
P A G E

Windows SMEP Bypass

U=S
Nicolas A. Economou

Enrique E. Nissim

P A G E

Schedule

- Reviewing Modern Kernel Protections

- Introducing SMEP

- Windows SMEP bypass techniques – Part 1

- Windows Paging Mechanism

- Windows SMEP bypass techniques – Part 2

- DEMO

- Conclusions

2

P A G E

Reviewing Modern Protections

3

- DEP/NX: is a security feature included in modern operating
systems. It marks areas of memory as either "executable" or
"nonexecutable".

- NonPagedPoolNX: new type of pool introduced in Windows 8

- KASLR: Address-space layout randomization (ASLR) is a well-
known technique to make exploits harder by placing various
objects at random, rather than fixed, memory addresses.

- NULL Dereference Protection: cannot alloc the null page.

P A G E

Reviewing Modern Protections

4

- Integrity Levels: call restrictions for applications running in
low integrity level – since Windows 8.1.

- KMCS: Kernel-mode software must be digitally signed to be
loaded on x64-based versions of Windows Vista and later
versions of the Windows family of operating systems.

- KPP: Kernel Patch Protection (informally known as
PatchGuard): is a feature of x64 editions of Windows that
prevents patching common structures of the kernel.(Hooking
IDT, SSDT, GDT, LDT is out of the table).

P A G E

Reviewing Modern Protections

5

- SMAP: allows pages to be protected from supervisor-mode
data accesses. If SMAP = 1, software operating in supervisor
mode cannot access data at linear addresses that are
accessible in user mode.

- SMEP: Supervisor Mode Execution Prevention allows pages to
be protected from supervisor-mode instruction fetches. If
SMEP = 1, software operating in supervisor mode cannot
fetch instructions from linear addresses that are accessible in
user mode.

P A G E

SMEP

P A G E

What is SMEP?

- Aka: “Supervisor Mode Execution Prevention”

- Detects RING-0 code running in USER SPACE

- Introduced at Intel processors based on the Ivy
Bridge architecture

- Security feature launched in 2011

7

P A G E

What is SMEP on Windows?

- Enabled by default since Windows 8.0 (32/64
bits)

- Kernel exploit mitigation

- Specially “Local privilege escalation” exploits
must now consider this feature.

8

P A G E

How does it work?

- Feature enabled by the OS

- Detects ring-0 code running in user space

- User space = Memory space used by applications programs
(stack, heap, code, etc).

- Ring-0 code is used by kernel OSs

- Ring-3 code is used by applications

9

P A G E

SMEP CPU support

- Desktop processors

- Intel Core: Lastest models of i3, i5, i7

- Intel Pentium: G20X0(T) and G21X0(T)

- Intel Celeron: G1610(T), G1620(T) and G1630

- Server processors

- Intel Xeon: Lastest models of E3, E5, E7

- Intel Pentium: 1403v3 and 1405v2

1 0

P A G E

SMEP Protection

- We control EIP/RIP = 0x41414141 in Ring-0

- So, we can jump where we want to …

1 1

KERNEL

0

4GB

2GB ?
USER

P A G E

Windows
SMEP bypass

techniques – Part 1

P A G E

Option 0: Jumping to user space

- Jump to user space (to my “code”)

- If (EIP/RIP == USER memory pages)

- Page Fault  BSoD

- Error: ATTEMPTED_EXECUTE_OF_NOEXECUTE_MEMORY

1 3

KERNEL

0

4GB

2GB

USER

P A G E

Option 1 - x86: Jumping to kernel heap

- Jump to kernel data (Heap):
- E.g: “Windows 8.1” 32 bits

- Data allocated in POOL TYPE = 0x21

- 0x21 = NonPagedPoolSession + NonPagedPool = executable!

- SMEP bypass   

1 4

http://blog.ptsecurity.com/2012/09/intel-smep-overview-and-partial-bypass.html

http://blog.ptsecurity.com/2012/09/intel-smep-overview-and-partial-bypass.html
http://blog.ptsecurity.com/2012/09/intel-smep-overview-and-partial-bypass.html
http://blog.ptsecurity.com/2012/09/intel-smep-overview-and-partial-bypass.html
http://blog.ptsecurity.com/2012/09/intel-smep-overview-and-partial-bypass.html
http://blog.ptsecurity.com/2012/09/intel-smep-overview-and-partial-bypass.html
http://blog.ptsecurity.com/2012/09/intel-smep-overview-and-partial-bypass.html
http://blog.ptsecurity.com/2012/09/intel-smep-overview-and-partial-bypass.html
http://blog.ptsecurity.com/2012/09/intel-smep-overview-and-partial-bypass.html
http://blog.ptsecurity.com/2012/09/intel-smep-overview-and-partial-bypass.html
http://blog.ptsecurity.com/2012/09/intel-smep-overview-and-partial-bypass.html
http://blog.ptsecurity.com/2012/09/intel-smep-overview-and-partial-bypass.html
http://blog.ptsecurity.com/2012/09/intel-smep-overview-and-partial-bypass.html

P A G E

Option 1 - x64: Jumping to kernel heap

- Jump to kernel data (Heap):
- E.g: “Windows 8.1” 64 bits

- Data allocated in POOL TYPE = 0x21

- 0x21 = NonPagedPoolSession + NonPagedPool = NO
executable?

