Systematic XSS exploitation

Aureliano Calvo
Core Security Technologies, ITBA phD Program

July 27, 2009

Abstract

The cross-site scripting (XSS) vulnerabilities are
usually overlooked and their impact is typically
underestimated because its analysis requires
security skills that are often absent in testers and
developers. In this paper I introduce a tool that
enables the decoupling of the exploitation and
post-exploitation. The tool provides the means
to turn a XSS vulnerability into a machine that
receives payloads with post-exploitations actions
written against a generic API; therefore allowing
to asses the full potential of the vulnerability. In
particular, I show how can exploited pages be
used as vantage points for other kinds of attacks,
such as exploitation of binary vulnerabilities and
malware distribution. I also include full details
into how the tool works and code for its critical
functions.

keywords: Software agents, penetration test-
ing, network vulnerability assessment, cross
site scripting, web application vulnerability
assessment, hybrid penetration testing.

1 Introduction

Cross-site scripting (XSS) is a security vulnerability
of dynamic Web pages generated from information
supplied to the web server and replayed as part of
the response to the browser. In an XSS attack, a
malicious user can create a specially crafted link to
inject unwanted executable script or code (usually
JavaScript) into a Web site ([Sub06]).

There is a tendency to make penetration tests
that use several attack vectors to achieve their suc-
cess ([Ric08]). None of the tools available do not al-
low the operator to combine different attack vectors

with cross-site scripting. For instance, [Mav] and
[Wad06] do not incorporate binary exploits. This
work explains the implementation of a framework
that includes a systematic way to exploit cross-site
scripting, allowing the penetration tester to com-
bine several attack vectors.

In Section 2, I describe the browser as an exe-
cution environment and the same-origin policy and
how it limits the communication between the at-
tacked browser and the attacker. The Section 3 ex-
plains how the JavaScript agent works and why is it
useful to homogenize attacks. The agent provides
a stable base to work upon. In Section 4, different
post-exploitation actions are described. These ac-
tions are greatly simplified by the API provided
by the agent. At last, in Section 5 I provide a
brief explanation of the agent implementation and
a detailed explanation of the interaction between
the owned browser and the attacker. The imple-
mentation builds upon the syscall-proxying agents
([Cac02]) and uses the ideas to organize different
kinds of agents presented in [RTO07], allowing to
combine different kinds of vectors in the same at-
tack. In this paper there are shown two different
ways on how to escalate a XSS exploitation to a
full control of the host running the compromised
browser.

2 Web browser security

Web browsers retrieve pages which may be hosted
in different servers on different domains across one
or many organizations. Pages can contain scripts
that will be executed in the browser (usually writ-
ten in JavaScript), other pages (through frames,
iframes or popups), and images and scripts from
other domains. How to prevent a document or
script loaded from one “origin” from getting or set-

URL Can be read?
http://foo.com/index.html yes
http://foo.com/version2/webApp yes

http://foo.com:80/bar/baz.html yes (same port)

https://foo.com/bar/baz.html no (protocol)

http://www.foo.com/bar/baz.html no (host)

http://foo.com:8080/bar/baz.html no (port)

Figure 1: Access restrictions from

http://foo.com /bar/baz.html

ting properties of a document from a different “ori-
gin”? As an answer the same domain/origin policy
is being applied since Netscape Navigator 2.0.

As described in [CDLO08|, the same origin pol-
icy means that code that runs in the context of a
domain cannot read data fetched from another do-
main. But it does not restrict the data that can be
sent to a domain (for instance, by issuing a HTTP
POST with a form), the information that can be
shown to the user or the domain of the scripts that
can be ran in the page.

The scripts loaded in a web page run in the
domain of the web page. For instance, the
urchin_tracker.js script (that is the base for
Google Analytics) runs in the domain of the page
that includes it. A special note must be made. Any
script can run a script from another domain and see
the changes that this script makes on the page’s
object, but it cannot see its own source code. It is
the equivalent of loading an image from a different
domain (the image can be loaded from JavaScript
code in the original domain, the image is shown to
the user, but the image bytes cannot be read from
JavaScript code). The ability to run code hosted in
a different domain is crucial in the implementation
of the JavaScript agent.

It also should be noted that the same origin pol-
icy is also known as “cross domain restrictions."

3 JavaScript agent

When a cross-site scripting vulnerability is ex-
ploited, the attacker’s JavaScript is run in the vic-
tim’s browser under the vulnerable page domain.
Once it is possible to run JavaScript code in a
browser, several question arise: how can connec-
tivity be maintained, how can it be kept running,

var BASE = "ATTACKER SERVER URL"
window.onload = function(){ egg() }
function egg() {
get (BASE + "/action?id=AN_ID")
}
function timer() {
if (typeof timeout !== "undefined"
&& timeout !== null){
window.clearTimeout (timeout)
}
var timeout = window.setTimeout (
"egg (D", 2000)
}
function get(src){
var script =
document.createElement (’script?)
script.defer = true
script.type = ’text/javascript’
script.id = escape(Math.random()
+ ?-? + Math.random())
script.src = src + ’&tag_id=’ +
script.id;
document .body . appendChild(script)

Figure 2: JavaScript egg code

what code should it run? We came up with our
JavaScript agent as a solution to these problems.
The payload of the exploit is code that retrieves
the code that requests regularly a server for actions
and then executes them. This code also provides
methods to return data to the server.

