
On the Quality of Exploit Code
An Evaluation of Publicly Available Exploit Code,

Hackers & Threats II, February 17, 2:00 PM, San Francisco, CA

Ivan Arce, Core Security Technologies

OUTLINE

• Prologue: Context and definitions

• Why exploit code?

• Quality metrics

• Examples

• Epilogue: Future work

PROLOGUEPROLOGUE

VULNERABILITIES & EXPLOITS
Lets start by defining a common language

• Vulnerability (noun)
— “A flaw in a system that, if leveraged by an attacker, can potentially

impact the security of said system”

— Also: security bug, security flaw, security hole

• Exploit (verb)
— “To use or manipulate to one’s advantage” (Webster)

— “A security hole or an instance of taking advantage of a security
hole”

EXPLOIT CODE
Exploit code is not just “proof of concept”

• Proof of Concept exploit - PoC (noun)
— A software program or tool that exploits a vulnerability with the sole

purpose of proving its existence.

• Exploit Code (noun)
— A software program or tool developed to exploit a vulnerability in

order to accomplish a specific goal.

— Possible goals: denial of service, arbitrary execution of code, etc

An emerging role in the information security practice

WHY TALK ABOUT EXPLOIT CODE?WHY TALK ABOUT EXPLOIT CODE?

ANATOMY OF A REAL WORLD ATTACK
The classic attack uses exploit code...

ATTACKER

 Base Camp

A target server is attacked and compromised

The acquired server is used as vantage point to penetrate the corporate net

Further attacks are performed as an internal user

EXPLOIT CODE FUNCTIONALITY
Exploit code becomes more sophisticated

• Add a simple “listen shell”
echo "ingreslock stream tcp nowait root /bin/sh sh -i" >>/tmp/bob ; /usr/sbin/inetd -s /tmp/bob &"

• Add an account to the compromised system:
echo "sys3:x:0:103::/:/bin/sh" >> /etc/passwd;
echo "sys3:1WXmkX74Ws8fX/MFI3.j5HKahNqIQ0:12311:0:99999:7:::" >> /etc/shadow

• Execute a “bind-shell”

• Execute a “reverse shell”

• Deploy and execute a multi-purpose agent
Command shell, FTP, TFTP, IRC, “zombies”, snifers, rootkits...

• Deploy and execute agent that re-uses existing connection.

• Deploy and execute agent that has low-level interaction with the OS
— Syscall Proxing

• And more shellcode advances...
— Loader payloads, InlineEgg, ShellForge, polymorphism, reusable components, encodings, etc.

A RECENT TREND IN THE INDUSTRY
Exploit code becomes a “valuable asset”

• Detailed information about vulnerabilities has value

• Exploit code is being bought and sold

• Included in commercial software offerings

• Exploit code development training

• Several books on exploiting software and exploit code development
— “Exploiting Software”, Hoglund & McGraw

— “The Shellcoder´s Handbook”, Koziol et. al.

— “Hacking: The Art of Exploitation”, Jon Erickson

WHAT CAN I DO WITH MY EXPLOITS?
Some legitimate uses for exploit code

• Penetration Testing

• Test and fine-tune firewall configurations

• Test and fine-tune IDS configurations

• Test incident response capabilities

• Vulnerability Management

EXPLOIT CODE & PENETRATION TESTING
The penetration testing process

• Penetration Testing

Using Exploits

EXPLOIT CODE & FIREWALLS
Using exploits to test and configure firewalls

• Firewall configuration and testing

EXPLOIT CODE & IDS
Using exploits to test and configure Intrusion Detection Systems

• IDS configuration and testing

THE VULNERABILITY MANAGEMENT PROCESS
Vulnerability management: Scan & Patch strategy

• Vulnerability Management

Discover

Scan

Report

Resolve Prioritize

IMPROVED VULNERABILITY MGMNT PROCESS
Use exploit code to minimize errors and prioritize better

