
r/share/firmware/wifi/43vz/ and on Android devices the file is located at /sys-
tem/etc/wifi. Depending on the version of the card, Region I resides in a raw
.bin file or is contained by a .trx file. The trx file format has already been
documented by the openwrt community' and the raw data is quite simple to
extract from those files.

Region 1 of the firmware program is loaded into the card’s RAM memory,
at address zero, where the interruption array will be located. It provides han-
dler functions for hardware and software interruptions and has access to a large
set of memory-mapped hardware registers that control various aspects of the
physical and data-link layers. These layers are partially implemented in hard-
ware. A DMA engine is also available to the firmware for direct transmission of
information between the card subcomponents.

Listing 1: hndsoc.h - bem driver from Android project

#define SI_FLASH2 0x1c000000 /* Flash Region 2 (region 1
shadowed here) x/

#define SI_FLASH2_SZ 0x02000000 /* Size of Flash Region 2 x/

#define SI_ARMCM3_ROM 0x1e000000 /* ARM Cortex-M3 ROM */

#define SI_FLASH1 0x1£fc00000 /* MIPS Flash Region 1 */

#define SI_FLASH1_SZ 0x00400000 /* MIPS Size of Flash Region
1 %/

#define SI_ARM7S_ROM 0x20000000 /* ARM7TDMI-S ROM */

#define SI_ARMCM3_SRAM2 0x60000000 /* ARM Cortex-M3 SRAM Region
2 */

#define SI_ARM7S_SRAM2 0x80000000 /* ARM7TDMI-S SRAM Region 2
*/

#define SI_ARM_FLASH1 O0xf£f££0000 /* ARM Flash Region 1 */

#define SI_ARM_FLASH1_SZ 0x00010000 /* ARM Size of Flash Region 1
*/

Thttps://forum.openwrt.org/viewtopic.php?id=6938

4 Reversing process

Since the source code for the firmware program is not publicly available, in
order to successfully modify its behavior, a reverse engineering process is re-
quired. This process will be carried out without debugging capabilities, mainly
by reading and analyzing the disassembled assembly code. The necessary steps
include: i) Identify the ARM instruction sets compatible with the CPU present
in the card hardware. ii) Disassemble the binary program to obtain assem-
bler instructions iii) Determine which assembly code functions produced by the
previous step are the low level implementation of common primitive functions
iv) Use references to primitive functions or data constants to pinpoint portions
of assembly code that implement functionalities of interest. Once we gathered
sufficient information with this manual process, dynamic analysis will become
possible.

4.1 Instruction set identification

Recognition of the instruction sets compatible with the CPU present in the
network card hardware can be accomplished by several methods: simple trial
and error tests setting different versions on the disassembler or making use of
public information. For instance, advertisment of the BCM4330 states the use
of ARM Cortex-M32. Also, the open source code driver of the Android project
for these cards, is a great source of information. For example, after reversing
some pieces of code, we found cross references and function calls to addresses
that belonged to Region 2. References to the base addresses of Region 2 were
found on available source code in which the ARM architecture version used is
also mentioned (see Listing 1). As a final option, we also considered the use
of the undefined instruction interruption to determine the exact instruction set
version, but we discarded this path.

4.2 Disassembly

Our approach in order to disassemble the firmware program code begins with
the interruption array, located at the beginning of the firmware file, which will
be loaded at memory address zero. This table contains the addresses of the
interruption handler functions. Since the firmware program is loaded at address
zero and this is also where the interruption array is located, we can easily know
the positions of the handler functions within the file. The BCM4329 firmware
usually includes a zero-padded section up to offset 0x100 where a function ta-
ble relates regions (Region 1 and Region 2) of the firmware. Addresses in this
table are mostly functions, so we continue by disassembling instructions there.
After the completion of this process, a great deal of the program has been dis-
assembled. For the remaining, we relied on the fact that the ARM architecture
requires functions to be 4-byte aligned so compilers usually use nop-padding
therefore, binary opcode for ARM two-byte nop is an indication of a possible
function prologue ahead.

