
Viral Infections in Cisco IOS

Ariel Futoransky

Black Hat USA
Las Vegas, August 2008

Gerardo Richarte
Corelabs
Core Security Technologies

Sebastián Muñiz
Sr. Exploit Writer
Core Security Technologies

Ariel Futoransky
Corelabs
Core Security Technologies

Researchers

Agenda
1. Introduction

2. The D.I.K. approach

3. Embedded analysis and other scenarios

4. Implications

5. Demo

6. Additional reflections

Introduction

Rootkits & IOS

Rootkits & Backdoors
A rootkit is a program (or combination of several programs)
designed to take fundamental control (in Unix terms "root"
access, in Windows "Administrator" access) of a computer
system, without authorization by the system's owners and
legitimate managers

A backdoor in a computer system (or cryptosystem or
algorithm) is a method of bypassing normal authentication,
securing remote access to a computer, obtaining access to
plaintext, and so on, while attempting to remain undetected

Hardware & Security

Hardware vs. Software

Exactly where is the line between mutable and
immutable?

It is important to define the scenario and the
threat model

Rootkits & Network Devices

Considering that
– There are known vulnerabilities affecting

different network devices.
– There are open projects that customize or

completely reprogram network devices.

And
– Control of the network infrastructure could

impact a lot of different layers.
– A single router compromise could result in a

complete subverting of the system.

Cisco IOS
IOS is not an exception.

Apparently there are no rootkits on the wild.

It is of interest because of its widespread use in
critical infrastructure components.

Many of the ideas developed here could be applied to
other network or embedded devices in general.

IOS Architecture
Monolithic architecture which runs as a single image.
All “processes” have access to each other’s memory.

Uses 'run to completion' priority scheduling.
FIFO (First In First Out) process queue.
This model reduces local security and system

stability.
Completely different to modern OSes.

Creating a rootkit

Locating API methods & data structures in
memory (prototypes & addresses)

Intercepting / Hooking

Influence & manipulation

Adding stealth functions

Binary Format
ELF

Extensive Linking
Format

Single file, single Image

1 Program Section

Loaded at fixed Address

0x80008000

File Memory

IOS Boot sequence
1. Boot loader performs POST

and locates the ELF image
in Flash.

2. The image is copied to
RAM and the entry point is
invoked

3. SFX code decompresses a
larger image and transfers
control to it.

Memory

Magic structMagic struct

DIK
“Da IOS Rootkit”

Offline approach

The DIK Approach
DIK automates the deployment of a rootkit code to different
versions of IOS.

Uses .c source for the specification of hooked function
replacement

Works for PPC & MIPS

Depends heavily on IDA Pro

Uses gcc/binutils

Hook &
Link

Hook &
Link

DIK Architecture

UncompressUncompress
Standard +
Enhanced
Analysis

Standard +
Enhanced
Analysis

Function
+

Free Space

Locator

Function
+

Free Space

Locator

Rootkit
code

.c

Rootkit
code

.c

CompilerCompiler extractextract

Compressed
Image

Compressed
Image

Glue Code
Generation

Glue Code
Generation

CompressCompress Compressed
Image

Compressed
Image

GCC OBJDUMP

UNZIP IDA

Get the Image

Unzip can be used to extract the uncompressed image

Some ELF header values are not standard.
– In particular, e_machine must be modifyied for IDA to properly

process the file.

Basic Analysis

IDA will do a good job, but not enough.

Several functions and string won't be recognized

Parts of the IOS image were not analyzed correctly.

Additional analysis is needed.

Enhanced Analysis
Additional analysis tools written in IDA-Python

Goal: Detect additional functions & strings.

Code
– Explore the whole code segment for unidentified code.
– All instructions are aligned to 4 bytes.
– Try to Identify function boundaries.

Data
– Look for unidentified strings using a better character set.
– Try to differentiate references from pure ascii data.
– Merge some split strings

Results

On a c2600-i-mz.123-24

Basic Analysis

Enhanced Analysis

28121 Funcs28121 Funcs

126379 Strings126379 Strings

46296 Funcs46296 Funcs

143603 Strings143603 Strings

Targeting low level functions
We are looking for (offset + prototype).

– Password checking.
– File manipulation.
– Logging information.
– Packet handling functions.
– Access lists manipulation function.

Examples: socket(), recv(), open(), read(), write(), etc.

Instrumentation code is present, even when usually disabled.

Lots of descriptive strings are included and could be identified
in different versions.

