
Using AI Techniques to improve

Pentesting Automation

Carlos Sarraute
Core Security Technologies

and Ph.D. program in Informatics Engineering, ITBA

Hackito Ergo Sum – April 8-10, 2010

Brief presentation

 My company: Core Security Technologies

– Boston (USA)

• marketing and sales

– Buenos Aires (Argentina)

• research and development

 About me:

– M.Sc. in Mathematics from UBA

– I have worked in CoreLabs since 2000

– coordinate research activities (e.g. Bugweek) and

publication of advisories

– one of my focus areas: applying Artificial Intelligence

techniques to solve problems from the security field

Outline

 Motivation

 The Attack Model

 Pentest tool / Planner integration

 Performance and Scalability

evaluation

 Conclusion / Future work

Motivation

Penetration testing frameworks

 Facilitate the work of network penetration testers

 Make the assessment of network security more

accessible

 Main tools available:

– Core Impact (since 2001)

– Immunity Canvas (since 2002)

– Metasploit (since 2003)

• open source, owned by Rapid7 since 2009

 Difference with vuln scanners (Nessus, Retina, …)

– launch real exploits for vulnerabilities

 Pentesting tools have become more complex

– shipping more exploits

– shipping more information gathering modules

 Cover new attack vectors

– Client-side

• The perimeter is inside-out!

– WiFi

– WebApps

 Organizations are evolving

– technological and infrastructure complexity

 Need for automation!

The evolution of pentesting

Sample pentest scenario

External

attacker’s system

Anatomy of a real-world attack

Base camp

A target server is attacked and compromised

The acquired server is used as vantage point

to penetrate the corporate net

Further attacks are performed as an internal user

External

attacker’s system

A sophisticated real-world attacker will leverage trust relationships to gain access to

more valuable information assets

The Attack Model

Construction of an Attack Model

 2003: "Building computer network attacks"

– model = abstraction of the pentest practice

– technical report with the details of the model

 2003: "Modern intrusion practices"

– presentation at BlackHat by Gera Richarte

 Roadmap for the work on attack planning.

The model components

 Goals

– Objectives of the attack

• Obtain credit card numbers from the Database server

 Assets

– Anything an attacker may need during the attack

• OperatingSystemAsset, TCPConnectivityAsset and

AgentAsset

 Actions

– Atomic step that can be part of an attack

• An exploit, a TCP connection and an OS identification

method

 Agents: actors who can perform actions

Attack Graph nodes

 The graph nodes are Actions and Assets

 Every action has an associated result

– an Exploit gives as result an Agent on the target

machine

 Actions have requirements (preconditions or subgoals)

– Exploits are platform dependent and require

knowledge of the Operating System of the target

before execution

– an HTTP Exploit requires an open port (and

connectivity)

Very small example of attack planning

Goal: To gain control of any host in target network

Assets: Target's IP address
Control of my box
A set of IG tools and exploits

Actions:
test if a given port is open (port probe)
exploit ssh (on an OpenBSD)
exploit wu-ftpd (on a Linux)
exploit IIS (on a Windows)
exploit apache (on a Linux)

Plan:
Probe only ports 22, 80 and 21.
Probe port 80 first!
As soon as a port is found open, run
an exploit.
Keep probing other ports only if exploit
fails.

goal

ssh x IIS x apache x wu-ftpd x

port 80 port 21port 22

port

probe

my box

Alternated layers of actions and assets

Agent on 192.168.13.3

HP OpenView Remote Buffer Overflow

OS = Windows XP SP2 TCPConnectivity port 5053

TCPConnectOS Detect by StackFingerprintOS Detect by Banner

Banner Grabber IPConnect

IPConnectivityBanners port: 80, 21, 110, ...
Agent capability #TCP

TCPConnectivity port 80, 21, 110, ...

An Attack Graph, a bit more real

From Noel – Jajodia: "Managing Attack Graph Complexity Through Visual Hierarchical Aggregation"

How did the story continue?

 2008: PacSec presentation (with A.Weil)

– Practical approach for automation

– Ships with pentest tool (Impact)

– Limitations:

• no pivoting

• no optimizations

 2009: FRHACK presentation

– Algorithm for probabilistic planning

– More theoretical (demonstrations of the algorithm)

– Research prototype

 Today: Planner integrated with our pentest tool

Pentest tool / Planner

integration

Architecture of our solution

What is PDDL ?

 PDDL = Planning Domain Definition Language

 Language designed for the International Planning

Competition

– Lots of algorithms understand PDDL

– Use the winning algorithms to generate plans

– Compare different planners in our particular domain

Types of objects

network operating_system

host OS_version

port OS_edition

port_set OS_build

application OS_servicepack

agent OS_distro

privileges kernel_version

 Objects have types

– Helps to reduce the complexity of the search

– Use less memory

Predicates - for connectivity

 Assets are translated as predicates.

