Zombie 2.0 (Draft)

Fernando Russ, Diego Tiscornia
CoreLabs, Core Security Technologies

July 14th, 2007

Abstract

This paper is tasked in analyzing the problems underlying the attack and penetration in the web application scenario. We describe the different problems associated with payload engineering and produce effective solutions that allow the attacker/penetration tester to analyze the scenario and build his exploits abstracting the burdensome details in executing an attack. In particular, we analyze the building of exploit code and the use of post-exploitation in the context of Rich Internet Applications (RIA) and web applications.

Keywords: Attack models, software agents,

penetration test, network vulnerability assessment,

SQL injection, web application vulnerability

assessment.

1 Introduction
The correct modelling of cyber attacks plays a central role in computer security. It allows to accurately describe the different scenarios, evaluate risks and can help in the analysis of different attack and protection designs. Over the past, security practitioners have modelled cryptographic attacks (see, e.g., [Andrew Chi-Chi Yao: Protocols for Secure Computations (Extended Abstract) FOCS 1982: 160-164], [Oded Goldreich, “Foundations of Cryptography”, Cambridge University Press]) and network security (see [Bruce Schneier, “Attack Trees,” Dr. Dobb's Journal. December, 1999], [Ariel Futoransky, Luciano Notarfrancesco, Gerardo Richarte, Carlos Sarraute, “Building Computer Network Attacks.” Unpublished manuscript, 2003], [G. Richarte. “Modern intrusion practices”. In Black Hat US, 2003], [I. Arce and G. Richarte. “State of the art security from an attacker’s viewpoint.” In Pacific Security Japan, Tokyo, Japan, November 2003]).

The work of Futoransky et al. (op. cit.) is focused on providing the means to describe an attack to any network in a step-by-step basis in terms of the attacker’s requirements and goals. Say, in order to take control of server 192.168.32.105 one can exploit a vulnerability in its OS and this, in turn, requires connectivity to a special port in this server and the fact that the vulnerable service is running. Further, this model is compliant with the “OODA (Observe, Orient, Decide and Act) loop” strategy paradigm and, more generally, can be used to design and execute an attack abstracting the burdensome details that take play in practice (see, e.g., [Richarte, ibidem]). In particular, the model strongly relies on the use of software agents (that execute the attacker’s orders). An attack starts with a local agent, residing in the attackers computer system, and continues with actions that allow the attacker to “install a remote agent” in the computers it takes control of. The success of this model relies on the fact that a system that corresponds to this model has been readily implemented.

When an attacker/penetration tester has found an exploitable vulnerability –say a process/service with an overflow vulnerability– he will compromise the system and use this to gather information and possibly compromise networked systems. In order to do this, he must provide the actual exploit and develop the code he wants to inject in the exploited process. Often, there are many constraints for this code; the most obvious being, the underlying OS, the space this code occupies in the exploited process and parsing constraints (e.g., it might happen that the process will hung when a special character is processed). For the last years, this engineering problem was solved through different technologies that allow an attacker/penetration tester to inject a “(dummy) software agent” in the vulnerable process, which will allow them a fortiori to execute the programs to their choice. Examples of these are, Userland Exec by grugq (http://www.security-express.com/archives/bugtraq/2003-12/0348.html) lets the attacker execute any binary file without having to store it in the victim’s hard drive; Mosquito (http://www.ephemeralsecurity.com/mosref) is a lisp-flavored virtual machine, developed specially to be injected as payload of attacks; “read-and-exec” (rx) payloads, which accepts data from the net, and executes assembly code in a loop, are easy solutions which are favored by hackers these days; and syscall proxying that allows the attacker to send system calls from his local machine, execute them in the targeted computer and receive its output ([Max Cáceres. “Syscall proxying - simulating remote execution.” CoreLabs Technical Report, 2002]).
On the other hand, an ever-changing technology and better protections to network systems, attackers (and consequently security practitioners) have shifted their attention to other attack vectors which are easier to implement. We are speaking about web application attacks; specifically, injection vulnerabilities. Regrettably, the model and tools mentioned above are not (trivially) compliant with this scenario. For example, a SQL-injection exploit allows the attacker to execute arbitrary database commands in the DbMS under attack (and typically learn the answer to these queries), but not the ability to run arbitrary programs in the SQL execution environment. In any case, there are many exploitable vulnerabilities that do not allow the installation of agents.