• Vulnerability Management + Exploit Code

Discover

Scan

Report

Resolve Attack
Using Exploits

AN ADDITIONAL IMPROVEMENT
Use exploit code to verify correct mitigation

• Vulnerability Management + Exploit Code + Verification

Verify

Discover

Scan

Report

Resolve Attack
Using Exploits

VULNERABILITY MGMNT & PEN TESTING COMBO
Combine vulnerability management and penetration testing

• Vulnerability Management + Rapid Penetration Testing

Verify

Discover

Report

Resolve Attack
Using Exploits

QUALITY METRICSQUALITY METRICS

QUALITY METRICS FOR EXPLOIT CODE
The legitimate uses of exploit code calls for quality metrics

• There are several legitimate uses for exploit code

• We need to understand the strengths and limitations of the
tools we use

• A taxonomy helps organize our understanding of our tools

• Metrics provide a more objective way of measuring exploit
code quality

• Caveat: Taxonomies and metrics are arbitrary

QUALITY METRICS FOR EXPLOIT CODE
What can we use the metrics for?

• Measure the quality of our exploits

• Comparative analysis

• Guidance for R&D

• Deploy timely and cost-effective mitigation measures

• Improve the security processes that use exploit code as
components

EXPLOIT CODE INTERNALS
A few more definitions are needed...

• Remote exploit
— A program or tool that does not require legitimate access to the

vulnerable system in order to exploit the security flaw

• Exploit payload
— The portions of the exploit code that implements the desired

functionality after successful exploitation of a vulnerable system

— Example payloads:

• “add inetd service”

• “add account”

• “bind shell”

• “reverse shell”

EXPLOIT CODE INTERNALS
A few more definitions are needed...

• Exploit attack vector
— The means used by the exploit code to trigger the vulnerability on the

target system

MS04-011 “Microsoft SSL PCT vulnerability” (CAN-2003-0719)
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0719
http://www.microsoft.com/technet/security/bulletin/MS04-011.mspx
http://www.securityfocus.com/archive/1/361836

One vulnerability with seven attack vectors:
— MS IIS/Exchange ports

https:443, smtp:25, imap:993, pop3:995, nntp:563

— MS Active directory ports
ldaps:636, globalcatLDAPssl: 3269

EXPLOIT CODE INTERNALS
A few more definitions are needed...

• Exploit technique
— The method used by the exploit code to alter the execution flow of a

vulnerable system and force it to execute the exploit’s payload.

Some exploit techniques
— Overwriting the stack memory

• Read/write operations
• Write/execute operations
• Write operations

— Overwriting the heap memory
• Read/write operations
• Write/exec operations
• Mirrored write operations

— Overwriting process flow control structures
• Pointer overwrite (GOT, PLT, class pointers, destructors, atexit())
• Program data overwrite (authorization keys, flags, credentials, FDs)

GENERIC QUALITY METRICS
These metrics can be used to assess the quality of exploit code

• Attack vectors
— One
— More than one
— All

• Exploit logic
— Brute-forcing vs. hard-coded addresses
— Automatic OS fingerprinting vs. manual OS targeting
— Network usage (number of connections, total bandwidth, etc.)
— Total running time
— Debugging capabilities, documentation, fixes

• Exploit technique and reliability
— Some techniques are inherently more reliable than other
— Lab testing under ideal conditions

• 80% - 100%
• 50% - 79%
• 20% - 49%
• Less than 20%

GENERIC QUALITY METRICS
Metrics related to network topology characteristics

• Network topology constrains
— Link layer constrains (dialup, PPP, wireless, etc)

— LAN vs. WAN

— Attacker behind NAT device

— Target behind NAT device

— Target behind FW blocking incoming connections

— Target behind FW blocking in/out connections

— Target behind Proxy/Application gateway FW

— IP Fragmentation/TCP Reassembly/Application-level Fragmentation

— Network footprint

— Latency

— Constrained bandwidth

GENERIC QUALITY METRICS
Metrics related to the runtime environment of the vulnerable system/application

• Runtime environment
— System load

— Multi-threading

— Fork & Exec

— Multiplexing/Asynchronous service

— File system access

— Memory and file descriptors

— Environment variables and command line arguments

— Compile options, debugging, optimizations, logging

— Service startup (manual, boot time, inetd, etc.)

