
Showing differences between disassembled functions

Aureliano Calvo∗

Core Security Technologies
ITBA phD program

ABSTRACT
In this paper we describe how to show the differences be-
tween two basic-block graphs in a single graph using similar
conventions as the ones used to show differences in text.
All the previously known tools show two graphs side-by-side
with the old and new graphs and some information on how
to match the blocks in the original graph and the blocks in
the new one.

1. INTRODUCTION
Penetration testing software (such as Core Impact, Immu-
nity Canvas and Metasploit) need to be kept up up to date
with the new public security vulnerabilities published by
different vendors. But the information published is usually
deficient and a reverse engineering effort is needed to be able
to actually exploit the new vulnerability.

Exploiting the vulnerabilities is the task of the exploit writ-
ing team. When a vendor releases a new version of a product
that solves a security problem they begin their work. Their
first task is to understand how to exploit such vulnerabil-
ity using information of the exploit (usually published as
an advisory) together with the old and new versions of the
vulnerable software.

1.1 Current state of the art tools
Extracting information from the old and new software is
not an easy task. In order to do that they may use several
tools (such as BinDiff [1], PatchDiff[4] or TurboDiff [7]) to
compare the functions changed between the two versions by
matching basic blocks1 that are shared between the old and
new version and showing changes within these blocks and
the blocks that are not matched.

These tools share a similar approach to show differences.

∗aurelianocalvo@coresecurity.com
1A basic block is a sequence of instructions that has a single
entry point and does not branch [6].

The old and new graphs are shown side by side and anno-
tations are made when a difference is found (see figures 2
and 3). BinDiff goes one step further and highlights the
matching block on the other graph.

Showing the differences in this way has several drawbacks.
Jumping between the old and new graph is required to an-
alyze its differences and if the layout is not similar it even
forces the user to look for a basic block in the other graph in
a sequential manner. Another problem is that it uses extra
space, showing twice the matched elements.

2. DESIGN PRINCIPLES
Our solution addresses these drawbacks. Instead of showing
each graph in a separated pane, it merges the old and the
new graph in a merged graph and denotes the changes using
a uniform convention. While this approach is used in basic-
blocks graphs, we believe that the general idea behind this
solution can be applied to other kinds of graphs (such as,
for example, network graphs and attack graphs).

We also strive to use preattentive attributes [8, 9] to show
the graph differences in order to aid the analysis. To achieve
this goal, a single convention to note all the types of dif-
ferences is needed. The differences can be assembler code
inside a node, nodes added or deleted and changes in the
graph edges.

3. OUR SOLUTION
The merged graph has three different types of basic blocks:

Matched: A matched block appears both in the old and in
the new graph.

Old: An old block appears in the old basic-block graph but
does not match any basic block in the new graph.

New: A new block appears in the new basic-block graph
but does not match any basic block in the old graph.

The edges of the merged graph correspond to the edges of
the old and new graph and also have three types:

Matched: A matched edge represents an edge in the old
graph and a an edge in the new graph such as that
they both go from the same matched node to the same
matched node and have the same type (always, then,
else)

Figure 1: Our implementation shows the differences between two versions of the same function in a single
graph

Figure 2: Turbodiff with wingraph showing the differences between two versions of the same function in two
different graphs

Figure 3: Bindiff shows the differences between two versions of the same function using two different graphs

Figure 4: A loop can be easily seen because the
upwards arrows go on the left.

Old: An old edge is an edge in the old graph that can not
be matched with an edge in the new graph.

New: A new edge is an edge in the new graph that can not
be matched with an edge in the old graph.

The merged graph is composed of all the nodes and edges
defined in this section.

We have chosen to show the differences between nodes by
using colors. Old information (things that appear in the first
graph exclusively) is shown in red whereas new elements are
shown in green. Matching information is shown in grey.
This convention is also used to show differences within a
matching basic block. This color selection is chosen because
the diff between source code shown as text is displayed with
these colors in several tools2.