In this paper we examine and propose solutions to the many problems found in engineering payloads for injection vulnerabilities. In turn, we provide generalize the concept of (machine code-execution) agents to abstract agents –that can be instantiated as SQL agents, javascript agents, et cetera–, show that these cane be implemented and analyze their use.

2 Network Penetration Testing
Let us think of a possible Penetration Testing model. One possible approach keeping the former in mind would be to divide the PT in 2 phases: Attack Planning & Information Gathering, and Exploitation / Post Exploitation.

The model proposed bears a resemblance with military strategist John Boyd´s OODA loop, as is further discussed in several presentations. An OODA Loop is a decision making cycle consisting of four overlapping and interacting processes: Observe, Orient, Decide and Act [JB].

- Attack Planning & Information Gathering: In this initial phase, information is gathered, and assets are identified (Observation/Orientation). Using this, goals are established and a plan is laid out (Decide/Act).

Some Information Gathering tasks would be establishing candidate target hosts, network mapping, OS detection and identification of target services.

- Exploitation / Post Exploitation: The attack plan is executed. Utilizing available exploits against selected targets. Here we go back to Observation / Orientation, since depending on the result of the attack, we’ll have to review our plan or go on.

If successful, we enter the Post-Exploitation phase, where we will want to ensure access to the host, installing rootkits to establish a covert channel and minimize detection.

 Two other actions are possible: To use the acquired host to continue the attack (pivoting), taking advantage of the target credentials within its network or exploiting trust relationships. Or to escalate privileges in it.

To be able to pivot, though, the attacker needs his tools available at the vantage point.

2.1 Syscall Proxying

The syscall proxying technology facilitates the job of the attacker/penetration tester in engineering their payload. Explicitly, system calls, often referred to as syscalls, are (privileged-user) processor instructions (e.g., execve, fork, kill, open, read and write for POSIX). The developer hardly issues the system calls (syscalls) explicitly, but does so through libraries that implement the system calls themselves, e.g., libc in the case of Linux. The system-call or syscall proxying technology allows a user, running a “local” system to interface directly with a “remote” operating system by executing syscalls there and receiving their results. A syscall client is used to send these “commands” through the network to a syscall proxy server, which executes the syscalls in its host and then returns the results to the client ([Max Cáceres, ibidem]). The syscall server runs in the exploited process, (or maybe in a new process). The main benefit of this technology is the fact that, once robust syscall proxying client/server have been developed for a target OS, the attacker will always follow his exploit by a syscall proxying server and next execute all the commands he desires from his client.

Agents can also perform operations on other agents, creating a ‘chaining’ of agents. These agent chains aid the tester in penetrating deep into networks where a single point-of-entry is possible (because there is a single weak point in the perimeter, either due to OS patch levels or to network filtering).

Figure 1: Syscall Proxying. Sequence Diagram

[image: image1.emf]
2.2 Benefits

- Transparent pivoting. Whenever an attack is executed successfully, a syscall server is deployed in the remote host. All of the available tools can now be used in the auditor’s host but "proxying" syscalls on the newly compromised one. These tools seem to be executing on the remote system.

- "Local" privilege escalation. Attacks that obtain remote access with constraints, such as vulnerabilities in services inside chroot jails or in services that lower the user privileges can now be further explored. Once a syscall server is in place, local exploits / tools can be used to leverage access to higher privileges in the host.

- Doesn’t rely on the presence and availability of a shell. In certain scenarios even though a certain system is vulnerable, it is not possible to execute a shell (picture a chrooted service with no root privileges and no local vulnerabilities). In this situation, deploying a syscall server still allows the auditor to "proxy" attacks against other systems accessible from the originally compromised system.

- Easy to clean up. Different agent implementations are available to the tester depending on how intrusive the penetration test, ranging from a completely volatile all-assembly-code implementation that self destructs when disconnected to a fully persistent multi-tasking agent with a completely authenticated and encrypted communication channel.

- Modular more stable and reliable code. This also means that a framework with an API in a scripting language like Python or Perl can be provided, instead of having to do everything in C...