GENERIC QUALITY METRICS
Metrics related to security hardened systems and services

• Security hardening measures
— Vulnerable service runs as unprivileged process

— Privilege separation/downgrade

— Sand-boxing (chroot, jail, systrace, capabilities)

— Non executable stack

— Non executable heap

— StackGuard, StackShield, ProPolice, Microsoft VS /GS flag

— PaX, GrSecurity, W ^ X, DEP

• Portability and OS dependence
— Exploit uses external helper libraries or programs?

— Exploit run on specific OS?

— Exploits requires local privileges?

GENERIC QUALITY METRICS
Metrics related to system stability

• System stability
— After successful exploitation

• Unstable service
• Interrupted service
• System reboot or halt

— After unsuccessful exploitation
• Unstable service
• Interrupted service (One shot exploit)
• System reboot or halt (One shot exploit & DoS)

• System pollution and clean-up
— Modifies configuration
— Modifies file system
— Leaves audit trace
— Stealthness

WINDOWS EXPLOITS: OS COVERAGE
OS coverage for exploits that target MS Windows

• Architecture
— x86 - (32bit/64bit)
— Multiprocessor kernels

• Operating System
— WinNT, Win2k, WinXP, Win2003

• Operating System editions
— WinNT 4.0: Workstation, Server, Enterprise, Terminal Server
— Win2k: Professional, Server, Advanced Server
— WinXP: Home, Professional
— Win2003: Standard, Enterprise, Web

• Service Packs
— WinNT 4.0: SP0-SP6,SP6a
— Win2k: SP0-SP4
— WinXP: SP0-SP2
— Win2003: SP0-SP1

• Languages
— English, Spanish, French , Portuguese, German, Japanese, Chinese

LINUX EXPLOITS: OS COVERAGE
OS coverage for exploits that target Linux

• Architecture
— x86 - Intel IA32 (32bit), x86 - Intel IA64 (64bit), ARM, SPARC

• Linux Distribution
— RedHat, Suse, Debian, Mandrake (Conectiva, Fedora, TurboLinux, Immunix, OpenWall, Gentoo, …)

• Linux Distribution versions
— RedHat: 6.2, 7, 7.11, 7.2, 7.3, 8, 9

— Suse: 7, 7.1, 7.2, 7.3, 8., 8.1, 9, 9.1

— Debian: 2.0, 2.1, 2.2, 3

— Mandrake: 7.1, 7.2, 8, 8.1, 8.2, 9, 10

• Kernel versions
— Linux kernel 2.2.0 - 2.2.26

— Linux kernel 2.4.0 – 2.4.26

— Linux kernel 2.6.0 - 2.6.x

• User Space and Applications
— Glibc and Gcc versions, default application versions, default compile options

SOLARIS EXPLOITS: OS COVERAGE
OS coverage for exploits that target Solaris

• Architecture
— Intel x86, sun4m, sun4u

• Solaris versions
— 2.5.1, 2.6, 7, 8, 9, 10

• Patch clusters and individual patches
• Software Packages and compiled applications
• Security settings

— no_exec_user_stack = 1

EXAMPLESEXAMPLES

MS RPC DCOM VULNERABILITY
The MS RPC DCOM vulnerability exploited by the Blaster worm

• Vulnerability: CAN-2003-0528, BID 8205
Microsoft Security Bulletin MS03-026
http://www.microsoft.com/technet/security/bulletin/MS03-026.mspx

• Vulnerable Systems
winNT 4, winNT4 Terminal Services, win2k, winXP,win 2003

• Attack vectors
Ports 135/tcp, 135/udp, 139/tcp, 445/tcp, 593/tcp, 80/tcp, >1024/tcp
Plus 135/udp broadcast

• Publicly available exploit code
— winrpcdcom.c (FlashSky, xfocus.org)
— dcom.c (HD Moore, modified from xfocus.org)
— msrpc_dcom_ms03_026.pm (HD Moore, included in metasploit 2.0)
— Rpcexec.c (ins1der, trixterjack at yahoo.com)
— dcom48.c (OC192 www.k-otik.com)

