
Enforcing Privacy in Web Applications

Ariel Futoransky
Corelabs, Core Security Technologies,

Florida 141, 7mo piso, 2do cpo.
Bs. As. (C1405AAC), Argentina

Ariel Waissbein
Corelabs, Core Security Technologies

and
Depto. Mateḿaticas, FCEyN,
Universidad de Buenos Aires,

Argentina.

Abstract

The development of web applications is typically done
oblivious to privacy precautions. Largely, this is due to lack
of technical knowledge and appropriate tools for enforc-
ing privacy. As a result, web users’ personal information
is constantly at risk. We introduce a solution that protects
arbitrary web applications from several dangerous privacy
threats. It is easy to install, usable (e.g., in terms of ex-
pressiveness and appropriate enforcement), and requires no
changes to the web application’s code. Its main functional-
ity is given by modules that are situated between web server
and user, and between web server and APIs. These modules
assign a privacy tag to inbound data according to its ori-
gin (e.g., received through a web form field or stored in an
internal database); and block outbound data according to
its privacy tag, what is its destination, and its syntax. This
allows us, for example, to block private data from being ex-
posed to users. We have implemented a prototype for the
PHP platform that is efficient in terms of CPU and memory
usage. We also verified that it enforces privacy in several
potentially-vulnerable scenarios.

Furthermore, we provide a plug-in for web browsers that
lets users visualize the privacy policy in action.

Keywords: Privacy, Web-scripting Languages, Usability,
Web-application Security.

1 Introduction

Web applications are services delivered to end users by a
web server, typically over the Internet and accessed through
web browsers. For example, Gmail and Amazon.com. Web
applications handle large amounts of data concerning dif-
ferent web users while enforcing diverse privacy policies.

In the context of web applications, a “privacy policy” is
an agreement, between web users and the organization that

hosts the web application, on how should users’ information
be handled. For example, web users will enter their credit
card numbers in a web form, if they are ensured that it will
be kept private; and they will share their medical records for
research purposes, if they are guaranteed privacy.

We consider the privacy problem from the perspective of
both parties involved. Web users on the one side, and the
person responsible for privacy enforcement (we call him
the security officer, or SO for short) together with the un-
derlying web-development group. Web applications pose a
difficult problem to web users, that must rely on the appli-
cation’s owner commitment to privacy, and to security of-
ficers that must enforce privacy policy efficiently with lim-
ited resources ([16]). In most cases, the web users’ per-
sonal information is seldom protected conclusively, some-
times knowingly, and sometimes by negligence. Attackers
are constantly targeting web applications, mostly by access-
ing them as standard users and sending malformed input
([15]). A successful attack may expose private information,
cause severe damage to the attacked organization ([12]), and
to the exposed web users ([21]).

The only possible protection is good privacy enforce-
ment. As with most development projects, and without
loss of generality, we may describe the privacy enforcement
processes in three stages —specification, development, and
quality assurance1. First, the security officer defines the re-
quirements (ideally during the web application’s specifica-
tion), and forwards this document to the developers for its
implementation.

Developers use one of several languages for web appli-
cation design, from complex and powerful platforms (e.g.,
Java, .NET) to easy-to-use scripting languages (e.g., PHP,
Perl, ASP). These languages help developers to produce
dynamically-generated pages quickly by way of high-level
programming capabilities that reduce the difficulty of ac-

1Specific experiences might deviate from our description, but that has
no implications on our results; and most of the deficiencies that we of
privacy enforcement named here can be generalized to other contexts.



cessing complex functionalities, such as mail agents and
database back ends. However, these facilities are oblivi-
ous to security and privacy (see [15], [2]); for example, one
cannot establish in a simple way that data received through
a certain channel must not be exposed to users.

Since scripting languages have a low learning thresh-
old, many projects are commissioned to inexperienced web
developers, with little security insight, that cannot imple-
ment privacy policies properly with the available technolo-
gies. Novel application security products (e.g., [19], [1])
are of no avail, because they are aimed at reducing security
risks but not at enforcing privacy (see Section 2). The only
choice left is that (careful) developers implement the pol-
icy enforcement requirements ([14]), systematically mod-
ifying the code associated to web users’ data throughout
the complete application ([15]); e.g., introducing security
checks and policy-validation commands. Needless to say,
this is a time-consuming job, it requires special technical
skills (cf. [17]), and its success depends on the coverage of
this process (i.e., one mistake can be decisive).