- No longer an option 

1 5

P A G E

Option 2: ROPing in kernel space

- Jump to kernel code (win32k.sys):
- Get modules addresses with

NtQuerySystemInformation() (only in Medium
Integrity since Windows 8.1)

- If running in Low Integrity we need memory leaks

- You need to write a ROP chain to bypass SMEP

1 6

P A G E

Option 2: ROPing to Turn off SMEP

- Turn off the bit 20th of the CR4 register
- E.g “mov rax,0xFFFEFFFFF”/ “mov cr4,rax”/”ret“

- Jump to USER SPACE 

- Problem: Restore the CR4 register (PatchGuard!)

- The most well-known technique !

1 7

http://blog.ptsecurity.com/2012/09/bypassing-intel-smep-on-
windows-8-x64.html

http://blog.ptsecurity.com/2012/09/bypassing-intel-smep-on-windows-8-x64.html
http://blog.ptsecurity.com/2012/09/bypassing-intel-smep-on-windows-8-x64.html
http://blog.ptsecurity.com/2012/09/bypassing-intel-smep-on-windows-8-x64.html
http://blog.ptsecurity.com/2012/09/bypassing-intel-smep-on-windows-8-x64.html
http://blog.ptsecurity.com/2012/09/bypassing-intel-smep-on-windows-8-x64.html
http://blog.ptsecurity.com/2012/09/bypassing-intel-smep-on-windows-8-x64.html
http://blog.ptsecurity.com/2012/09/bypassing-intel-smep-on-windows-8-x64.html
http://blog.ptsecurity.com/2012/09/bypassing-intel-smep-on-windows-8-x64.html
http://blog.ptsecurity.com/2012/09/bypassing-intel-smep-on-windows-8-x64.html
http://blog.ptsecurity.com/2012/09/bypassing-intel-smep-on-windows-8-x64.html
http://blog.ptsecurity.com/2012/09/bypassing-intel-smep-on-windows-8-x64.html
http://blog.ptsecurity.com/2012/09/bypassing-intel-smep-on-windows-8-x64.html
http://blog.ptsecurity.com/2012/09/bypassing-intel-smep-on-windows-8-x64.html

P A G E

Windows Paging
Mechanism

P A G E

Paging 101

• Paging is a functionality provided by the MMU and used by
the processor to implement virtual memory.

• A virtual address is the one used in processor instructions;
this must be translated into a physical address to actually
refer a memory location.

1 9

P A G E

Windows Paging x64

2 0

P A G E

Canonical Addresses

• With 64bits we can address 264 bytes of memory (16 Exabytes).
Current x64 processors however, limit the number of bits to 48, but
instead of simply disallowing bits 48-63, they set them to be equal
to bit 47.

• Attempting to use a non-canonical address causes a Page Fault
exception.

2 1

P A G E

PxE Structure

2 2

Interesting fields to know for our purposes:

• R/W: readonly/readwrite

• U/S: if set, the range mapped by the entry is accessible at
CPL3. Otherwise it is only accessible at CPL0.

• XD: if set, instruction fetching is not allowed for the region
mapped by the entry.

63 62:52 51:12 11 10 9 8 7 6 5 4 3 2 1 0

XD I PFN I I I G P

A

T

D A P

C

D

P

W

T

U

/

S

R

/

W

P

P A G E

Self-ref Entry

• Entry 0x1ED = 1 1110 1101

• Since bit 47 is 1, all the bits 48-64 must be 1 to be a
valid canonical address

• Range: 0xFFFFF680’00000000 – 0xFFFFF6FF’FFFFFFFF

2 3

1111 1111 1111 1111 1111 0101 1XXX XXXX

F F F F F 6 8-F 0-F

P A G E

Self-ref Entry

2 4

PDPT PML4

1ED

CR3

F F F F F 6 8 0 0 0 0 0 0 0 0 0

1111 1111 1111 1111 1111 0101 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000

0 0
PD

0
PT

P A G E

Quick Formula

2 5

_int64 get_pxe_address(_int64 address)