MS RPC DCOM VULNERABILITY
The MS RPC DCOM exploit used by the Blaster worm

• Exploit: dcom.c (written by FlashSky, Benjurry, re-written by H.D. Moore)
http://downloads.securityfocus.com/vulnerabilities/exploits/30.07.03.dcom.c

• Attack vectors: 1/8
• Exploit logic

Hard coded addresses, no brute forcing, manual OS selection

1 exploitation attempt per connection

• Exploit payload: Bindshell (port 4444/tcp)
• Exploit technique: Stack smashing,return address overwrite, stack exec.
• Exploit targets: 11/385 (30/385 maximum)

— Windows 2000 SP0-SP4 (English): 5

— Windows 2000 SP2-SP4 (German): 4

— Windows XP SP0-SP1 (English): 2

— Windows XP SP1 (German): 1

• Other:
Leaves service unstable (one shot), halt/reboot of system, ingress filtering blocks shell access,

OS independent (FlashSky’s original was OS dependant), requires additional FDs

The worm required file system and registry access, deployed multi-purpose agent

MS LSASS VULNERABILITY
The MS LSASS.EXE vulnerability exploited by the Sasser worm

• Vulnerability: CAN-2003-0533, BID 101108
Microsoft Security Bulletin MS04-011
http://www.microsoft.com/technet/security/bulletin/MS04-011.mspx
http://www.eeye.com/html/Research/Advisories/AD20040413C.html

• Vulnerable Systems
win2k, winXP,win 2003

• Attack vectors
Ports 139/tcp, 445/tcp

• Publicly available exploit code
— HOD-ms04011-lsasrv-expl.c (houseofdabus)

— ms04011lsass.c (www.k-otik.com)

MS LSASS VULNERABILITY
The MS LSASS.EXE exploit used by the Sasser worm

• Exploit: HOD-ms04011-lsasrv-expl.c (houseofdabus)
http://downloads.securityfocus.com/vulnerabilities/exploits/HOD-ms04011-lsasrv-expl.c

• Attack vectors: 1/2
• Exploit logic

Hard coded addresses, no brute forcing, manual OS selection (-t option just prints output)

1 exploitation attempt per connection

• Exploit payload: Bindshell on user specified port (reverse-shell optional)
• Exploit technique: Stack smashing,return address overwrite.
• Exploit targets: 56/161 (119/161 maximum)

— Windows 2000 SP2,SP4: 2 (1 “universal” address + Adv. Svr.)

— Windows XP SP0,SP1: 1 (1 “universal” address)

• Other:
Leaves service unstable (one shot), halt/reboot of system, ingress filtering blocks shell access,

OS dependant (previous exploit used modified system DLL), requires additional FDs, requires access to
target’s IPC$ endpoint

The worm required file system and registry access, deployed multi-purpose agent, bindshell on port
9996/tcp, FTP server on port 5554/tcp

EPILOGUEEPILOGUE

EPILOGUE
Conclusion and future work

• Conclusion
— There are several legitimate uses for exploit code

— We need to understand the tools we use

— We propose a set of metrics to measure quality of exploit code

• Future work
— Refine the proposed metrics

— Test them against publicly available exploits

— Comparative analysis

— Extend into a model with more quantifiable parameters and possibly
a suitable “QoE”metric

THANK YOU!THANK YOU!

CONTACT INFORMATION
Iván Arce | ivan.arce@coresecurity.com | www.coresecurity.com

Headquarters · Boston, MA
46 Farnsworth St
Boston, MA 02210 | USA
Ph: (617) 399-6980 | Fax: (617) 399-6987
info@coresecurity.com

Research and Development Center
Argentina (Latin America)
Florida 141 | 2º cuerpo | 7º piso
(C1005AAC) Buenos Aires | Argentina
Tel/Fax: (54 11) 5032-CORE (2673)
info.argentina@coresecurity.com

www.coresecurity.com