After development has ended, the SO may hire a security
audit team to identify and help him to remove weaknesses
in the web application; thus improving the overallstrength
of the privacy enforcement. Optionally, he publishes the al-
leged privacy policy (see, e.g., [8], [7]). (Web users should
be informed of the privacy policy, and be guaranteed that it
is up-to-date and being enforced.) Finally, the web applica-
tion is deployed.

On their side, web users can take privacy and security
precautions when accessing web applications; e.g., review
SSL configuration, cookies configuration, check certificates
(See [10]), and read the organization’s privacy policy (see
[7])). But they have no protection against many privacy
threats ([21]). Users must decide if they trust that the al-
leged policy is being enforced before submitting personal
information, or exit the site.

In general, evidence shows that privacy enforcement in
web applications suffers from great problems that are not
being addressed today. This paper is tasked with provid-
ing security officers with a usable tool for enforcing privacy
policies.

Organization: The next section describes related work. In
Section 3 we describe the architecture for our solution, and
we lay the model that describes what are the privacy policies
that the solution enforces, and how are these defined by the
security officer. In Subsection 3.4 we analyze experiences
with a prototype that we implemented, and in Section 5 we
summarize our results. In Section 4 we introduce a users’
privacy tool that can be used in conjunction with our solu-
tion. Finally we discuss future work.

2 Related work

Application security solutions, such as [1], [19], [11],
[3], and [4] cannot be used for many privacy tasks. They
protect against (security) attacks that might expose privacy,
but do not let the security officer configure privacy policy;
this damages their expressiveness and identifiability as pri-
vacy systems ([20]). The solution of [16], while interest-
ing in another privacy scenario, cannot be used to solve the
problems considered in this paper, since its relies in security
requirements (i.e., code security) that cannot be ensured in
our (more general) setting.

One must name theTrustBaras a usable web-users’ tool
that protects against spoofing ([10]). We also want to men-
tion Privacy Bird ([7]) as prior art and inspirational work
in privacy tools for web users, which is a web user plug-in
that matches user’s (privacy) preferences with the alleged
privacy policy of websites using P3P specifications ([6]).

The technique for “augmentation of the execution envi-
ronment” that we present in this paper has very interesting
applications in web-application security. This is the subject
of a companion paper ([9]).

3 Solution

In this section we describe the architecture for our solu-
tion. From this description readers will understand the un-
derlying model, how does the solution work, and what does
it do. We assume that readers have an elementary knowl-
edge of web development2. Our description should suffice
for an experienced developer to implement it, however, it is
not our intention to give full implementation details.

Let us fix a web application platform (e.g., Java, .NET,
PHP, Perl, ASP). Assume that our tool is available for pro-
tecting web applications developed for this platform, and
assume given one such web application, i.e., running code
is available. Assume moreover, that the infrastructure is set,
i.e., the hardware components are placed, and the software
platform and our solution have been installed.

3.1 The augmented execution environment

We call execution environment (or EE for short) to
the (platform-specific) virtual machine/interpreter that per-
forms the actions specified in the web application’s source
code. Theaugmented execution environment(AEE for
short), which is the core of our solution, is an enhancement
of the execution environment. It includes every function-
ality from the former but its data structures (e.g., internal
objects) and the data-manipulation rules (e.g., defined in-
terface layer) are modified to allow policy enforcement.

2See [13], [18] for definitions and elementary notions in web develop-
ment.



We refer to those (instantiated) data structures han-
dled by the EE or the AEE —e.g., numbers, charac-
ters, or strings, in local or global variables, and function
parameters— asobjects. Let us assume, without loss of
generality, that the structure for any object in the EE is rep-
resented by a 2-tuple consisting oftype and value; e.g.,
the number63 is represented by the 2-tuple(integer, 63).
Objects in the AEE are augmented, and represented by 3-
tuples consisting of type, value, andprivacy tag. A pri-
vacy tagconsists in a sequence of 8-tuples of the following
boolean variables:public, store allowed, plaintext, owner
only, free4, . . . , free8 —wherefree4, . . . , free8 are left
to be defined by the SO arbitrarily. Tagging is done accord-
ing tooperations.

Every manipulation with objects is called anoperation.
We consider three different types of operations:inbound
operations, which are the operations that accept input di-
rectly from web users, back-end storage, or web services
and result in the creation of an object in the AEE;out-
bound operations, which are the operations where the AEE
“sends” information (e.g., objects) to APIs or web users;
and internal operations, which consist in computations
with objects within the AEE.