2http://www.broadcom.com/products/Wireless-LAN /802.11-Wireless-LAN-
Solutions/BCM4330

4.3 Primitive functions

Once the program has been disassembled, higher level function analysis can
begin. The first candidates for identification are implementations of common
libc-like functions such as memcpy, memcmp, memmove, memset, strlen, strcpy, strncpy,
etc. To accomplish this, a useful heuristic is to sort functions by the number of
times they are called, then filter by functions containing at least one loop. This
results in the immediate discovery of memcpy when available in Region I (code
distribution between the regions varies greatly from version to version). If memcpy
is available, and once we have identified it, a quick look on the functions located
in the vicinity memory addresses results in the identification of many other of
the above-mentioned functions. In fact, identifying memset uncovers an allocator
function, because of the very common pattern p=allocate(n); if (p)memset(p, 0,

n).

4.4 Functionalities of interest

Now that basic primitive functions have been identified, we can obtain more
information by observing the use of common constants. Since the data-link
layer of 802.11 is implemented by the firmware, many constants related to this
protocol are referenced by its functions. Also, 6-byte memcpy and memcmp calls are
usual indicators of operations with MAC addresses. In particular, the pattern
generated by processing addressi, address2, address3 and (if present) address4

fields of the 802.11 frame header® stands out remarkably. Identification of
this portion of code alone provides enough information to modify the firmware
program for basic dynamic analysis, as we will describe in Section 5. Analysis
of 802.11 frames crafted by the firmware and obtained with a sniffer provide
insights on the constants that are worth searching for. For example, probe
request frames contain a vendor specific information element that uses the OUI
00-90-4C assigned to Epigram Inc. (this company was acquired by Broadcom).
Searching for this constant reveals the location of the firmware binary program
code used on information elements, for example probe requests frames.

5 Firmware modification

Modification of Region 1 of the firmware program is quite straightforward. The
file is not signed or otherwise protected. In BCM4325 and BCM4329 a CRC32
checksum is appended to the binary data for consistency checks. The checksum
in BCM4330 is part of the file format. Validation of this checksum is performed
by the code on Region 1, in other words, the program validates itself. CRC32
calculation for a block in which the last 4 bytes are the checksum result of all
the previous block bytes is always the same constant. This constant crc(data
+ crc(data)) is always 0xDEBB20E3. Searching for references to 0xDEBB20E3 reveals
the portion of the assembler code program where the checksum is verified. To
be able to modify the firmware one possibility is to disable the verification or
adjust the checksum at the corresponding offset, we chose the latter.

3http://standards.ieee.org/getieee802/download/802.11-2007.pdf Section 7.1.2 “General
frame format”

In order to accomplish basic dynamic analysis with behavioral differences
(modify the assembly, run and see if worked) we mimic the procedure used by
interruption handlers. At a desired point of the code, we modify the assembler
by overwriting them with a branch-with-1ink % instruction that points to our
handler code address. The handler itself is placed over debugging and error
message strings. This new handler, backs up all necessary registers into the
stack, makes the desired operations, restores the saved register values and finally
executes the original (overwritten) code, returning code flow to the original
point. With this mechanism and having identified portions of the code that
process 802.11 header MAC address fields, a simple “6-byte print” statement
becomes available, by filling MAC fields with data to be printed. Data packets’
source MAC addresses can now contain any information desired. This debugging
mechanism is particularly useful in situations where a register mode branch®
instruction is encountered and the value of the destination register for the branch
instruction is not directly available. For example, a call to a function pointer
residing within a struct that was created elsewhere.

Region 2 could also contain code fragments of interest. However, using 6-
byte source MAC address field on frames to output large chunks of data is not
very convenient. Since the point in the firmware where probe requests frames are
assembled has already been identified, modifying this code provides a method
to include arbitrary information inside frames of this type.

