
copyright (c) 2005 Core Security Technologies.

C
O

R
E

 S
E

C
U

R
IT

Y
 T

E
C

H
N

O
L

O
G

IE
S

 ©
 2

0
0

9

Anibal L. Sacco (Ssr Exploit writer)

Alfredo A. Ortega (Ssr Exploit writer)

Persistent BIOS Infection

“The early bird catches the worm”

copyright (c) 2005 Core Security Technologies.

Agenda

 Introduction
 A bit of history
 A better choice
 What is the BIOS
 BIOS Structure
 How it works
 Update/flashing process
 A Simple way to patch BIOS
 Where to patch
 What can be done
 Shellcodes
 Virtual machine demo
 Real hardware demo

copyright (c) 2005 Core Security Technologies.

Introduction

 Practical approach to generic & reliable BIOS code injection

 True Persistency

 Rootkit(ish) behavior

 OS independant

copyright (c) 2005 Core Security Technologies.

A little bit of history:

Commonly used persistency methods:

 User mode backdoor

 Kernel mode backdoor

How can this be done more effectively?

copyright (c) 2005 Core Security Technologies.

BIOS Level backdoor:

 Takes control before any other software

 Stealth behavior

 Generally forgotten by almost all Antiviruses

 OS Independant (Runs outside the OS context)

copyright (c) 2005 Core Security Technologies.

What is the BIOS?

 BIOS stands for Basic Input Output System

 Boot firmware

 Hardware initialization (RAM, North Bridge, etc.)

 Size: 256 Kb and bigger

 Commonly stored on EEPROM or flash memory

copyright (c) 2005 Core Security Technologies.

BIOS Structure

 It is composed of various LZH compressed modules

 Each module has an 8 bit checksum

 There are some uncompressed modules:
Bootblock: In charge of the POST, and emergency boot
Decompression routine: decompresses the rest of the modules

 Various checksum checks.

copyright (c) 2005 Core Security Technologies.

+--+
| Class.Instance (Name) Packed ---> Expanded Compression Offset |
+--+

 B.03 (BIOSCODE) 06DAF (28079) => 093F0 (37872) LZINT (74%) 446DFh
 B.02 (BIOSCODE) 05B87 (23431) => 087A4 (34724) LZINT (67%) 4B4A9h
 B.01 (BIOSCODE) 05A36 (23094) => 080E0 (32992) LZINT (69%) 5104Bh
 C.00 (UPDATE) 03010 (12304) => 03010 (12304) NONE (100%) 5CFDFh
 X.01 (ROMEXEC) 01110 (04368) => 01110 (4368) NONE (100%) 6000Ah
 T.00 (TEMPLATE) 02476 (09334) => 055E0 (21984) LZINT (42%) 63D78h
 S.00 (STRINGS) 020AC (08364) => 047EA (18410) LZINT (45%) 66209h
 E.00 (SETUP) 03AE6 (15078) => 09058 (36952) LZINT (40%) 682D0h
 M.00 (MISER) 03095 (12437) => 046D0 (18128) LZINT (68%) 6BDD1h
 L.01 (LOGO) 01A23 (06691) => 246B2 (149170) LZINT (4%) 6EE81h
 L.00 (LOGO) 00500 (01280) => 03752 (14162) LZINT (9%) 708BFh
 X.00 (ROMEXEC) 06A6C (27244) => 06A6C (27244) NONE (100%) 70DDAh
 B.00 (BIOSCODE) 001DD (00477) => 0D740 (55104) LZINT (0%) 77862h
 .00 (TCPA_) 00004 (00004) => 00004 (004) NONE (100%) 77A5Ah
 D.00 (DISPLAY) 00AF1 (02801) => 00FE0 (4064) LZINT (68%) 77A79h
 G.00 (DECOMPCODE) 006D6 (01750) => 006D6 (1750) NONE (100%) 78585h
 A.01 (ACPI) 0005B (00091) => 00074 (116) LZINT (78%) 78C76h
 A.00 (ACPI) 012FE (04862) => 0437C (17276) LZINT (28%) 78CECh
 B.00 (BIOSCODE) 00BD0 (03024) => 00BD0 (3024) NONE (100%) 7D6AAh

copyright (c) 2005 Core Security Technologies.