Call graph, and image layout can also be used

Identifying functions
Functions are described with:
– String references
– Function references
– Neighbor functions

"\nAAA/AUTHOR/EXEC(%08x): processing AV %s=\0""\nAAA/AUTHOR/EXEC(%08x): processing AV %s=\0"Func1()Func1()

Func2()Func2()

Func3()Func3()

Func2() = (
"\nAAA/AUTHOR/EXEC(%08x): processing AV %s=\0“,
“”,
“”

);

Writing a rootkit function

if (p == ‘1337’):
i = true
return RET
else:
return CONT

Linking it all together
Glue code

r = chk_pass(p)
if (r == true):

login()
else:

deny_login()
…

IOS caller

chk_pass()

trampoline

…
chk_pass code
…
return (value)

add stack
store parent’s RA
store params p
create param i
o = chk_pass_DIK(p)

fix stack
if (o == CONT):
execute orig inst
return params p
cont chk_pass_IOS
else:
r = i
jump to RA

chk_pass_DIK()

Final details

Almost done:
– Recompressed the modified image
– Recalculate Checksums

Results
– 80-120 minutes of offline processing
– All the rootkit “payload” is in c.
– Code works for PPC & MIPS

Embedded Analysis and
Other Scenarios

Upgrade scenario

Is upgrading to an new IOS version enough to
defeat the rootkit?

Can a compromised router infect a new image
on the fly?

Can a network node infect an image while it is
being downloaded.

Exploit payload scenario

Exploit reliability could benefit from this type
of analysis

The exploit uses the function recognizer to
locate low level IOS functions

Analysis code size is an important factor!

Additional Constraints

A direct port of DIK to IOS appears to be
difficult
– Recompression is already too much.

Embedded Constraints
– Available memory
– Processing power
– Runtime
– Watchdog times

Very simple Infection
Can an image be
infected by simply
adding or appending a
small fixed code block
and delaying static
analysis until needed?

With only some small
changes

Without the need to
recompress

The optimized approach

We are going to show that
– A lightweight static analyzer could be implemented
– The analyzer is fast enough to run unnoticed within

bootup time
– The analyzer is compact enough to be used as

exploit payload.
– Very simple infection is in fact possible
– A C++ implementation
– Examples for PowerPC

Lightweight Static Analysis Engine
Static analysis elements
– Sweeping over the whole binary image
– Identify function blocks
– Identify string references
– Identify function calls

Inputs
– Function description (DIK Style)
– Rootkit Code: Hook functionality (binary)

Outputs
– Identified Functions offsets
– Image modifications to implement hooks

Architecture

Phase IIIPhase III

Rootkit
code

.c

Rootkit
code

.c

Phase IPhase IUncompressed
Image

Uncompressed
Image

CompilerCompiler

GCC

BinaryBinary

Phase IIPhase II
Funcs
Address
Table

Funcs
Address
Table

Locate functions
using string
references and
neighborhood

Locate Additional
functions using

string references
and call graph

Locate every
hooked function
immediate call
and patch it

Uncompressed
Image

Uncompressed
Image

Analysis building blocks/1
A string hash function
– int code(char *)
– Saves space and facilitates comparison

Sweeping memory is simple:
– start = LOADADDRESS
– end = LOADADDRESS+imagelen
– 4 byte instructions

for(int i = start; i!=end; i+=4) {}for(int i = start; i!=end; i+=4) {}

Analysis building blocks/2
Identification macros (PowerPC)

#ifdef PPC
#define IS_PRE(x) (EQ(x,0x94) && EQ((x)+1,0x21) &&\

EQ((x)+4,0x7c) && EQ((x)+5,0x08) &&\
EQ((x)+6,0x02) \ && EQ((x)+7,0xa6)\

)

#define IS_REF(x) (\
EQ((x),0x3c) && EQ((x)+1, 0x60) &&\
EQ((x)+4,0x38) && EQ((x)+5, 0x63) \

)

#define IS_POST(x) (\
EQ(x,0x38) && EQ((x)+1,0x21) && \
EQ((x)+4,0x4e) && EQ((x)+5,0x80) && \
EQ((x)+6,0) &&\ EQ((x)+7,0x20)\

)
#endif

#ifdef PPC
#define IS_PRE(x) (EQ(x,0x94) && EQ((x)+1,0x21) &&\

EQ((x)+4,0x7c) && EQ((x)+5,0x08) &&\
EQ((x)+6,0x02) \ && EQ((x)+7,0xa6)\

)