Probe requests frames are sent periodically by the card while scanning for
wireless networks®. These frames can contain information elements that can
hold up to 255 bytes of data. By modifying the firmware, information elements
with fragments of the firmware’s Region 2 are sent over the air. On a separate
host, frames of this type can be captured with a sniffer and processed in order
to rebuild the hidden segment code, finally unveiling the hidden Region 2.

6 Monitor Mode

Monitor mode itself can be seen as 2 different capabilities: access to raw traffic
including the data-link layer headers on one side and access to frames that are
not directed to the station’s or broadcast address on the other. With complete
firmware code a thorough analysis is possible.

The first capability is achieved by the described method of modification. In
the precise moment when a frame is dequeued from the DMA engine interface, a
modification is applied, so that a call to a handler function is placed. The han-
dler makes use of available firmware code functions to copy the frame, prepend
an ethernet header and place the newly created frame at the bus queue on its
way to the operating system driver (Appendix B). Frame filtering however is
performed by hardware and hence modification of the MAC core mode of op-
eration is required. For this reason, identification of functions which provide
access to memory-mapped registers of the MAC core are of interest. We are
particularly interested in the function wlc_bmac_mctrl since providing the right
set of flags to this function should directly provide monitor mode. Inspection
of available source in Listing 2 shows a possible implementation for it.

4http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0214b/CHDCGJHB.html
Shttp://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0552a/BABEFHAE.html
6See 802.11-2007 standard, chapter 5.8.2 - Infrastructure functional model overview

Listing 2: wlc_bmac.c - bem driver from Android project

1610 void wlc_bmac_mctrl(struct wlc_hw_info *wlc_hw, u32 mask, u32 val)

1611 {
1612
1613
1614
1615
1616
1617
1618
1619
1620

1621
1622
1623
1624
1625
1626
1627
1628
1629 }

u32 maccontrol;
u32 new_maccontrol;

ASSERT ((val & ~mask) == 0);

maccontrol = wlc_hw->maccontrol;
new_maccontrol = (maccontrol & “mask) | val;

/* if the new maccontrol value is the same as the old, nothing to
do *x/
if (new_maccontrol == maccontrol)
return;

/* something changed, cache the new value x/
wlc_hw->maccontrol = new_maccontrol;

/* write the new values with overrides applied */
wlc_mctrl_write(wlc_hw);

In order to compile the statement that contains (maccontrol &~ mask) in line

1618 of Listing 2, compilers can make use of ARM instruction BIC? (Bit Clear)
that provides logical and not. Searching for this particular instruction yields
292 results, however, on most results immediate mode® is used for one of the
operands. We can infer from the source that the assembly code for this operation
would not involve constants. Filtering out this type of occurrences for the BIC
instruction yields about 50 candidates. We can further narrow the results by
function size, leaving a number of candidates that can be manually inspected,
leading to the discovery of the function.

Having identified the function that sets the flags which govern the MAC

core circuitry mode of operation is of great use. Available source shown in
Listing 3 provides a set of flags that are to be used in this core and inspection
of the firmware binary code verifies that these flags match with the documented
source.

Listing 3: d11.h - bem driver from Android project

461 /* maccontrol register */

462 #define MCTL_GMODE (1U << 31)
463 #define MCTL_DISCARD_PMQ (1 << 30)
464 #define MCTL_WAKE (1 << 26)
465 #define MCTL_HPS (1 << 25)
466 #define MCTL_PROMISC (1 << 24)
467 #define MCTL_KEEPBADFCS (1 << 23)
468 #define MCTL_KEEPCONTROL (1 << 22)
469 #define MCTL_PHYLOCK (1 << 21)
470 #define MCTL_BCNS_PROMISC (1 << 20)
471 #define MCTL_LOCK_RADIO (1 << 19)
472 #define MCTL_AP (1 << 18)
473 #define MCTL_INFRA (1 << 17)
474 #define MCTL_BIGEND (1 << 16)
475 #define MCTL_GPOUT_SEL_MASK (3 << 14)
476 #define MCTL_GPOUT_SEL_SHIFT 14

