
Timing Attacks for Recovering
Private Entries From Database

Engines

Damian Saura, Ariel Futoransky
and Ariel Waissbein

-Core Security Technologies-

August 1, 2007

Why are DBs interesting to attackers

• Database management systems are used to store
huge amounts of data that need to be searched for
and refreshed.
– E.g., target credit card data, health care info., social

security numbers and other personal data, ...

• So DbMSs and the servers that host them are
targets of attacks

Web ApplicationInternet DbMS
Web

Users

Internal Users

How to compromise a DB
• An attacker breaks into the web server hosting the DB.

– Insecure configuration, lack of patching, …

• An attacker exploits a SQL-injection vulnerability in the
web application (front-end of the DB).
– Insecure development of the webapp

• An attacker leverages lax permissions and privilege
levels in the DB.
– Someone that can connect to the server, but is not a DB

user, compromises an insecure authentication protocol.
– A legitimate user siphons out confidential data.

• An attacker uses a timing side-channel that relies on
the ability to make INSERTs with chosen data.

Main result: scenario

• Consider a populated table in one
deployed database management system
(e.g., MySQL, MS SQL, Oracle, …)

• Users cannot retrieve data from one
column directly, but can insert values in
this “privacy-sensitive” column.

• Users can measure the response time of
the INSERT transaction.

Intro: Main result (2)

• Then an attacker, passing as a user, can
retrieve the values of this column.
– The success of the attack depends on the

accuracy to time inserts and other parameters
– The “complexity” of the attack can be

measured by the number of inserts it requires.
– The number of inserts required is proportional

to the size (in bits) of these values, times the
number of values retrieved.

Intro: Main result (3)
• Explicitly,

– We designed a side-channel attack that relies only on
a data structure, B-trees, that is used by most
commercial DbMS and the ability to make inserts in
the target field and time responses (accurately).

– We implemented the attack in our lab against a
MySQL database and proved it real.

• Further remarks,
– What does this vulnerability imply?
– The attack could be improved (complexity).

Indexing table columns, containing
sensitive data, is dangerous.

A first example

The CMS

• Imagine a Content Management System (CMS) that:
– displays a user/password table (as below) and
– when a user clicks on Password, the table entries are

sorted according to the alphabetical order of the
passwords.

• A user that is allowed to add entries to the table can
then execute a divide et impera search (Latin for
binary search) for any other user's password.

Username Password
Dick ******
Harry ******
Tom ******
….

The CMS
• Imagine a Content Management System (CMS) that:

– displays a table of the form and
– when a user clicks on Password, the table is reordered

according to the alphabetical order of the passwords.

• A user that is allowed to register can then execute a
divide et impera search for any other user's password.

Username Password
Dick ******
Harry ******
Tom ******
….

Username Password
Tom ******
Dick ******
Harry ******
….

Hence Tom’s password < Dick’s password
There is an information leak!

Abstract and talk outline

1. Database management systems
2. DbMS leak information
3. An attack that exploits this leak
4. Experiments with MySQL
5. Extensions, countermeasures and

discussion

Database management
systems

and how is indexing implemented

Intro to DbMSs: Scenario

• Clients connect to access high volumes of
data
– Persistent storage
– Queries / data manipulation

• Need for efficient searching, writing and
deleting data
– Programming interface. Web

server

DbMS
DB users

Databases (e.g., RM & SQL)
• The relational model & the SQL standard.

• Data is stored in tables: each row contains a record, and
the columns represent the record fields.

• If table rows are not sorted by the values in its fields,
then each search/insert/delete query (over a field)
requires scanning all the column.
– Thus, TABLES SHOULD BE SORTED!
– In fact, updating, inserting and deleting must be optimized.

• Can’t store everything in RAM. Must use the hard drive
and retrieve data to memory in chunks.

Name Passport Football team

Cacho 32102806 San Lorenzo
Pedro 25061305 River
Tomas 9567205 Racing

Database architecture

• Data is stored in “sorted chunks”
(i.e., pages).

• The querying process:
– The user makes queries.
– To answer, the DbMS retrieves

only the required pages from
Storage into memory.

– The cost of page I/O dominates
the cost of typical DB operations.

• To understand more deeply how
this cost is affected by queries,
we must analyze indexes.

Index/file/
record manager

Buffer manager

Storage
manager

Storage

Execution
engine

Query Compiler

User

Storage
architecture

Sorting tables
• Each DB table requires one primary index

– It can be generated automatically by the DbMS, or according
to a user-selected search key (e.g., a field).

• Each index produces an (internal) table that is stored by
the DbMS in an index data structure (e.g., B-trees):
– Storing each search-key together with a pointer to the data

(row), or
– Storing the data together with the search key.

Pass. Data

9567205 Tomas, Racing
25061305 Pedro, River
32102806 Cacho, San Lorenzo

9567205, Tomas, Racing 25061305, Pedro, River 32102806, Cacho, San Lorenzo …
Clustered index

9567205, p1 25061305, p2 32102806, p3

Unclustered index

B+ trees design principles
• Each node can store at most a prefixed amount of search

keys (and occupies one disk page in Storage).
• Each node must be at least half full.
• Each search key is paired with a pointer or the data.
• Leaf nodes (lower level) are linked in a list (black arrows

below).