On executing an inbound operation the AEE assigns a
privacy tag to each of the associated objects according to
privacy policy, and depending exclusively on its source. On
executing an outbound operation the AEE can block the as-
sociated object from being sent away, and/or log this action,
according to the privacy policy, and depending on its pri-
vacy tag, destination, and syntax of the associated object/s.
The relationship that inbound and outbound operations have
with privacy policies is described in detail in Section 3.2.

Internal operations either create a new object or reassign
values to existing objects. The AEE tags these objects ac-
cording toprivacy propagation rules, which are imple-
mented with respect to a lattice structure on the set of all
possible privacy tags (they establish what is the tag for new
or reassigned objects).

For simplicity, and without loss of generality, we give de-
tails for binary operations. LetA denote a binary operation,
and letc := (tc, vc) := A(a, b) be the result of applying
operationA to the objectsa := (ta, va) andb := (tb, vb)
in the execution environment. Leta′ = (ta, va, taga) and
b′ = (tb, vb, tagb) be defined by adding privacy tags toa and
b. Then this operation is modified by the AEE, so that it pro-
duces the augmented objectA(a′, b′) := c′ := (tc, vc, tagc)
wheretc, vc are those defined above and tagc is computed
as tagc := taga AND tagb (where the AND operation is cal-
culated boolean by boolean). For example, ifpublic=true
in taga andpublic=falsein tagb, thenpublic is set to(true
AND false) = falsein tagc —which expresses the fact that
object c contains information that is private. These rules
define the lattice structure mentioned above.

Internal operations manipulating strings receive excep-
tional treatment because they tag results with sequences of
8-tuples, one per character. For example, string concatena-
tion is modified in order to construct the privacy tags for the
new object accordingly. That is, given the string “hello ”
with every character tagged with the variablepublic=true
and given the string “john” with every character tagged with
the variablepublic=false, their concatenation will return the
string “hello john”, where the first six characters are tagged
with the variablepublic set totrue and the last for charac-
ters are tagged withpublic set to false. To avoid storage
and performance penalties, the tool uses a single tag for the
string in case all the characters are tagged alike.

Internal operations that compute cryptographic func-
tions, e.g., encrypt or hash, are also exceptional and return a
single object tagged with the variableencryptedset totrue.

3.2 The privacy policy

In order to define privacy policy we need to fix the fol-
lowing notions. Aninput descriptor consists of a pairin-
put type andtarget URL . The former describes the method
in the platform executing an inbound operation, e.g., http-
post, http-get or mysql. The latter describes the parame-
ter for that method, e.g., a field in a web form, a field in a
database table, a file or directory; it may include wild-cards
or be empty in order to specify the default behavior. An
output descriptor consists of a pairoutput type andtarget
URL . Likewise, the former describes the component in the
platform (or back end) executing the outbound operation,
while the latter describes the elements affected. Privacy
rules establish what outbound operations should be allowed
or blocked, logged or not, according to the privacy tags and
syntax of the object associated to the outbound operation.
A privacy rule consists of an output descriptor, a set of pri-
vacy tags, a syntactic description (e.g., only numbers, not in
{/, ”,&,−}), and anaction to be executed (accept, block,
remove sensitive information and accept, and/or log).

During configuration, the SO executes the following
steps: i) he lists theinput descriptors, enumerating every
possible inbound operation; ii) he assigns a privacy tag to
each input descriptor; iii) he lists theoutput descriptorsenu-
merating every possible outbound operation; and iv) he de-
fines theprivacy rules. Steps i) and ii) configure the AEE
so that it adds a privacy tag to every object associated to
an inbound operation. After this is done, the AEE parses
the code for the web application and adds HTML tags to
the portion of code associated to an input descriptor. When
the web application is running, and as users are requested
to enter information, this lets them know what are the pri-
vacy rules associated to that piece of data. Steps iii) and iv)
let the SO define what action to follow for every different
outbound operations. Configuration details are stored in a



readable file that is accessible by the AEE. The AEE evalu-
ates the privacy rules in order, and applies the first matching
rule.

3.3 The Security Officer Interface

The security officer can write privacy policies and per-
form administrative tasks using a special-purpose interface.
He may review the active privacy policy, modify and pub-
lish a new one, or review the logs generated by this tool.