- In short: It abstracts the complexity of post exploitation into a set of primitives. We think of these primitives as the agent’s capabilities.

Figure 2: Trivial connect-port scanner using the syscall proxying agent, written in Python

3 Webapp Penetration Testing

So far so good, but Buffer Overflows (& friends) as technology advances get much more complex and harder to find. And at the same time Web Apps seem to thrive everywhere, and with them come SQL Injection and XSS vulnerabilities, Session Hijacking, CSRF (Cross-site request forgery), Ajax worms. And the attacker knows this.

In the book Web Application Hacking Exposed, [WH06], Scambray, Shema et al, give many reasons as why to attack webapps. Among others these include: HTTP/S bypassing firewalls, high availability, constant change of technologies most of them adopted while still immature (Ajax comes to my mind), custom code that makes patching near to impossible…

The same publication after giving convincing arguments to start coding SQL-Injections and XSS instead of battling with the many-headed binary monster, tell you to do it by hand, using browser extensions, or command line tools or proxies.

The first approach though providing a nice integration and reusing your already proven browser HTTP/S capabilities (Live HTTP Headers), is not very easy to script, and doesn’t provide many analysis capabilities. Making complex attacks hard thing to reach.

Proxies, like Paros, on the other hand, do provide them, and let you interact with non-browser HTTP clients, but are not customizable, nor very comfortable to use.

In addition, command line tools (like curl, netcat) require lots of manual work, for example if you need SSL you’d have to interact with OpenSSL or similar. They are quite scriptable, though.

But why not apply all the experience and maturity gained in the binary scenario here?

4 SQL Agents

The Syscall Proxying agent model doesn’t apply to scenarios that don’t imply machine-code-execution. Its set of primitives is oriented to a POSIX API (sockets, open / read / write / close) and doesn’t fit with vulnerabilities where the primitives are related to the application’s functionality.

SQL agent is an abstract name given to a local module that, when deployed, is able to submit SQL queries to the remote database, and receive the answer, much like the Syscall Proxying agent does with system calls.

This agent acts an efficient translator from SQL to HTTP requests that later exploit a SQL Injection on a given web application.

4.1 Implementation

Though we can think that by deploying an SQL agent we are “installing” it in the remote machine, in this case it only means we have found an exploit for the agent to use to translate SQL commands to a given target.

To do this the SQL agent translates a SQL expressions input by the user into an abstract tree-structured representation . This abstract representation is then applied a series of transformations (more of this below) to adapt it to the communication channel to be used.
Communication channels are divided in two phases: the attack-rendering phase, and the response-decoding phase. During the attack-rendering phase, the structured representation is transformed into one or more attack-requests, each of which implements a data extraction method.

An attack-request comprises all the information needed to perform an HTTP request that exploits a given vulnerability. It includes session information, authentication and the knowledge of which user input is needed to complete the attack-string (the actual attack).

The response-decoding phase uses the knowledge of the previous phase to extract significative information from the attack-request’s response.

Figure 3: SQL Agent sequence diagram

[image: image2.emf]Reader process SQL Agent Web Aplication Database

sql_query()

translate_query()

evil_http_request()

sql_query()

query_response()

http_response()

translate_response()

query_response()

4.2 Structured representation of SQL expressions and their tranformations

The Agent uses an intermediate representation of the user-entered SQL expression to simplify the complexity of the language and dialects. This representation is quite similar to a syntactic tree, and permits to easily construct code snippets, and store all the necessary transformations for an expression to become a satisfactory attack-request.

This approach has a disadvantage, though, that resides in the many existing SQL dialects and the lack of documentation of some vendors. That is why we use a common subset, quite similar to ANSI SQL.

The transformations are implemented as “visitors” over the SQL representation tree. They are applied using the vulnerability context and generally depend on its parameters. For example:

- Database backends have their own SQL dialects, with proprietary features that make expressing certain high level functionalities difficult. E.g.: Some features of communication channels are coupled with particular backend features, which make it necessary to represent them in the attack-rendering process, like string concatenation or per row random number generations.

- Vulnerable parameter types. With some transformations, like the ones made by charset encoders, it is necessary to know where the attack-string will be placed. E.g.: The encoding won’t be the same if the attack-string is sent as a GET parameter, than if sent as POST one or a cookie.