Different kinds of edges in the merged graphs are shown
using the line texture. If the conditional jump is taken it is
shown with a dashed line. Given it is not taken a dotted line
is drawn instead. In case of an unconditional jump or the
basic blocks ends without a jump instruction and it does
not return to the calling function it is shown with a solid
line. The line texture was chosen because we need to note
three different options on lines, these lines can have any
orientation and the colors are taken. Jumps are also colored
with green, red or grey to show if the jump is in the old
graph, the new graph or both.

2Trac and Eclipse are two tools that use this color conven-
tion.

The graph layout chosen for the merged graph attempts to
mimic the layout used in turbodiff. The merged graph is
walked in DFS order starting from the root nodes of the old
and new basic-block graphs3 and the induced tree is used
to generate the layout. The graph layout algorithm chosen
separates the nodes in levels of a tree and then each level is
drawn under the previous one.

Edges that go from level n to level n+1 are drawn as straight
lines and the rest of the edges are drawn following Manhat-
tan paths4. The edges that go upward are drawn at the left
of the graph, whereas the lines that go downward are located
at the right, making it easier to detect loops in the function
(see figure 4).

We used a yellow background to show the root nodes of the
old and new graphs.

Memory addresses of the matching nodes that appear on
top of each basic block are not shown in red and green when
they change because these differences are not important in
order to analyze the changes of a function. Instead of it they
are shown in grey and noted. This change was requested by
the tool users.

When a memory address matches the start address of a basic
block, the address that appears in the assembler instructions
is replaced with the matching node id. This change was also
requested by the tool users.

Another request made by the exploit writers was to be able
to tell the tool that something that is textually different in
the old and new graphs is actually the same thing in both.
For instance, references to EBP+constant (local variables)
or different registers may be changes introduced by the com-
piler that are not interesting for them. In order to fulfill this
request, we introduced a general search and replace tool that
looks for some text in the old graph, another text in the new
graph and replaces both of them with a new label.

Another enhancement to the reverse engineer is the min-
imap, located on the lower right corner. It was added to
keep a high level view of the code. Also, several naviga-
tion tools were added: pan, zoom and ids links on top and
bottom of the basic blocks. Those are used to jump to the
connected basic block with the corresponding id.

4. EXAMPLES
Figures 1 and 2 show how a simple change is shown using
both the usual approach and the one proposed in this pa-
per. In figure 1 red entities represent things that where in
the original graph but not in the new one, green entities
represent new things and grey entities are things that are
matched. It can be seen that showing changes in the same
graph saves space and it is easier to see the changes in the
initial basic block.

We can also see that the problem stated in the introduction
is solved and that design principles presented in section 2 are

3In our experience, in most cases it will be a single node in
the merged graph. This is because usually the root node in
the old graph matches the root node in the new graph.
4Using horizontal and vertical lines.

file reader (FILE *f , char buffer [256]) {
unsigned int len;
fread (&len , sizeof (int) , 1 , f);
if (len <= 256) {

fread (buffer , len , 1 , f);
} else {

printf (”len error !”);
}

}

Figure 5: Source code for the function being diffed
in the example (green=new code)

Figure 6: Patch ms10-024 changes a sequential num-
ber with a random generated one in dns.

respected. In figure 1 a single graph is shown, the differences
are displayed using colors and this convention is used inside
the nodes and in the edges. Because color is a preattentive
attribute it is very easy to see the differences in the function
structure and it is easy to see the difference context. By
contrast, in figure 2 it is difficult to see differences inside a
basic block and also it is more difficult to understand the
changes in the graph structure.

The original C code of the function being diffed can be seen
in figure 5.

The other example is a real world usage. Figure 6 shows a
”silent patch” introduced by the Microsoft Bulletin MS10-
0245 . It can be clearly seen that a call to the function
CAsyncDns::GenerateRandWord was added changing the
transaction id from a sequential number to a random num-
ber. Further details can be seen in the advisory that pub-
lishes this vulnerability6.