#define IS_REF(x) (\
EQ((x),0x3c) && EQ((x)+1, 0x60) &&\
EQ((x)+4,0x38) && EQ((x)+5, 0x63) \

)

#define IS_POST(x) (\
EQ(x,0x38) && EQ((x)+1,0x21) && \
EQ((x)+4,0x4e) && EQ((x)+5,0x80) && \
EQ((x)+6,0) &&\ EQ((x)+7,0x20)\

)
#endif

94 21 FF F8 stwu %sp, -8(%sp)
7C 08 02 A6 mflr %r0
90 01 00 0C stw %r0, 8+arg_4(%sp)
4B FF 09 41 bl sub_80632F10
80 01 00 0C lwz %r0, 8+arg_4(%sp)
3C 60 81 2B lis %r3, addr
38 63 C3 54 addi %r3, %r3, addr 7
C 08 03 A6 mtlr %r0
38 21 00 08 addi %sp, %sp, 8
4E 80 00 20 blr

94 21 FF F8 stwu %sp, -8(%sp)
7C 08 02 A6 mflr %r0
90 01 00 0C stw %r0, 8+arg_4(%sp)
4B FF 09 41 bl sub_80632F10
80 01 00 0C lwz %r0, 8+arg_4(%sp)
3C 60 81 2B lis %r3, addr
38 63 C3 54 addi %r3, %r3, addr 7
C 08 03 A6 mtlr %r0
38 21 00 08 addi %sp, %sp, 8
4E 80 00 20 blr

Phase1()
1. The memory sweep loop
2. Using a 3-function look-ahead to detect patterns
3. Strings are identified by its hash code
4. Strings sets of the 3 functions are evaluated on the epilogue

and proper offsets stored
void phase1(int *func_strs, int *strings, int *func_addr)
{

for(int i = start; i!=end; i+=4)
{

if (IS_PRE(i)) { shift_lookahead(); }
if (IS_POST(i)) { set func_addr(); }
if (IS_REF(i)) { lookup(code(i)) }

}
}

void phase1(int *func_strs, int *strings, int *func_addr)
{

for(int i = start; i!=end; i+=4)
{

if (IS_PRE(i)) { shift_lookahead(); }
if (IS_POST(i)) { set func_addr(); }
if (IS_REF(i)) { lookup(code(i)) }

}
}

Phase2()
Again, a memory sweep is performed
Call references to Phase1() identified functions are detected
String references are used again
func_addr is filled

void phase2(int *func_strs, int *strings, int *func_addr)
{

for(int i = start; i!=end; i+=4)
{

if (IS_PRE(i)) { shift_lookahead(); }
if (IS_POST(i)) { set func_addr(); }
if (IS_BL(i)) { looup_func(i); }
if (IS_REF(i)) { lookup(code(i)) }

}
}

void phase2(int *func_strs, int *strings, int *func_addr)
{

for(int i = start; i!=end; i+=4)
{

if (IS_PRE(i)) { shift_lookahead(); }
if (IS_POST(i)) { set func_addr(); }
if (IS_BL(i)) { looup_func(i); }
if (IS_REF(i)) { lookup(code(i)) }

}
}

Phase3()
Instead of using trampoline and glue code as in DIK:
1. A memory sweep is used to identify every immediate

call/branch reference to the target functions
2. The operand is altered to redirect the calls

This minimizes the amount of code generated to implement the
hook

The exact same function prototype can be used in the hook
function

Resolved function offsets from previous phases (func_addr) are
used to invoke IOS components

Sample function descriptions

int strings[]=
{

code("\n%% Password check with invalid encryption type"),
code("\nAAA/AUTHOR/EXEC(%08x): processing AV %s=\0"),
code("\n%s(%08x): tried to change \"service\". Ignore this attribute\0"),
-1

};

int func_strs[]=
{

STR_AAA, STR_PASSWORDCHECK, 0, // password_check
0, STR_AAA | STR_TRIED, PASSCHECK, // aaa_author_exec
-1

};

int strings[]=
{

code("\n%% Password check with invalid encryption type"),
code("\nAAA/AUTHOR/EXEC(%08x): processing AV %s=\0"),
code("\n%s(%08x): tried to change \"service\". Ignore this attribute\0"),
-1

};

int func_strs[]=
{

STR_AAA, STR_PASSWORDCHECK, 0, // password_check
0, STR_AAA | STR_TRIED, PASSCHECK, // aaa_author_exec
-1

};

Analyzer stats
Performance:
– Runtime Complexity is

O(ImageSize + StrReferences*AvgStrLen + IosFuncs*func_addrs)

This notebooks can run ~45.5 infections per second

Memory footprint is small
– 4 bytes per string
– 20 bytes per function

Code is lightweight
– PowerPC analysis code is 1180 bytes long
– MIPS analysis code is 1468 bytes long

Infecting an image
We want a generic way to modify a compressed image so
1. The rootkit payload & analyzer code are included
2. The analyzer takes control as soon as the image is decompressed
3. The static analysis magic is performed (and hooks installed)
4. Execution continues with the decompressed IOS image.