Figure 4:

http://vulnerable.com/vuln.php?field=‘SELECT+customerId,customerName+FROM+customers--
4.3 Communication Channels

Communication Channels are the possible fields to be used as channels to receive data from the vulnerability. For a field to become a channel its result has to affect exploiting request’s response in some in some way.

Some definitions and properties:

- Visibility. This is how the content of a field affects the attack-request response. It can either be direct, or indirect. In the former the content in at least one field of the resultset is shown on the response for the vulnerable SQL expression. The latter affects the output in some other way not directly reflected in the page’s content. It can affect formatting, response time, size, etc.

- Maximum Transmission Unit (MTU). This is the amount of data that can be transferred in a resultset field in a single exploitation round.

- Data type. This is the data type of the vulnerable SQL expression belonging to the communication channel field
- SQL Injection bandwidth. This is the amount of data that can be extracted from the DB in a single exploitation round. When the communication-channel has direct visibility the SQL Injection Bandwidth can be limited by the HTML presentation of the resultset. i.e.: Even the vulnerable expression permits a given amount of data to be extracted, the webapp may only show a portion. We measure this limitation as IW (The number of columns presented in the response resulstset) and IH (The number of rows).

To obtain the effective SQL Injection bandwidth we have to consider the overhead generated by the control / signaling information used, we call this S.

This is the bandwidth formula. Let n be the amount of channels:

[image: image3.wmf]i

n

i

i

S

Ih

Iw

MTU

b

-

=

å

=

.

.

1

E.g.:

Suppose we have 2 column channels 32 bytes long (e.g.: 2 nvarchar(32): name and surmame), and the webapp only shows the first 10 results of the vulnerable expression, lets consider Si = 0 for simplicity, then:

b = ((32bytes * 2) + (16 bytes * 2))* 10

4.4 Different methods to extract results

- Column matching. According to the available communication-channels columns are chosen and are matched by data type with the ones of the vulnerable SQL expression. If no equal match is found adaptable ones are tried (CAST/CONVERT).

With this method user SQL expressions can only be evaluated if their length is not greater then the number of available direct visibility communication-channels. In some cases in order to be able express user DB types, knowledge of the DB schema is becomes compulsory.

- Joined column matching. This method is based in choosing “long” typed fields from the communication-channels (strings, big ints, binaries, etc) and joining them:

- Wide wise. This codifies multiple rows from the resultset into one row of the vulnerable expression.

- Lengthwise. This codifies multiple columns from the resultset into one row of the vulnerable expression.

The advantages are that you can evaluate expressions with more columns than the vulnerable expression has. It augments the SQL injection bandwidth by multiplexing communication-channels. Although you need to have at least one direct visibility communication-channel and in some cases knowledge of the DB schema is needed.

-Expression windowing. This method is a variation/optimization of the column matching ones with the added value that user SQL expressions are executed in parts and later recomposed by the agent.

The advantages are that you can evaluate expressions with more columns than the vulnerable expression has. Apart from inheriting the column matching method restrictions, information integrity cannot be guaranteed, since there is no way to assure the resultset didn’t change between queries.

Not only knowledge of the DB schema is needed in some cases, but also of the resultset.
- Timing attacks. In many cases there is no communication channel with direct visibility whatsoever. This method injects delays in the result of the user expression, and uses time data as a channel. For it to work, though, time differences have to be measurable by the agent, who would afterwards construct Boolean expressions with them. Accuracy is achieved by comparing portions of these expressions with “supposed” answers. (Some very interesting timing attack vector can be found here: [DS07])

Though the downside of this method is bandwidth, which is extremely low, no knowledge of any schema is required.
4.5 Benefits

- SQL execution. Permits the “execution” of a SQL expression by translating it to the context of a given SQL injection vulnerability. Possible SQL expressions to execute are only restricted by this context.

- Abstracts the complexity of the vulnerability. When writing an exploit, it abstracts the user from details like: exploitable query length, filtered characters, column type, bandwidth, etc. It also automatizes the steps to reach the state to execute the given vulnerability. E.g.: SSL, authentication and session management.
- Presents the user with a homogenous programming interface. Making customization and / or scripting a painless task. Modular more stable and reliable code. This also means that a framework with an API in a scripting language like Python or Perl can be provided.
Figure 4: A trivial example of executing a SQL statement using the SQL agent, written in Python.