How it works

 The first instruction executed by the CPU is a 16 byte opcode located at F000:FFF0

 The Bootblock POST (Power On Self Test) initialization routine is executed.

 Decompression routine is called and every module is executed.

 Initializes PCI ROMs.

 Loads bootloader from hard-disk and executes it.

copyright (c) 2005 Core Security Technologies.

BIOS Memory Map

copyright (c) 2005 Core Security Technologies.

Update/flashing process

Vendors provide perodic updates to add new features and fix bugs. They also provides it's own tools to flash from DOS, windows, and even from ActiveX!

BIOS update procedure depends on South-Bridge and chip used.

CoreBOOT project provides a generic BIOS flashing tool: flashrom, that supports most motherboard/chip combination.

Code BIOS

copyright (c) 2005 Core Security Technologies.

A Simple way to patch BIOS

 BIOS contains several checksums

 Any modification leads to an unbootable system.

 We used two techniques:
1) Use a BIOS building tool (Pinczakko's method)
2) Patch and compensate the 8-bit checksum

 Three easy steps:
1) Dump BIOS using flashrom
2) Patch and compensate
3) Re-flash

copyright (c) 2005 Core Security Technologies.

Where to patch

 Anywhere is valid:
f000:fff0: First instruction executed.
INT 0x19: Exected before booting
Insert a ROM module: Executing during POST

 The most practical place: Decompressor
It's uncompressed!
Located easily by pattern matching

Almost never change
Called multiple times during boot

copyright (c) 2005 Core Security Technologies.

What can be done

 Depends. What resources are available from BIOS?
Standarized Hard Disk access (Int 13h)
Memory Manager (PMM)
network access (PXE, Julien Vanegue technique)
Modem and other hardware (Needs a driver)

 Our choice was to modify hard-disk content:
1) Modify shadow file on unix
2) Code injection on windows binaries

copyright (c) 2005 Core Security Technologies.

Shellcodes

Shellcodes are all in 16 bit

We use BIOS services for everything

Easy to debug: BIOS execution enviroment can be emulated running the code as a COM file over DOS

Pseudocode:
1) Checks ready-signal

2) Checks for services inicialization
3) Runs

copyright (c) 2005 Core Security Technologies.

copyright (c) 2005 Core Security Technologies.

How to protect yourself

Preventing the initial access with common methods (Antiviruses, Firewalls, etc.) to avoid the BIOS modification

Enabling the flash WP (Write Protection) on motherboard

Using digitally signed BIOS firmwares

Not downloading BIOS updates from untrusted sources

copyright (c) 2005 Core Security Technologies.

Virtual machine demo

 Virtual machines also have a BIOS!
In VMWARE, It's embedded as a section of the main VM process, shared on all Vms.
Also can be specified on the VMX file for each VM.
Is a phoenix BIOS.
Very easy to develop because of the embedded GDB server.
Using Interrupt Vector Table as ready-signal

 Two attacks:
OpenBSD shadow file
Windows code injection

 This method will infect multiple virtual machines.

copyright (c) 2005 Core Security Technologies.

Real hardware demo

We infected an Phoenix-Award BIOS

Extensively used BIOS

Using the VGA ROM signature as ready-signal.

No debug allowed here, all was done by Reverse-Engineering and later, Int 10h (Not even printf!)

Injector tool is a 100-line python script!

copyright (c) 2005 Core Security Technologies.

Future research

 Virtualized Rootkit

 PCI device placement (Modems, VGA, Ethernet and RAID controllers)

 The ultimate BIOS rootkit...

Thank you for your attention!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