{

 _int64 result = address>>9;

 result = result | 0xFFFFF68000000000;

 result = result & 0xFFFFF6FFFFFFFFF8;

 return result;

}

P A G E

Quick Formula

2 7

int get_pxe_32(int address) {

 int result = address>>9;

 result = result | 0xC0000000;

 result = result & 0xC07FFFF8;

 return result;

}

P A G E

Windows
SMEP bypass

techniques – Part 2

P A G E

Option 3: Unprotecting HAL.DLL heap

- Using multiple arbitrary writes (ROPing or not)

- Write shellcode in this area:
- Address - 32 bits = 0xffd00000 (no ASLR)
- Address - 64 bits = 0xffffffff’ffd00000 (no ASLR)

- Turn off the NX bit HAL’s heap
- Overwrite a HAL’s heap function pointer
- Jump to HAL’s heap 

https://drive.google.com/file/d/0B3P18M-shbwrNWZTa181ZWRCclk/edit?pli=1

2 9

https://drive.google.com/file/d/0B3P18M-shbwrNWZTa181ZWRCclk/edit?pli=1
https://drive.google.com/file/d/0B3P18M-shbwrNWZTa181ZWRCclk/edit?pli=1
https://drive.google.com/file/d/0B3P18M-shbwrNWZTa181ZWRCclk/edit?pli=1
https://drive.google.com/file/d/0B3P18M-shbwrNWZTa181ZWRCclk/edit?pli=1

P A G E

U = S

P A G E

Option 4: Deceiving SMEP

- If SMEP detects ring-0 code running in USER
SPACE (USER PAGES)

- If PTE tables are in fixed addresses

- What about changing our USER PAGE to
SUPERVISOR PAGE? … 

3 1

P A G E

Flipping U/S

- Option 4: “First time somebody mentioned this”

- Conference: NSA - Trusted Computing (2011)

- Speaker: Stephen Fischer

- https://www.ncsi.com/nsatc11/presentations/we
dnesday/emerging_technologies/fischer.pdf

- Slide: 9

3 2

http://www.alex-ionescu.com/infiltrate2015.pdf
http://www.alex-ionescu.com/infiltrate2015.pdf
http://www.alex-ionescu.com/infiltrate2015.pdf
http://www.alex-ionescu.com/infiltrate2015.pdf

P A G E

Flipping U/S

- Option 4: “… and then …”

- Blog: Windows 8 Kernel Memory Protections Bypass

- Author: MWR LABS - Jérémy Fetiveau

- https://labs.mwrinfosecurity.com/blog/2014/08/1
5/windows-8-kernel-memory-protections-bypass

- Section: “Modifying Paging Structures“

3 3

http://www.alex-ionescu.com/infiltrate2015.pdf
http://www.alex-ionescu.com/infiltrate2015.pdf
https://labs.mwrinfosecurity.com/blog/2014/08/15/windows-8-kernel-memory-protections-bypass
https://labs.mwrinfosecurity.com/blog/2014/08/15/windows-8-kernel-memory-protections-bypass
https://labs.mwrinfosecurity.com/blog/2014/08/15/windows-8-kernel-memory-protections-bypass
https://labs.mwrinfosecurity.com/blog/2014/08/15/windows-8-kernel-memory-protections-bypass
https://labs.mwrinfosecurity.com/blog/2014/08/15/windows-8-kernel-memory-protections-bypass
https://labs.mwrinfosecurity.com/blog/2014/08/15/windows-8-kernel-memory-protections-bypass
https://labs.mwrinfosecurity.com/blog/2014/08/15/windows-8-kernel-memory-protections-bypass
https://labs.mwrinfosecurity.com/blog/2014/08/15/windows-8-kernel-memory-protections-bypass
https://labs.mwrinfosecurity.com/blog/2014/08/15/windows-8-kernel-memory-protections-bypass
https://labs.mwrinfosecurity.com/blog/2014/08/15/windows-8-kernel-memory-protections-bypass
https://labs.mwrinfosecurity.com/blog/2014/08/15/windows-8-kernel-memory-protections-bypass
https://labs.mwrinfosecurity.com/blog/2014/08/15/windows-8-kernel-memory-protections-bypass

P A G E

Flipping U/S

- Option 4: “… and finally”

- Conference: Infiltrate 2015

- Speaker: Alex Ionescu

- http://www.alex-ionescu.com/infiltrate2015.pdf

- Slides: 69 and 71 …

3 4

http://www.alex-ionescu.com/infiltrate2015.pdf
http://www.alex-ionescu.com/infiltrate2015.pdf
http://www.alex-ionescu.com/infiltrate2015.pdf
http://www.alex-ionescu.com/infiltrate2015.pdf
http://www.alex-ionescu.com/infiltrate2015.pdf

P A G E

A. Ionescu at Infiltrate 2015

3 5

We also found the same behavior on our own
so, it’s FALSE !