5 Work in Progress

The agent becomes an efficient translator. We no longer think of it as a payload, nor as a part of a client-server model. It becomes a “façade” object, providing a unified higher-level interface to a set of more complex tasks in a subsystem [Gamma et al, “Design Patterns”, Addison-Wesley Professional Computing Series]. It translates post-exploitation tasks into a series of primitives, and uses vulnerability context to resolve them.

Additionally to this model, agents also become more pluggable. We start thinking of agent families (explained below), a collaborative framework of smaller agents that provide a uniform interface. These can be composed and can transform or mutate from one to another.
Some Agent Properties:
- Uniform Interface. They implement one or more primitives that serve as construction blocks to perform higher level tasks. Which they export as an API. They abstract the provider’s functionality (e.g.: all Network Agents are used alike)

- Degree of control. With the knowledge of the degree of control any given agent or a group of them has, we can know the attackers degree of control.

- Capabilities. This expresses which basic primitives are “implemented” by an agent. E.g.: It has read capabilities but can not write. (can read a file but not write it)

- Agent composition. Agents can be composed together, yielding the sum of functionality. E.g.: Suppose a webapp that gives photo gallery support, with 2 vulnerabilities: (a) A ‘path traversal’, permitting to write files in certain directories ("../../../evil.jpg"). And (b) An a SQL Injection permitting to read files from certain paths.

From here you get 2 primitives: From a. I get a "write file" primitive, and a filesystem agent performing ‘write’. And from b. I get a "read file" primitive, and a filesystem agent performing ‘read’.

Figure 5: A composition proof of concept.

 # only provides the "read file" primitive using a SQL Injection

 read_agent = PhotoGalleryReadAgent('http://crappy-gallery.nada/query.php')

 # only provides the "write file" primitive using a "Path traversal"

 write_agent = PhotoGalleryWriteAgent('http://crappy-\

 gallery.nada/upload_image.php')

 # only has the write/read capabilities

 agent = FileSystemAgent(read_agent, write_agent)

 index_file = agent.open("/var/crappy-gallery/htdocs/index.html", "wr")

 # retrieve the file

 data = index_file.read()

 # replace some data

 (...)

 # write back the modified index.html file

 index.file.write(data)
Agent Transformation (mutability). An agent can transform into another. These are some examples (PHP/XSS Agents are used here but presented later on).
E.g:

- From Syscall Agent to SQL Agent.When a Syscall Agent is installed in a box where an SQL server is installed, it's possible to “install” a SQL agent by simply using the sql commands installed on the box (for example, using pgsql client, or mysql client, etc.).

- From XSS/JavaScript agent to Syscall. Once an XSS/JavaScript agent is installed in a box, using victim's browser as a remote control, is possible to install a Syscall agent by using a Client Side exploit that exploits the web browser.

5.1 Agents Families

Here we present some examples of pluggable agent families:
 - Filesystem / File Agent. Provides the following primitives: open, close, write, read, unlink.

- Network / Host Agent. Provides the following primitives: connect, resolve, read, write, discover.

 - Storage Agent. This can be thought as a specialization of a files agent. Provides the following primitives: stores a (key, value) pair, retrieves a value for a key.

e.g.: An agent that provides hash table functionality using blogspot.com, "agent-store-42.blosgspot.com"(!?).
- ABI agents (Abstract binary interface). Perhaps the most known. Proxycall Agents provide a POSIX interface.
- Application layer agents. SQL, PHP, JavaScript Agents. Provide an abstraction to use any this languages independent from the applications vulnerability. Different efforts are being made to implement the following agents:

- PHP Agent. Some PHP applications will let you execute arbitrary PHP code (or python, or perl). For example, think in a vulnerable eval() statement, or in a RFI (Remote File Inclusion) bug. To fully take advantage of this possibility we need a PHP Agent.