 Examples:

– (connected_to_network ?s - host ?n - network)

– (IP_connectivity ?s - host ?t - host)

– (TCP_connectivity ?s - host ?t - host ?p - port)

– (TCP_listen_port ?h - host ?p - port)

– (UDP_listen_port ?h - host ?p - port)

 Maximal arity = 3

Predicates - for the Operating System info

 Lots of predicates for the OS information

– we need detailed info to evaluate the reliability of the

exploits

 Examples:

– (has_OS ?h - host ?os - operating_system)

– (has_OS_version ?h - host ?osv - OS_version)

– (has_OS_edition ?h - host ?ose - OS_edition)

– (has_OS_build ?h - host ?osb - OS_build)

– (has_OS_servicepack ?h - host ?ossp -

OS_servicepack)

– (has_architecture ?h - host ?a - OS_architecture)

Model-related action (1)

(:action IP_connect

:parameters (?s - host ?t - host)

:precondition (

and (compromised ?s)

(exists (?n - network)

(and (connected_to_network ?s ?n)

(connected_to_network ?t ?n))))

:effect

(IP_connectivity ?s ?t)

)

 Note the "exists"

Model-related action (2)

(:action TCP_connect

:parameters (?s - host ?t - host ?p - port)

:precondition (

and (compromised ?s)

(IP_connectivity ?s ?t)

(TCP_listen_port ?t ?p))

:effect

(TCP_connectivity ?s ?t ?p)

)

Sample Exploit (1)

(:action HP_OpenView_Remote_Buffer_Overflow_Exploit

:parameters (?s - host ?t - host)

:precondition (and (compromised ?s)

(and (has_OS ?t Windows)

(has_OS_edition ?t Professional)

(has_OS_servicepack ?t Sp2)

(has_OS_version ?t WinXp)

(has_architecture ?t I386))

(has_service ?t ovtrcd)

(TCP_connectivity ?s ?t port5053)

)

:effect (and (installed_agent ?t high_privileges)

(increase (time) 4)

))

Sample Exploit (2)

(:action HP_OpenView_Remote_Buffer_Overflow_Exploit

:parameters (?s - host ?t - host)

:precondition (and (compromised ?s)

(and (has_OS ?t Solaris)

(has_OS_version ?t V_10)

(has_architecture ?t Sun4U))

(has_service ?t ovtrcd)

(TCP_connectivity ?s ?t port5053)

)

:effect (and (installed_agent ?t high_privileges)

(increase (time) 6)

))

Measuring execution times

 Measure results of exploit executions in testing lab

– 748 virtual machines in Core's testing lab

– different OS and installed applications

– all the exploits are executed every night

 Get feedback from the users

– anonymized feedback program in Impact

• sensitive data is filtered out before sending it

– natural option for Metasploit (in my opinion)

Planners

 FF = Fast-Forward (Hoffmann 2000)

– winner of the planning competition in 2000

 Metric-FF (Hoffmann 2002)

– actions can have numerical effects

– winner of the competition in 2002

– still used as a baseline in the planning competitions

– we tweaked it to use less memory

 SGPlan (Chen, Hsu et al. 2006)

– based on Metric-FF

– divides the main problem in subproblems

Planner's search heuristics

 2005: "An annotated review of past papers on attack

graphs" (Lippmann and Ingols)

– The main limitation of previous work on Attack

Graphs is scalability

 Don't construct the complete graph!

– Use an heuristic to explore the state space

– There are several variations of A* search to find

attack paths

– Heuristics: solve a relaxed version of the problem

Small Demo

Open workspace for Planning scenario

Network discovery of the target network

Launch PlannerRunner

Two agents installed after plan execution

Performance and Scalability

evaluation

Testing scenarios

 Evaluate the performance of the planners in terms of

memory consumption and running time, in scenarios

with:

– increasing number of machines

– increasing number of pivoting steps

 Generated scenarios by varying these metrics

– up to 300 machines

– up to 20 pivoting steps

Test network for the evaluation

Network Simulator used

 2009: "Simulating cyber-attacks for fun and profit"

– presented at SimuTools (by F.Miranda)

 Network simulator designed to be

– lightweight

• simulates up to thousands of machines on one PC

– realistic from the attacker's point of view

– simulates at the system call level

– transparent for a proxy-call agent

Increasing number of machines

Increasing number of pivoting steps

Conclusion / Future work

Conclusion

 Attack model realistic from the attacker's point of view

 The model scales to real-size scenarios

– hundreds of machines

– thousands of actions

 Don’t build the complete attack graph!

