
Timing Attacks for Recovering

Private Entries From Database

Engines

Ariel Waissbein

joint work with A. Futoransky, D. Saura and P. Varangot

-Core Security Technologies-

id: HT1-302

Thursday, April 10

Objectives

• Understand the risk associated to DB’s data

loss.

• Expose new attack vector against DBMSs.

– Show how B-tree indexing leaks information.

– Prove that a timing attack works.

– Describe an exploitation technique and its merits.

• Prove this by attacking MySQL and MS SQL

DBMSs, and discuss countermeasures.

Structure

1. Introduce the problem & main result.

2. Theory

1. Walk through DbMSs’ storage inner works.

2. Describe how does this lead to attacks.

3. Design an attack.

3. Practice

1. Exhibit the attacks against MySQL.

2. Discuss attacks against MS SQL.

3. Discuss countermeasures and extensions.
3

Databases store valuable information that

must be secured

• Organizations store info from their users / clients, plus their

own info.

• Then DBMSs and the servers that host them are interesting

for attackers.

Web

Application
Internet DBMS

Web

Users

Internal Users

Hackers have compromised DBMSs in several ways

1. Insecure web server hosting the DB.
– Insecure configuration, lack of patching, …

2. A SQL-injection vulnerability in the web application.
– Insecure development of the webapp.

3. Lax permissions and privilege levels in the DB.
– An ``outsider’’ connects to the server and compromises an insecure

authentication protocol.

– A legitimate user siphons out confidential data.

All these are known, and countermeasures have been
studied and deployed.

Main result: scenario

• Consider a table in one deployed database

management system (e.g., MySQL, MS SQL, Oracle,

…)

• Users cannot retrieve data from one column directly,

but can insert values in this “privacy-sensitive” column,

which is indexed by a B-tree.

• Users can measure the response time of the INSERT

transactions they make.

Main result: thesis

• Then an attacker, passing as a user, can retrieve the

values of this column.

– The success of the attack depends on the accuracy to time

inserts and other parameters.

– The “cost” of the attack can be measured by the number of

inserts it requires.

– The number of inserts required is proportional to the size (in

bits) of these values, times the number of values retrieved.

Corroborated for MySQL and MS SQL!!!

INSIDE THE DBMS

8

The cost of I/O dominates the cost of operations

• Data is stored in “sorted chunks,”

i.e., pages.

• Queries flow from User to

Storage, and back.

• The cost of page I/O dominates

the cost of typical DB operations.

• I/O cost depends on how data is

sorted in the DB.

Index/file/

record manager

Buffer manager

Storage

manager

Storage

Execution

engine

Query Compiler

User

I/O

Data is stored according to a table representation

• DBMSs use table as for data representation.

• Rows must be sorted according to some of the

columns for efficient searches and modifications.

Name Passport Football team

Cacho 32102806 San Lorenzo

Pedro 25061305 River

Tomas 9567205 Racing

Data is sorted by indexing algorithms into tables

• Each database table must have one primary index.

• Data is then stored in Storage (the hard drive) in

nodes which come in either form:

Pass. Data

9,567,205 Tomas, Racing

25,061,305 Pedro, River

32,102,806 Cacho, San Lorenzo

9567205, Tomas, Racing 25061305, Pedro, River 32102806, Cacho, San Lorenzo …

A page in a Clustered

index

9567205, p1 25061305, p2 32102806, p3

A page in an Unclustered

index

B trees are designed according to a few simple principles

• A B-tree is a tree.

• Each node can store a fixed amount of search keys.

• Search keys are followed by
– a pointer (unclustered) or ,

– the data (clustered) as in the past example.

• Each node must be at least half full.

28 35

1 4 5 8 9 28 30 31

8 13

28

35 92

<28
≥28

<8 ≥8 ≥ 35

13 17 19 22

1 tree node = data

chunk stored in the HD

Searching and Inserting keys is easy!

• In a key search, we start from the root node and

follow branches.

• Inserts to non-full nodes are likewise easy.

• Keys that fall in a full node require creating a new

node …

28 35

13 17 19 221 4 5 8 9 28 30 31

8 13

28

35 92

<28
≥28

<8 ≥8 ≥ 35

Let’s fill a node with keys

• This node holds keys 4,6,7,9 and 10.

• It can fit 10 keys at the most.

• What happens if a user inserts “3,11,…,15”?

4 6 7 9 10

The node will fill and a new node will be created

• This node holds keys 4,6,7,9 and 10.

• It can fit 10 keys at the most.

• What happens if a user inserts “3,11,…,15”?