- XSS/JavaScript agent. This agent is to be installed when exploiting an XSS bug. Intrinsically, an XSS bug lets you take control of victim's browser, and use it as a remote control, with all his credentials enabled. With XSS is trivial to execute JavaScript, and from JavaScript we can code a small thingy that connects back to the framework, and downloads more JavaScript code, executes it, sends the result back, and loops. That's what we can call either an XSS Agent or a JavaScript agent. We can also code an HTML agent and a VBScript agent (for IE).
When an XSS bug is such that the attack vector is stored in the database and then shown to every client of the web application, it's possible to escalate the attack to selected people (selecting by IP, or email when possible, or credentials, or Web Application username, etc).

- XSS/RIA Agent. This agent is based on XSS/JavaScript agent, but is asynchronic and distributed. The agent includes code from several JS/RIA Internet API (Yahoo, google, dapper). It provides deploy, write and read. It can be composed with storage and/or other distributed agents.

Figure 6: A RIA Agent attack
[image: image4.jpg]

1. The attacker leaves the XSS attack-string in the web forum.

2. The victim executes the XSS attack-string. This by clicking on an Url, by a RSS, bookmarklets, etc.

3. The XSS attack-string includes code from the JS APIs, building a spider, or a port scanner.

4. The victim stores the result from the spider to the web forum.

6 References

- [FR03] Building Computer Network Attacks. Ariel Futoransky, Luciano Notarfrancesco, Gerardo Richarte and Carlos Sarraute. CoreLabs, Core Security Technologies, March 31st, 2003.

- [MC02] Syscall Proxying - Simulating remote execution, Maximiliano Caceres,

Core Security Technologies, 2002.

- [DS07] Timing Attacks for Recovering Private Entries From Database Engines. Ariel Futoransky, Damian Saura, and Ariel Waissbein, 2007

- [WH06], Web Application Hacking Exposed, Joel Scambray, Mike Shema and Caleb Sima, Mc Graw-Hill, 2006.

- [JB], John Boyd’s Complete Briefings: http://www.d-n-i.net/second_level/boyd_military.htm.

7 Acknowledgements

- This paper couldn’t have been written without the help of: Ariel Waissbein, Ivan Arce, Ariel Futoransky, Gerardo Richiarte, Carlos Sarraute, Emiliano Kagierman, Eduardo Arias, Sebastian Cufre (AKA. Sobame), and Aureliano Calvo.

- The mutations and new agent types in the “Work in progress” section were inspired on the CoreLabs devel team wiki, and contributed mainly by Gerardo Richiarte.

- "Pivoting" was coined by Ivan Arce in mid 2001.

- The term "Syscall Proxying" along with a first implementation (a RPC client-server model) was originally brought up by Oliver Friedrichs and Tim Newsham. Later on, Gerardo Richarte and Luciano Notarfrancesco from CORE ST refined the concept and created the first shellcode implementation for Linux.

- The CORE IMPACT team worked on a generic syscall abstraction creating the ProxyCall client interface, along with several different server implementations as shellcode for Windows, Intel *BSD, SPARC Solaris and Mac OS/X Intel/PPC. The ProxyCall interface constitutes the basis for CORE IMPACT’s multi-platform module framework and they are the basic building block for CORE IMPACT’s agents.

agent = ProxycallAgent(aVulnerability)

ports to check

target_ports = (80, 21, 23, 8080, 443, 139)

hosts near me (in the same local network of the vulnerable host)

target_hosts = utils.netrange(agent.ip, agent.ip.mask)

for ip in target_hosts:	

	for port in target_ports:

connection = agent.connect(ip, port)

if connection:

		print “host %s has port %d listening” % (ip, port)

		connection.close()

agent = SQLAgent(aVulnerability)

broker = agent.query(”””SELECT card_expiration,

 card_holder,

 card_number

 FROM cardstore

 WHERE card_number

 LIKE ’4540%’”””)

for rows in broker.extractData():

print ”holder: ’%s’ number: ’%s’ due: ’%s’” % (rows[”card_holder”],

rows[”card_number”], rows[”card_expiration”])

_1245155453.vsd
Reader process

SQL Agent

Web Aplication

Database

sql_query()

evil_http_request()

translate_query()

sql_query()

query_response()

http_response()

translate_response()

query_response()

_1245875251.unknown