"http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0552a/BABBFHCJ.html
8http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0552a/ CTHFDDHB.html

478
479
480
481
482
483

#define MCTL_EN_PSMDBG (1 << 13)

#define MCTL_IHR_EN (1 << 10)
#define MCTL_SHM_UPPER (1 << 9)
#define MCTL_SHM_EN (1 << 8)
#define MCTL_PSM_JMP_O (1 << 2)
#define MCTL_PSM_RUN (1 << 1)
#define MCTL_EN_MAC (1 << 0)

Monitor mode can be accomplished by turning on MCTL_KEEPCONTROL |
MCTL_PROMISC | MCTL_BCNS_PROMISC. Having applied this modifications we now
get raw 802.11 frames mixed with processed packets on the network interface
on the operating system side. In order to have a simple method to filter frames
and to avoid misconceptions by the operating system state machine, our frame
handler also prepends the frame with an ethernet header. We are using ether
type fa:fa and a hard-coded MAC address to distinguish raw frames from traf-
fic processed by the firmware. The change is now transparent to the interface
driver and hence the operating system. Frames that are directed to addresses
different from the one of the device where the firmware is running are ignored
by the OS however available through libpcap drivers.

7 Conclusion

Firmware program binary code modification was possible and monitor mode
was achieved, to make this happen open source code was very important, since
it hinted us with the constants and shared memory locations that are necessary
to enable this mode. It is also important to mention that a group of reverse
engineers [bem] had already devised some information (such as constants de-
fined in Listing 3), information we reused and checked with other open source
projects. Even in the absence of debugging capabilities, code modifications and
manual assembly code review allowed us to analyze the behavior of the device.
Proliferation of network cards across multiple vendors is an advantage, in this
case we enabled monitor mode in a large set of devices across different operating
systems by modification of the firmware code alone. In mobile devices, network
cards take care of a great deal of complexity, power save functions, physical,
data-link and even network layer protocols are implemented by firmware.

8 Future Work

e Provide the capability to transmit custom 802.11 frames usually referred
as Injection. This would allow implementation of attacks on the protocol
such as: deauthentication flood ?, WPS bruteforcing '°, etc.

e Implement Man-in-the-middle attacks, the firmware can be changed so
that network traffic can be modified in a way that provides other attacks
such as SSLStrip [Mar09]

e Implement 802.11 Covert Channel capabilities that provide stealth traffic
as proposed by [BG11].

9 file2air.http: / /www.willhackforsushi.com/?page_id=19
10equer-wps project. http://code.google.com/p/reaver-wps/

e Provide support for other versions of the Broadcom chipset family.

e Research direct hardware access to other peripherals through the SDIO
bus. NIC to flash memory or NIC to telephone baseband, seem particu-
larly interesting.

e Research network card’s non-volatile memory access, in particular analyze
wheter a persistency mechanism is available.

e Analyze operating system memory modification through DMA.

e Implement peer to peer over the air communication.

References

[AD10] Damien Aumaitre and Christophe Devine. Subverting windows 7
x64 kernel with dma attacks. Hack in the Box, 2010.

[bem] Broadcom bcm43xx specification. URL: http://bcm-
v4.sipsolutions.net /Specification.

[BG11] Andrés Blanco and Ezequiel Gutesman. Abusing the windows wifi
native api to create a covert channel. Hack.lu, 2011.

[Del10] Guillaume Delugré. Closer to metal: reverse-engineering the broad-
com netextreme’s firmware. Hack.lu, 2010.

[DPVL10] Loic Duflot, Yves-Alexis Perez, Guillaume Valadon, and Olivier Lev-
illain. Can you still trust your network card? CanSecWest Applied
Security Conference, 2010.