The logs are listed in an editor, where each log entry
includes the time and type of privacy violation attempt, the
rule affected, the module function that tried to execute the
action, astack trace, the offending command, and the tags
attached to each of its arguments.

3.4 Experience results

We implemented the solution for PHP. Benchmarks ac-
cording to a standard PHP testing suite indicate a minor per-
formance penalty: the processor usage augmented by %10
and memory only by %18. To test privacy and security en-
forcement we ran popular open-source content management
systems (postnuke and mambo), first without external pro-
tection and next with our solution. We developed exploits
for the 15 latest publicly known (web application) attacks
reported in Bugtraq ([5]) that could be used to violate pri-
vacy policies. We inserted errors in the authentication pro-
cess for these web applications that allowed attackers to vio-
late policy; we discovered that they could only be exploited
to this end in the unprotected case. We witnessed that while
the exploits worked in the former case, they stopped work-
ing when the application was protected.

Several users received a trial copy and reported good ex-
perience results. In one case, the logging capability helped
us to identify a SQL-injection vulnerability that could have
been exploited to reveal sensitive information.

4 The web user’s experience

The web user of a protected application can optionally
install a browser plug-in, a policy system ([14]), that con-
tinuously lets him visualize details for the privacy policy in
place; plus it allows him to enforce his own policy. For ex-
ample, do not submit data to my webmail provider if it will
be treated as public.

Every input field in webpages rendered in the user’s
browser is marked by a privacy icon, depending on the
HTML tag associated to it (see Fig. 1). If the user’s cursor
lies in this field, the toolbar (Fig. 2) displays the privacy cat-
egory associated to this field, a description of this category,
and its privacy icon. The web user can access descriptions
for the exact rules used to validate the privacy of operations,

Figure 1. The plug-in working

Figure 2. The plug-in’s toolbar

and other additional information, using some of the plug-in
buttons.

5 Results and Remarks

Our main outcome is a technique that allows the web ap-
plication platform to keep track of the privacy requirements
associated to every piece of data. The security officer for a
web application can use these tracking capability to spec-
ify privacy policy with good expressiveness and appropri-
ate boundaries (see [20]); and, our solution implements this
policy efficiently and deterministically.

Our solution lets the security officer define (during con-
figuration) all the inbound and outbound operations with the
granularity he requires of the solution. He may attach pri-
vacy tags to every inbound piece of data according to its ori-
gin, and establish rules for preventing misuse of this data.
This simple model allows us to deter most privacy-related
attacks, that is, one can express and deter most of the pri-
vacy threats.

Protection is deterministic and starts immediately after
configuration. Deployment requires neither modifications
to the network configuration nor customization of the code
of the web application.

The tool can be ported to the platforms of most of the
web-application architectures in use today. We chose to im-
plement the solution over PHP, since it is the open-source
platform with the largest number of users. However, the de-
tails we give will allow a development team to implement
the tool mutatis mutandisin other platforms —including
Java, ASP, Perl, Python, .NET. We have estimated a tolera-
ble performance penalty in terms of processor and memory



usage for the implementation of these tools (see Section 3.4
for supporting evidence). Security audits confirmed that the
implementation respects the model. As a result, our solu-
tion enforces privacy with very low rates of false positives
and false negatives.

We provide a tool for web users: a browser plug-in which
presents them with privacy information and allows them to
make decisions in terms of their personal privacy needs (cf.
[7]).

We wish to mention the following advantages of our ap-
proach:

• Security officers can use this tool to implement privacy
policy for arbitrary web applications. This fact allows
the community of security officers and web developers
to experience with this tool and audit its performance
and privacy strength —as opposed toad hocsolutions.

• The fact that privacy policy is defined in a separate pro-
cess to that of web development is very promising on
it own; in fact, it requires minimal knowledge in web
development and the work needed to do this is propor-
tional to the semantics of the web application (and not
the size and clarity of the code).

• There is a very good correlation between the policy
configured by the security officer and that enforced.

• In terms of user experience, the information displayed
by the users’ plug-in is a complete and direct repre-
sentation of the privacy policy, and not just the SO’s
privacy requirements write up.

We leave open the problem of studying different privacy
tags and preservation rules. An important aspect to be con-
sidered is devising functionalities for our solution that al-
low the access to statistical indicators for private data (but
do not harm privacy). This would lead to secure realizations
for some privacy information retrieval functionalities, e.g.,
for use in medical record privacy.