4 6 7 9 10

4 6 7 9 10

11 12 13 143

The user learns there are 5 keys between 3 and 11

• On inserting the key 15, there is a “node split” and a new node is

created.

• This insertion will take more time than other insertions (in the

average).

• An inspired user can deduce that there are 5 keys between 3 and

11!!!!!

• If the user has more information about the particular B-tree

implementation, he can guess what is the new nodes configuration.

* * * * * 11 12 13 143 node status before

inserting 15

This means information leaks!

• We have that:

– The ability to make inserts on an indexed field and detect node

splits,

– Allows an attacker to learn if the keys interval [a,b] is empty;

– Plus, learn some info about the new node configuration.

• Why?

– Assume that n keys fit in one node.

– Insert the keys a, b, b+1, … until there is a node split.

– If we stopped before inserting b+n-1, then there must exist some

keys between a and b!

• Also, reinserting a primary key produces an error.

CONSTRUCTING AN ATTACK

18

We use the information leak we discovered

• We make a binary search until the interval size

is smaller than the page size.

keys

at least one key in this interval

We can learn whether the first half of an

interval is empty

To do this we need:

1.A split detection algorithm.

2.A binary-search algorithm that, given an interval

[a,b] containing at least a key, determines whether [a,

(a+b)/2] contains a key (else [(a+b)/2, b] contains a

key).

Doing this in practice turns to be difficult.

a (a+b)/2 b

We must estimate the cost of an attack

to see if it’s worth the effort

• The estimated cost is approx. =
(No. of calls to the binary search algo.) X (No. of inserts per call to this algo.)

• For a credit cards database we have

16 decimal digits, or 56 binary digits.

Assume each node contains n=512=29 keys.

• We need to make 47 X 512 + 512 inserts

Because 47 = 56 – 9

An upper bound of 24573 inserts is fast enough!

IN PRACTICE: ATTACKING

MYSQL-INNODB

We have two jobs:

-detecting node splits, and

-designing the binary search procedure.

Scenario
• Server

– MySQL was hosted in a VMware in a Pentium 4 1G server running

Windows XP.

• The attacker

– He is connected to the server through a switch.

– He is only allowed to make inserts, and time them.

• The DbMS

– Clean install of MySQL-InnoDB, default configuration.

– Populate the database with different data types and table sizes.

• Noise

– There are other users in the net, but none connects to MySQL.

– The web server might run other services.

Our analysis starts with node splits

• In InnoDB, indexes are stored in a B+-tree structure,

with some ad hoc optimizations.

• After a node is created, keys reordering depends on

the last few inserts.

• When making consecutive inserts it has a special

behavior (recall the previous example).

• Else, pages are split in halves when full.

Understanding node splits in these 3 cases

allows us to construct the attack

Let’s imagine that we can detect splits for the sake of

analysis.

What is the effect of inserting consecutive values i,i+1,…

until there is a split?

– When i has no value to its right.

– When i has one key to its right.

– When i has several keys to its right.

… i

K1i

K1 K2 …i

…

…

Case 1, when there is no value to the right of i

What is the effect of inserting consecutive values

i,i+1,… until there is a split?

– When i has no value to its right.

... i … i+m-1 i+m …

Before the split... i … i+m-1 …

After the split

… Initial status

Case 2, when there is one key to its right

What is the effect of inserting consecutive values

i,i+1,… until there is a split?

– When i has one key to its right.

K…

... i … i+m-1 i+m

... i … i+m-1 …K

…K …

Before the split

After the split

Initial status

Case 3, when there are several keys to the right

What is the effect of inserting consecutive values

i,i+1,… until there is a split?

– When i has several keys to the right.

… Initial status

... i … i+m

Before the

split... i … i+m-1 …

After the split

K1 K2 …

…K1 K2 …

K1 K2 …

An algorithm outline

1. SETUP

– Make some tricky inserts in order to produce values a and

b so that a< K <b, there is no other key between a and b,

and K is the first element in its page (using cases 1,2,3!)

2. BINARY SEARCH

– We iterate over a procedure that, at each step, it halves

the interval, it can tell in which half is K, and K is still the

first element in its page.

3. FINAL STEP:

– When the size of the interval is smaller than the page size,

we check a, a+1, a+2,… until we find K.

The binary search algorithm always starts

with this setting

• We know values a, b such that
– a < K < b.

– No key exists between a and b, other than K.

– K is the first element on its node.

• The algorithm answers K < (a+b)/2 or (a+b)/2 < K

– the “initial situation” is maintained.

a … K b

Left branch in the binary search, if (a+b)/2 < K

• What’s the effect of inserting (a+b)/2, (a+b)/2+1,…

until there is a split?