P A G E

A. Ionescu at Infiltrate 2015

3 6

P A G E

Flipping U/S

- Breaking Rules

3 7

U

S

S S S U

U U U S

PML4

PDPT 1 PD 1 PT 1 PAGE 1

PDPT 2 PD 2 PT 2 PAGE 2

P A G E

Mapping a Kernel Page in User Space

3 8

KERNEL

0

4GB

2GB !!!
USER

The processor will not generate an exception!

P A G E

Demo time

P A G E

CVE-2015-5736

- Exploit:
- “Fortinet Antivirus Multiple Vulnerabilities”

(CVE-2015-5736)

- Arbitrary function callback feature?

- Local Privilege escalation

- http://www.coresecurity.com/advisories/forticlien
t-antivirus-multiple-vulnerabilities

4 0

http://www.coresecurity.com/advisories/forticlient-antivirus-multiple-vulnerabilities
http://www.coresecurity.com/advisories/forticlient-antivirus-multiple-vulnerabilities
http://www.coresecurity.com/advisories/forticlient-antivirus-multiple-vulnerabilities
http://www.coresecurity.com/advisories/forticlient-antivirus-multiple-vulnerabilities
http://www.coresecurity.com/advisories/forticlient-antivirus-multiple-vulnerabilities
http://www.coresecurity.com/advisories/forticlient-antivirus-multiple-vulnerabilities
http://www.coresecurity.com/advisories/forticlient-antivirus-multiple-vulnerabilities
http://www.coresecurity.com/advisories/forticlient-antivirus-multiple-vulnerabilities

P A G E

Exploit for CVE-2015-5736

- Target:
- “Windows 10” 64 bits + “Forticlient <= 5.2.3” installed

- Scenario:
- We can’t jump directly to USER SPACE (SMEP!)
- No registers poiting to our DATA!
- The only way, Stack Pivoting to USER SPACE

- Objective:
- Write a ROP chain to avoid SMEP!
- Run our RING-0 code in USER SPACE

4 1

P A G E

Exploit for CVE-2015-5736

- Vulnerable Driver: FortiShield.sys

- A filesystem filter driver that hooks several
operations -> IRP_MJ_SET_INFORMATION

- IOCTL: 220028h

4 2

RCX Controllable

P A G E

Exploit for CVE-2015-5736

- Arbitrary Callback: Invoked via MoveFileEx()

4 3

We control this call

P A G E

Exploit for CVE-2015-5736

- Gadget finding:

- Tool: Agafi - https://github.com/CoreSecurity/Agafi

- Trick: Many 64 bit instr. are equal to 32 bit instr.

- Manual search: We found the rest!

- Result: ALL gadgets located in HAL.DLL … 

4 4

https://github.com/CoreSecurity/Agafi

P A G E

ROP in KernelSpace

- Special gadget: Stack Pivoting to user space

4 5

thanks AMD !

P A G E

ROP in KernelSpace

- Special gadget: Disabling the CPU TLB cache

4 6

It refreshes the TLB cache !

P A G E

ROP in KernelSpace

- ROPing to “hal.dll” - “Windows 10” 64 bits

4 7

Stack Pivoting to USER SPACE

“pop rdx”

“pop rax”

“mov [rax], edx”

“ret” to Invalidate cache !!!

“ret” to new kernel address 

HAL + 0x668e

HAL + 0x987e

HAL + 0xe2cf

HAL + 0x15a50

MY_ADDR

PTE (MY_ADDR) - 3

0x63

HAL + 0x6bf0
STACK

in
KERNEL SPACE

STACK
in

USER SPACE

DIRTY + ACCESSED + R/W + PRESENT

P A G E

Demo time now

P A G E

Conclusions

- The PML entry (0x1ed) should be RANDOMIZED
- 256 entries are available for the OS kernel

- Only ~20 entries are used by Windows

- Paging tables (PTs) shouldn’t be in PREDICTABLE VAs
- It can be abused by LOCAL and REMOTE kernel exploits

- Virtualization ?
- Enabled by VSM in Windows 10

- Multiples EPTs (Extended Pages Tables - SLAT) could be a
solution

4 9

P A G E

Conclusions

- This bypass technique is useful when EIP/RIP is
controllable (directly or via ARB. WRITE)

- Windows SMEP kernel exploit mitigation

- Easily bypassable

- Only useful when we are in Low Integrity Level

5 0

P A G E

Questions?

P A G E

Thank You

Enrique Nissim
@kiqueNissim
enissim@coresecurity.com

Nicolas Economou
@NicoEconomou
neconomou@coresecurity.com