A second problem that we leave for future work is re-
searching implementations that enable us to store data in the
back end databases including their privacy tags —of course
doing this in our setting where we require no modifications
to the source code of the web application.

References

[1] Airlock. Web-application security, January 2005. URL:
http://www.seclutions.com/ .

[2] V. Anupam and A. Mayer. Security of web browser scripting
languages: Vulnerabilities, attacks, and remedies. InProc.
7th USENIX Secur. Symp., pages 187—199, January 1998.

[3] E. G. Barrantes, D. H. Ackley, S. Forrest, T. S. Palmer,
D. Stefanovíc, and D. D. Zovi. Randomized instruction set

emulation to disrupt binary code injection attacks. In10th
ACM Conf. on Comput. and Commun. Secur., Washington
DC, USA, 2003.

[4] S. Boyd and A. Keromytis. SQLrand: Preventing SQL In-
jection Attacks. In M. Jakobsson, M. Yung, and J. Zhou,
eds.,Proc. of the 2nd Appl. Cryptogr. and Netw. Secur. Conf.,
volume 3089 ofLNCS, Yellow Mountain, China, June 2004.
Springer.

[5] Bugtraq. Mailing list, May 2005. URL:http://www.
securityfocus.com .

[6] L. Cranor, M. Langheinrich, M. Marchiori, M. Presler-
Marshal, and J. Reagle. The Platform for Privacy Prefer-
ences 1.0 (P3P1.0) Specification. WWW Consortium Re-
comendation, April 2002.

[7] L. F. Cranor, M. Arjula, and P. Guduru. Use of a P3P user
agent by early adopters. InWPES ’02: Proc. of the 2002
ACM Workshop on Privacy in the Electronic Society, pages
1–10. ACM Press, 2002.

[8] L. F. Cranor, M. Langheinrich, and M. Marchiori. A
P3P Preference Exchange Language 1.0 (APPEL1.0),
2002. URL: http://www.w3.org/TR/2002/
WD-P3P-preferences-20020415 .

[9] A. Futoransky and A. Waissbein. A Dynamic Technique
for Enhancing Security and Privacy in Web-based Solutions.
Tech. Report, Corelabs, Core Security Technologies, 2005.

[10] A. Herzberg et al. Trustbar, May 2005. URL:http://
trustbar.mozdev.org .

[11] Imperva Software. Total Application Security, January
2005. URL:http://www.imperva.com .

[12] J. Krim Credit Data Firm Might Close After Database
Hacked, Consumers Cancel Contract. Washington Post. July
22, 2005.

[13] L. Lopuck. Web Design for Dummies. For Dummies, 2001.

[14] P. McDaniel. Useless metaphors? Why Specifying Security
Is So Hard, 2004. DIMACS Workshop on Usable Privacy
and Secur. Software.

[15] OWASP Organization. The ten most critical web-application
security vulnerabities. OWASP technical report. URL:
http://www.owasp.org , 2003.

[16] A. Rezgui, M. Ouzzani, A. Bouguettaya, and B. Medjahed.
Preserving privacy in web services. InThe 4th Int. ACM
Workshop on Web Inf. and Data Manag., Virginia, USA,
2002.

[17] R. S. Sandhu. Good-enough security: Toward a pragmatic
business-driven discipline.IEEE Internet Computing, 7(1),
2003.

[18] J. Scambray and M. Shema.Web Applications (Hacking Ex-
posed). McGraw-Hill Osborne Media, 2002.

[19] Teros. Web-application security and performance, January
2005. URL:http://www.teros.com .

[20] K.-P. Yee. User interaction design for secure systems. In
ICICS ’02: Proc. of the 4th Int. Conf. on Inf. and Commun.
Secur., pages 278–290. Springer-Verlag, 2002.

[21] T. Zeller Jr. Black market in credit cards thrives on web,
2005. New York Times (late edition). June 21, 2005.



Acknowledgments

The authors want to express their gratitude to D. Tis-
cornia for improving the system and implementing the
benchmark model, and J.P. Martinez Kuhn for auditing
the prototype implementation and analyzing security im-
plications. They want to thank B. Acselrad fromhttp:
//www.sleepyminds.com and Mart́ın Coco for test-
ing and preliminary feedback, and Ivan Arce for his helpful
remarks. They are grateful to the anonymous referees for
suggestions that helped to improve the presentation of the
results of this paper.