5. ALTERNATE CONVENTION
5http://www.microsoft.com/technet/security/Bulletin/MS10-
024.mspx
6http://www.coresecurity.com/content/CORE-2010-0424-
windows-smtp-dns-query-id-bugs

Figure 7: Our implementation using the IDA convention

IDA Pro[2] uses colors to mark the different types of jumps
instead of texture like we did. Its color convention is green
for conditional jump taken, red for conditional jump not
taken and blue for the other cases.

If we intend to use this convention for jumps then we can
not use the color convention for changes. Then we propose a
posible alternate convention using the intensity of the color
to show if something is old, new or matched:

Old: Low color intensity (light grey on text).

Matched: Medium color intensity (grey on text).

New: High color intensity (bold on text).

In figure 7 we can see the example used in the previous
section with this convention. As we can see, the alternate
convention also fulfills the guidelines given in sections 1 and
2 but our experience shows that the colored lines are too dis-
tracting and it is more difficult to easily see the differences.

6. IMPLEMENTATION
The implementation is plugged into TurboDiff [7] as an al-
ternate viewer. It uses the .gdl files that made by TurboDiff
(that contain the old and new graph) and generates an .html
file that is shown with a standards compliant browser7.

7Tested with Firefox, Opera and Google Chrome

All the layout logic, text diffing and data visualization has
been implemented in JavaScript using protovis [5] to show
the visualization and jsdifflib [3] to calculate the text differ-
ences inside a matched basic block.

Several support scripts have been written in python.

The tool will be available as GPL licensed software.

7. CONCLUSIONS AND FUTURE WORK
Being at the prototype stage several improvements can be
made to this project, such as:

• Integration with other diffing tools (such as BinDiff or
PatchDiff).

• Assisted basic block matching. Letting the user match
and unmatch some basic blocks and then matching all
the others using this information.

• Closer integration with IDA.

• Alternate layouts and the ability to collapse, expand
and move nodes in the graph.

The exploit writers did find useful to see the differences be-
tween the two basic-call graphs merged in a single graph.

This approach may also be used to visualize differences be-
tween other types of graphs such as network graphs, attack

graphs, etc. We also believe that the idea of showing dif-
ferences in graphs by merging the graph and annotating the
differences can be used to show differences in several con-
texts and it is worth to explore this aproach for other types
of data.

8. ACKNOWLEDGEMENTS AND CREDITS
I would like to thank Alberto Pose for working endless hours
with me in the implementation, Nicolas Economou for his
invaluable collaboration and sugestions while making aure-
liax, the exploits and research teams at Core for help, ideas
and sugestions, Jamie Love for modifying protovis to sup-
port strokeDasharray and to the protovis team and mailing
list for being extra-helpful in helping us troubleshoot several
issues during the implementation.

9. REFERENCES
[1] Bindiff. http://www.zynamics.com/bindiff.html.

[2] Ida pro. http://www.hex-rays.com/idapro/.

[3] jsdifflib. http://snowtide.com/jsdifflib.

[4] Patchdiff2. http:
//cgi.tenablesecurity.com/tenable/patchdiff.php.

[5] protovis. http://vis.stanford.edu/protovis/.

[6] F.E. Allen. Control flow analysis. In Proceedings of a
symposium on Compiler optimization, volume 5, pages
1–19. ACM New York, NY, USA, 1970.

[7] Nicolás Economou. Turbodiff. http:
//corelabs.coresecurity.com/index.php?module=

Wiki&action=view&type=tool&name=turbodiff.

[8] S. Few. Information dashboard design: the effective
visual communication of data. O’Reilly Media, Inc.,
2006.

[9] C. Ware. Information visualization: perception for
design. Morgan Kaufmann, 2004.