Giving names to the components mentioned
above, the custom JavaScript code is called the “ex-
ploit” and the code that it loads is called the “egg”
(see figure 2).

3.1 Agent persistence

Once the agent is running, it runs until the browser
navigates to another page. But there are some
methods to keep it running longer. These mech-
anisms represent 3 different points in the trade-off
curve between persistence (ability to keep running)
and stealthiness (ability to hide from the user).

e Non persistent Does not attempt to keep run-
ning after the user navigates away from the

page.

e Pop-up It launches a pop-up with the agent’s
code. It may be disguised as advertising. A
pop up blocker may disable this way to persist
an agent.

e Page rewriting Looks for the page links and
adds code that embeds the pointed page in an
IFrame and removes the rest of the markup,
keeping the old page but with the new page
content. The user may notice this persistence
mechanism because the URL in the browser
does not change when he navigates. XssShell
implements this mechanism ([Mav]).

3.2 Victim identification

From the attacker’s server point of view there is
another challenge. When a request comes from a
compromised browser, the server has to identify it.
These are some possible ways to identify the victim:

o FEach new egg request is a new browser Each
time an egg is requested, an unique identifier
for the browser is generated, and then the iden-
tification is sent from the owned browser to
the attacked server on each request. The same
browser will have 2 different identifications if
the egg is loaded twice on the browser.

e (Cookies If a request comes with the identifi-
cation cookie not set to the attacker’s server,
the cookie is set to a new value. The cookie
value is used to identify the browser on all the
requests. A browser may be identified many
times if the cookies are erased.

e [P The browser is identified by the IP of the
computer that runs it. It will identify as the
same browser all the browsers running on a
NATed network.

e [P and user-agent It also uses the user agent
HTTP header to identify the browser. It has
the same problems as the former browser iden-
tification mechanism.

4 Post exploitation

Once it is possible to run JavaScript in a browser
in the context of a domain, several things are pos-

sible. It is trivial that a malicious user can steal
the cookies of the browser for the page. But the
attacker is in no way limited to that.

The attacker may also do the following:

5

Trigger a binary vulnerability on the browser.

Alter the web page to provide links to down-
load malware.

Deface the page.

Crawl the page domain using the owned
browser and its credentials.

Interact with the attacked page using the
owned browser and its credentials.

Launch a cross site request forgery
attack[Rob08] using the owned browser
and its credentials.

Launch a non-blind SQL injection using the
owned browser and its credentials on the same
domain of the hijacked page.

Launch a blind SQL injection using the owned
browser and its credentials on any domain
[RT07]

Gather information of the owned browser and
the platform where it runs.

Launch a port scan from the owned
browser| GNU06].

Find if a link was visited by the user[Jer06]
[Mav].

Log Dboth the keyboard and mouse
actions[Mav].

Get the clipboard contents in the browser’s
computer [Mav].

Run arbitrary JavaScript on the page.

Implementation

All the framework functionality and most of the
proposed post-exploitation functionality are imple-
mented as parts of Core Impact which proves its
strength and commercial grade quality. Because

PostExploitation ‘Action

. _— . .
XsslInjection XssMultiplexor Module
Browser Exploited yeb server
[Tjectegg D Do injection
reference to a -
web page -
(exploitation) (injection done)
View page
Own the browser """
e - Fetch e
- ‘QQ o 99
-
o
T
(egg code)
Action?
[t S
Fetch_action(browser) | \\\ The browser
o requests for
instructions at
(no action) | regular intervals
(do nothing)
<<create>>
Register action
ot <
=
\\ An Impact user
™ launches a
module that
registers an
action for the
browser
Action?
- - =
Fetch_action(browser) N \\\\ When there is an\,
l ~~~.] action in the
queue, it is sent
. . : to the browser
action avascript)
() ! P and optionally
returns a result.
1
/ Run JavaScript
S
Send(result)
callback(result)

Figure 3: Detailed steps in the exploitation of a persistent XSS vulnerability

Impact already provides functionality for remote-
code execution exploits, it includes the ability to es-
calate to full control of the host running the owned
browser. In this section I'll explain the technical
details of this implementation.

5.1 Injection

Injections are detected and exploited using the
techniques explained in [BM09]. Page parameters
are fuzzed looking for errors in the escaping and
then this information is used to generate request
that renders a page with a valid HTML DOM that
includes a XSS agent. Manual injections can also
be programmed as modules.

5.2 Browser execution

When a browser navigates to a compromised web
page, it runs JavaScript code that sends a request
to the attacker’s server every 10 seconds asking
for instructions. These instructions are normal
JavaScript but a primitive is provided to commu-
nicate back to the server some findings. This prim-
itive is called answer ().

The communication is established by creating a
<script> tag with its source attribute pointing to
the attacker’s server (using DOM manipulation via
JavaScript) and when the code sent by the browser
is ran, the script is removed from the DOM.