[Kor04a] KoreK. chopchop (experimental wep attacks), 2004.
[Kor04b] KoreK. Next generation of wep attacks?, 2004.
[Mar09] Moxie Marlinspike. Sslstrip. BlackHat DC, 2009.

[SLND10] F. L. Sang, E. Lacombe, V. Nicomette, and Y. Deswarte. Exploit-
ing an i/ommu vulnerability. In Malicious and Unwanted Software
(MALWARE), 2010 5th International Conference on, pages 7-14,
2010.

[TB09] Erik Tews and Martin Beck. Practical attacks against wep and wpa.
In Proceedings of the second ACM conference on Wireless network
security, WiSec '09, pages 79-86, New York, NY, USA, 2009. ACM.

[Tri08] Arrigo Triulzi. Project maux mk. ii, i own the nic, now i want a
shell. The 8th annual PacSec conference, 2008.

[Tril0] Arrigo Triulzi. The jedi packet trick takes over the deathstar. tak-
ing nic backdoors to the next level. CanSecWest Applied Security
Conference, 2010.

10

A Device list

BCM4325

Apple iPhone 3GS

Apple iPod 2G

HTC Touch Pro 2

HTC Droid Incredible
Samsung Spica

Acer Liquid

Motorola Devour

Ford Edge (yes, it’s a car)

BCM4329

Apple iPhone 4

Apple iPhone 4 Verizon
Apple iPod 3G

Apple iPad Wi-Fi
Apple iPad 3G

Apple iPad 2

Apple Tv 2G

Motorola Xoom
Motorola Droid X2
Motorola Atrix
Samsung Galaxy Tab
Samsung Galaxy S 4G
Samsung Nexus S
Samsung Stratosphere
Samsung Fascinate
HTC Nexus One

HTC Evo 4G

HTC ThunderBolt
HTC Droid Incredible 2
LG Revolution

Sony Ericsson Xperia Play
Pantech Breakout
Nokia Lumina 800
Kyocera Echo

Asus Transformer Prime
Malata ZPad

11

B Monitor mode handler code

AREA MONITOR, CODE

CreatePacketBuff EQU 0x026010
Memcpy EQU 0x001764
Sender EQU 0x004718
PacketBuffShrink EQU 0x001A34

push {r0-r3}
push {r4-ri1, 1r}

adr r11, FrameSkipCount ; R11 <- Adr FrameSkipCount

ldr r10, [ri11] ; R10 <- FrameSkipCount

cmp ri0, #0 ; Drop first frames so that

bne DontInject ; driver can boot normally.

mov r8, r2 ; r8 <- Raw frame PacketBuff.
ldr r7, [r6,#0x73C] ; r7 <- WLC_INFO struct pointer

ldrh r0, [r8, #0x14]

add r0, #0x20

bl CreatePacketBuff

cbz r0O, done

mov r6, r0 ; r6 <- New packet buff.
mov rl, #0x12

bl PacketBuffShrink

1dr r0, [r6, #0x10] ; dst = New packet buff

adr rl, PacketHeader ; src = Ethernet frame header
mov r2, #O0xE ; size

bl Memcpy

1dr r0, [r6, #0x10] ; dst = New packet buff

add r0, #O0OxE

1ldr r1, [r8, #0x10] ; src = Raw 802.11 frame.
ldrh r2, [r8, #0x14] ; size

bl Memcpy

mov rO, r7

mov rl, #O0

mov r2, r6

mov r3, #1

bl Sender ; Enqueue the frame on the SDIO BUS Q
b done

DontInject
sub r10, #1
str r10, [ri11]
done
pop {r4-rii}
pop {1lr}
pop {r0-r3}
ldr.w ri11, [r2,#0x10]
bx 1r

FrameSkipCount DCD 0x200
PacketHeader DCD OxFFFFFFFF
DCD Ox8888FFFF
DCD 0x88888888
DCW OxFAFA
end

12