• If the values inserted are smaller than K, after the split

the tree looks like this:

a i K bi+n-1 …… i+n-2

Notice that the number of values we inserted

is n = the size of a node!

…

Right branch in the binary search, if (a+b)/2 > K

• What is the effect of inserting (a+b)/2, (a+b)/2+1,…

until there is a split?

• If the values inserted are smaller than K, after the split

the tree looks like this:

a K i i+n-2 b… i+n-3… …

Notice that the number of values we inserted

is n-1 = the size of a page!

This solves the design of the binary search

procedure problem

• By counting the number of inserts we make until

there is a split, we know if (a+b)/2 < K or (a+b)/2 > K.

If we inserted n values, we set

a := (a+b)/2 + n.

If we inserted n-1 values

b := (a+b)/2 – 1.

• Still we need to detect splits…

Still need to detect splits. Let’s assume nothing.

• On average we detect splits, but there is noise.

– In most cases the inserts that do not produce splits take

much less time than inserts that produce splits.

– There are also indistinguishable cases.

– In any case, there is a “time threshold value.”

We define an heuristic from this experiment

• Take any table.

• Insert consecutive keys and time the response t[1],

t[2],…

• For each insert, such that the values t[i-2n], t[i-n],

t[i] are all bigger than the time threshold, check if

they correspond to node splits.

• Yes, they do!

We easily deduce a split detection algorithm

• I/O:

– INPUT: a value i.

– OUTPUT: a value m such that there was a split at i+m.

• Remarks:

– May need more than 3n inserts, if channel is noisy.

– There is a tradeoff between efficiency and accuracy.

– This is basic signal processing, and could be improved!

Experimental results corroborate our estimates

• We tested our attack

– against three tables, with one the key 113111 plus other randomly

chosen values.

– The (theoretical) bound for the number of inserts required for the

attack is 6 x 574 x 3 = 14100.

of keys Success

rate

of inserts Time

1 3/3 14100 10:37

101 3/3 13145 10:39

1001 3/5 14371 10:47

Number of

node splits
Keys per

page

Split

detection

algorithm

Closing (mysql) summary

• We just saw that indexing by B-trees provides a side

channel of information.

• We’ve seen how to exploit this channel, theoretically

and practically.

• We went though laboratory experiments that

corroborate our claims.

PRELIMINARY RESULTS ON

MS SQL

An approach similar to the MySQL attack works fine.

1 slide

39

MS SQL indexing implements B-trees differently

• We didn’t get detailed info. about the storage engine internals.

• We made some experiments on a clean install, standard
config., with a local attacker.

• We can detect splits with good probability, but guessing new
nodes configuration is difficult.

• Thus, we designed a binary search algorithm implementing a
(small) “dictionary” that:
– for consecutive splits after n[1], n[2], n[3], n[4] inserts.

– tells us if the left half of the interval is empty.

This shows that we can search for keys in exponential speed.
40

COUNTERMEASURES AND

ATTACK EXTENSIONS

Suggestions and discussion

Countermeasures might deteriorate efficiency

• Don’t index privacy searching data
– E.g., what was the gain in sorting passwords in the example we saw.

• Transaction throttling: Block a user from making more than

10 inserts per day/session.

• Introduce random time delays so that the two types of

inserts are indistinguishable from the time they take.

• Block certain types of behavior from your IDS.

We could extend our work by improving

the attack

• Get into a more realistic scenario.

• Find better split detection algorithms.

• Research insert strategies to optimize the number of

inserts that produce a split.

• Getting many keys is cheaper than getting one times

number of keys.

We could extend our work to other DBMSs

• The implementation depends on DbMS!

– We succeeded with MySQL (open code) MS SQL (closed code).

• Transactional systems, caches and journaling can

play for/against the attack.

• To adapt our technique, say to other DbMSs which

use B-tree indexing, one needs to:

– Provide split detection algorithms.

– Find a method to use the node split information leak to narrow the

space for potential keys.

Thanks!

Any questions?

Or contact me at

ariel.waissbein:at:coresecurity:com

References

Futoransky, Saura, Waissbein, “Timing Attacks for Recovering Private Entries

From Database Engines.” Black Hat Briefings 2007 USA, Las Vegas.

Futoransky, Saura, Waissbein “The ND2DB attack - Database content

extraction using timing attacks on the indexing algorithms.” First Workshop

On Offensive Technologies (WOOT). Co-located with Usenix Security 2007.

Garcia-Molina, Ullman and Widom “Database System Implementation” Prentice

-Hall. 2000