All this low level handling is abstracted away
from the post-exploitation code.

5.3 Persistence and browser identifi-
cation

By default, it has no persistence implemented as
defined in the section 3.1. But two different kinds
of persistence where implemented. The "Extend
web browser agent life" module changes the owned
web page to open a <iframe> with the content of
the linked page, keeping the old page but showing
all the content of the new page. The "Launch web
browser agent in popup" module opens a popup
from the current page that runs another agent.

Each new egg request is a new browser, as defined
in section 3.2.

5.4 Actions

Once a XSS vulnerability is exploited, the attacker
can run actions on the browser. An action is
composed of a JavaScript code that runs in the
browser and, optionally, a callback that runs in
the attacker server after information is sent (using
answer) back.

It is important to notice that actions can be
“chained”. If the callback returns another action,
this action will be the next action executed in this
browser.

Except for the chained actions, the actions are
queued and when a browser requests a new ac-
tion, the first action available on the queue for this
browser is sent (or the “null” action if the queue is

empty).

5.5 Back-end

The back-end has a queue for each browser at-
tacked. Each queue contains the actions to be exe-
cuted for each browser. When a request for an ac-
tion arrives to the back-end web server, it responds
with JavaScript code that contains the next action
to be executed and when the actions responds it
executes the action callback in the server. The ac-
tion may queue other actions for the browser (or
other browsers).

The back-end also has a database that is used to
persist the information gathered in the browser.

5.6 Post exploitation modules

Several post-exploitation modules were imple-
mented for XSS vulnerabilities, including cookie
stealing, fetching other pages of the domain using
the browser credentials, web page defacement and
a JavaScript console that runs in the context of the
owned web page.

And there are two modules that enable a pene-
tration tester to do hybrid penetration testing. The
"Launch Client-Side exploit using Web Browser
agent" enables the penetration tester to use all
the shipped web-browser exploits using the com-
promised browser as a vantage point and the "Re-
place executable links with OS agent executable"
changes all the links pointing to .exe files with links
pointing to executable files that run a system-call
proxying agent. The last module allows an attacker

try {
function params(msg) {
result = 7?
for(var key in msg) {
result += ’&’ + key + ’=7 +
encodeURIComponent (msglkey])
}

return result.substr(1)

}

function answer(data) {
current action id
data.action_id = ’XXXXXX’
get (BASE + "/answer?" + params(data))
}
eval (?<INSTRUCTIONS>?)
} catch (e) {
answer({ error:
} finally {
#current tag id
document .body . removeChild(
document . getElementById (> XXXXXX’))

(2 +e)})

if (typeof timeout !== "undefined" &&
timeout !== null) {
window.clearTimeout (timeout)
}

var timeout = window.setTimeout (
"egg ()", 2000)

Figure 4: JavaScript sent to the browser when a
non chained action is executed.

to get full control of a host using just a cross-site
scripting vulnerability.

6 Acknowledgments

This paper couldn’t have been written without the
help of: Diego Tiscornia, Ariel Waissbein, Ivan
Arce, Ariel Futoransky, Gerardo Richarte, Jose Or-
licki, Damian Saura, Ernesto Alvarez and Fernando
Russ.

Matias Blanco, Federico Mutti and myself have
successfully implemented a XSS agent on CORE
IMPACT.

References

[BM09] Matias Blanco and Federico Muttis. User
input piercing for cross-site scripting.
OWASP Appsec 2009. Washington DC.,

2009.

[Cac02] Max Caceres. Syscall proxying - simulat-
ing remote execution. CoreLabs Techni-

cal Report, 2002.

[CDLO08] Rich Cannings, Himanshu Dwivedi, and
Zane Lackey. Hacking exposed. Web 2.0.

McGraw Hill, 2008.

[GNUO06] GNU Citizen. JavaScript Port Scanner,
2006. http://www.gnucitizen.org/

projects/javascript-port-scanner/.

Jeremiah Grossman. I know
where you’ve been, 2006. http:
//jeremiahgrossman.blogspot.com/
2006/08/i-know-where-youve-been.
html.

[Jer06]

[Mav] Ferruh Mavituna. XSS tunnelling. tun-

nelling http traffic through xss channels.

Gerardo Richarte. The evolution of pen-
etration testing, 2005 to 2013 (keynote
address). SANS 2008. Las Vegas, 2008.

[Ric08]

[Rob08] Robert Auger. The Cross-Site Re-
quest Forgery (CSRF/XSRF) FAQ,
2008. http://www.cgisecurity.com/
articles/csrf-faq.shtml [Online; ac-

cessed 14-February-2008].

[RT07]

[Sub06]

[Wad06]

Fernando Russ and Diego Tiscornia.
Zombie 2.0. HackLu. October 18-20,
2007. Luzembourg., 2007.

Subratam Biswas. Browser Secu-
rity: Concepts and Terms, 2006.
http://technet.microsoft.com/
en-us/library/ccb12657.aspx.

Wade Alcorn. BeEF, 2006. http://www.
bindshell.net/tools/beef.