– use Metric-FF or SGPlan to explore the state space

 Successful integration with pentesting framework

 Presented details of the PDDL representation

– PDDL planners may be useful for other projects…

Open questions for future work

 Probabilistic planner algorithm

– integrate and test in different scenarios

– compare with other planners

 Parallel execution of actions

 Manage uncertainty

– Now: use RPT information gathering before planning

the attack phase

– Idea: build a "metaplanner" to generate hypotheses

about the unknown bits of information

Bibliography

References (1/3)

 Ammann, P.; Wijesekera, D.; and Kaushik, S. 2002. Scalable, graph-based network vulnerability

analysis. In Proceedings of the 9th ACM Conference on Computer and Communications Security,

217–224. ACM New York, NY, USA.

 Arce, I., and McGraw, G. 2004. Why attacking systems is a good idea. IEEE Computer Society -

Security & Privacy Magazine 2(4).

 Arce, I., and Richarte, G. 2003. State of the art security from an attacker’s viewpoint. In PacSec

Conference, Tokyo, Japan.

 Blum, A. L., and Furst, M. L. 1997. Fast planning through planning graph analysis. Artificial

Intelligence 90(1-2):281 – 300.

 Burns, B.; Biondi, et al. 2007. Security Power Tools. O’Reilly Media.

 Chen, Y.; Wah, B. W.; and Hsu, C. 2006. Temporal planning using subgoal partitioning and

resolution in SGPlan. J. of Artificial Intelligence Research 26:369.

 Fox, M., and Long, D. 2003. PDDL2. 1: An extension to PDDL for expressing temporal planning

domains. Journal of Artificial Intelligence Research 20(2003):61–124.

References (2/3)

 Futoransky, A.; Notarfrancesco, L.; Richarte, G.; and Sarraute, C. 2003. Building computer

network attacks. Technical report, CoreLabs.

 Futoransky, A.; Miranda, F.; Orlicki, J.; and Sarraute, C. 2009. Simulating cyber-attacks for fun

and profit. In 2nd Internation Conference on Simulation Tools and Techniques (SIMUTools ’09).

 Ghosh, N., and Ghosh, S. K. 2009. An intelligent technique for generating minimal attack graph. In

First Workshop on Intelligent Security (Security and Artificial Intelligence) (SecArt ’09).

 Hoffmann, J. 2001. FF: The fast-forward planning system. AI magazine 22(3):57.

 Hoffmann, J. 2002. Extending FF to numerical state variables. In Proceedings of the 15th

European Conference on Artificial Intelligence (ECAI-02), 571–575.

 Jajodia, S.; Noel, S.; and OBerry, B. 2005. Topological analysis of network attack vulnerability.

Managing Cyber Threats: Issues, Approaches and Challenges 248–266.

 Lippmann, R., and Ingols, K. 2005. An annotated review of past papers on attack graphs.

Technical report, MIT Lincoln Laboratory.

 Noel, S., and Jajodia, S. 2005. Understanding complex network attack graphs through clustered

adjacency matrices. In Proceedings of the 21st Annual Computer Security Applications

Conference, 160–169.

References (3/3)

 Noel, S.; Elder, M.; Jajodia, S.; Kalapa, P.; OHare, S.; and Prole, K. 2009. Advances in

Topological Vulnerability Analysis. In Proceedings of the 2009 Cybersecurity Applications &

Technology Conference for Homeland Security, 124–129. IEEE Computer Society.

 Phillips, C. A., and Swiler, L. P. 1998. A graph-based system for network-vulnerability analysis. In

Workshop on New Security Paradigms, 71–79.

 Richarte, G. 2003. Modern intrusion practices. In Black Hat Briefings.

 Ritchey, R., and Ammann, P. 2000. Using model checking to analyze network vulnerabilities. In

IEEE Symposium on Security and Privacy, 156–165. IEEE Computer Society.

 Sarraute, C., and Weil, A. 2008. Advances in automated attack planning. In PacSec Conference,

Tokyo, Japan.

 Sarraute, C. 2009. New algorithms for attack planning. In FRHACK Conference, Besançon,

France.

 Sheyner, O.; Haines, J.; Jha, S.; Lippmann, R.; and Wing, J. 2002. Automated generation and

analysis of attack graphs. In IEEE Symposium on Security and Privacy, 273–284. IEEE Computer

Society.

Thank you!

Carlos Sarraute carlos@corest.com

Joint work with

Jorge Lucangeli Obes jota@corest.com

Gerardo Richarte gera@corest.com

http://corelabs.coresecurity.com