This is what we called “Very simple Infection”

SFX in detail
1. The Compressed elf is

loaded into memory
and the SFX code is
executed

2. Compressed
Checksum is verified

3. The compressed
image is copied to
high memory

4. The image is
unpacked

5. Uncompressed
Checksum, size and
entry point are
verified

Compressed
Image

Compressed
Image

Magic structMagic struct

0x80008000PCPC

Compressed
Image

Compressed
Image

Uncompressed
Image

Uncompressed
Image

SFX in detail/2
6. Copy_and_launch() is

copied to high
memory

7. copy_and_launch is
invoked

8. Uncompressed image
is moved

9. The uncompressed
image is invoked

Compressed
Image

Compressed
Image

0x80008000PCPC

Compressed
Image

Compressed
Image

Uncompressed
Image

Uncompressed
Image

copy_and_launchcopy_and_launchPCPC

Uncompressed
Image

Uncompressed
Image

Very simple Infection
File changes

Analyzer+rootkit code is
appended after compressed
image
The compressed image length
is modified
The compressed checksum is
modified
Copy_and_launch call in SFX
is modified to invoke the
lightweight static analyzer

Compressed
Image

Compressed
Image

Magic structMagic struct

0x80008000

Compressed
Image

Compressed
Image

RootkitRootkit

Uncompressed
Image

Uncompressed
Image

Runtime
1. The sfx code copies a lot of

memory and unpacks the
image

2. The analyzer gets control and
patches memory

3. Finally, copy_and_launch is
invoked

Compressed
Image

Compressed
Image

RootkitRootkit

copy_and_launchcopy_and_launch

Implications

Therefore…

This shows that
– An image infected on the fly,
– An embedded static analyzer,
– Static analyzer as an exploit payload,
– And common virus+rootkit stealth measures

… are all very feasible scenarios,
sophisticated exploitation and abuse of network
devices is not only possible but should be
seriously considered in the threat model

So what should we do?

Verify?
– How?

Update?
– How?

Check logs?

Encrypt all my traffic?

Demo

Additional reflections

A complex scenario
Organization X has several
networked locations

The network is supported on
a backbone built on some of
the systems targeted on this
presentation

We suspect that some routers
have been compromised

How should we proceed?

R1R1 R2R2 R3R3 R4R4

FWFW

inetinet

Verifying

Is there a way to verify what’s running on a
system?

Is there a way to prove reboot remotely

Check “Alien vs. Quine”, for an interesting
approach for a specifically designed embedded
system that supports verification of system’s
memory and running processes

Alien vs. Quine. IEEE Security & Privacy Vol. 5 No. 2
Vanessa Gratzer, Université Paris II Panthéon-Assas
David Naccache, École normale supérieure

Secure logging?

Why not use some cryptographic tools to make
it difficult to hide attack traces.
Secure logging guarantees that logs generated
before the intrusion event cannot be altered
without warning the netadmin
void OnUpdate(image)
{

Secret = crypto.hash(secret);
sign = crypto.sign(image, secret);
log(sign);

}

void OnUpdate(image)
{

Secret = crypto.hash(secret);
sign = crypto.sign(image, secret);
log(sign);

}

Crypto could also be…
Notice that finding a rootkit doesn’t mean that you can understand the
impact of the incident

Obfuscation and complex cryptographic protocols could shrink our forensic
analysis capabilities

Imagine that you found a rootkit (from a suspected six month old
compromise) with the following code:
Void packet_input(packet p)
{

if (crypto.hash(p) == CRYPTO_CONSTANT)
{

decrypt(secretfunction, sizeof(secretfunction), p);
secretfunction();

}
};

Void packet_input(packet p)
{

if (crypto.hash(p) == CRYPTO_CONSTANT)
{

decrypt(secretfunction, sizeof(secretfunction), p);
secretfunction();

}
};

Thank you

ariel.futoransky at coresecurity.com
www.coresecurity.com

www.coresecurity.com/corelabs