28 35

1 4 5 8 9 28 30 31

8 13

28

35 92

<28
≥28

<8 ≥8 ≥ 35

13 17 19 22

Search & Insert in a B+ tree
• Looking up a search-key value or range is easy, we

start from the root node and move down as in the
picture below.

• Inserts to non-full nodes are likewise easy.
• Operations that require adding/deleting nodes: let’s

see…

28 35

1 4 5 8 9 28 30 31

8 13

28

35 92

<28
≥28

<8 ≥8 ≥ 35

13 17 19 22

The effect of inserts

• Let’s picture two consecutive leaf nodes.

• We start adding random values until the
left leaf is full.

1 4 6 7 9 10 50 58 72 94 99

(TOY EXAMPLES)

The effect of inserts (2)

1 4 6 7 9 10

1 4 6 7 9 10

50 58 72 94 99

50 58 72 94 99
Insert 15

15

The effect of inserts (2)

1 4 6 7 9 10

1 4 6 7 9 10

1 4 6 7 9 10 15

50 58 72 94 99

50 58 72 94 99
Insert 15

Insert 21
15

21 50 58 72 94 99

The effect of inserts (2)

1 4 6 7 9 10

1 4 6 7 9 10

1 4 6 7 9 10 15

50 58 72 94 99

50 58 72 94 99
Insert 15

Insert 21
15

21 50 58 72 94 99

Insert 18
211 4 6 7 9 10 15 18 50 58 72 94 99

The effect of inserts (2)

1 4 6 7 9 10

1 4 6 7 9 10

1 4 6 7 9 10 15

50 58 72 94 99

50 58 72 94 99
Insert 15

Insert 21

Insert 18

Insert 43

15
21

21

50 58 72 94 99

1 4 6 7 9 10 15 18 50 58 72 94 99

1 4 6 7 9 10 15 18 21 43 50 58 72 94 99

The effect of inserts (2)

1 4 6 7 9 10

1 4 6 7 9 10

1 4 6 7 9 10 15

15 18 211 4 6 7 9 10

50 58 72 94 99

50 58 72 94 99

50

Insert 15

Insert 21

Insert 18

Insert 43

Insert 33

15
21

21

43

50 58 72 94 99

1 4 6 7 9 10 15 18 50 58 72 94 99

1 4 6 7 9 10 15 18 21 43 50 58 72 94 99

33

There is a data leak

• Once the left node is full, it is split in two.

• Remember: each node must be at least
half full.

• An insert that produces a split takes more
time than other inserts!

15 18 21 33 431 4 6 7 9 10 50 …

How to turn the information
leak into an attack

E.g., can we use split detection to
find key values?

Inserting: consecutive values

• Each line represents a leaf, that can fit 10 search
keys.

• Previous inserts are in white, the attacker’s inserts
in red.

• What happens if a user knows the leaf starts at 3,
the next leaf starts at 25 and inserts “11,…,16”?

3 6 7 9 10

Inserting: consecutive values

• Each line represents a leaf, that can fit 10 search
keys.

• Previous inserts are in white, the attacker’s inserts
in red.

• What happens if a user knows the leaf starts at 3,
the next leaf starts at 25 and inserts “11,…,16”?

3 6 7 9 10

1411 12 13 153 6 7 9 10

Inserting: consecutive values (2)

• The user inserts11-16 and knows nothing about the pre-
existent keys (other than 3).

• Assume that he knows that “16” produced a split!

• Then, he knows that there are 4 keys between 3 and 11!

• If the user has more information about the particular B+-
tree implementation, he can guess what is the new
leaves configuration.
– This is because, some DbMSs use an optimization of B+-

trees and will not split leaves in halves in certain cases.

* * * * 1411 12 13 153 leaf status before
inserting 16

Generalizing
• We have that:

– If we have the ability to make inserts on an indexed field
and detect node splits,

– Then, given an two search keys a,b on the same node, we
can tell whether there is at least one key between them;
plus, learn some info about the new node configuration.

• Why?
– Assume that n keys fit in one node and n is known.
– Insert the keys b+1, … until there is a node split.
– If we stopped before inserting b+n-1, then there must exist

keys between a and b!

• Also, since primary keys are not allowed to repeat:
– if we attempt to insert a key with an already existing value

we will receive an error –and therefore learn the value of
this older key!

Attack design (1)

• At each step, we divide an interval in two
halves, if the first half contains one key,
we continue with this.

• When the interval is smaller than the page
size, we test all its keys.

keys

at least one key in this interval

Attack design (2)

• In order to design the attack we need to
– Develop a split detection algorithm
– Develop a binary-search algorithm that,

given an interval [a,b] containing at least a
key, determines whether [a, (a+b)/2] contains
a key (else [(a+b)/2, b] contains a key).

a (a+b)/2 b

Estimating the cost of an attack
• Let’s say we are attacking a credit cards

database
– We start with 0 and 1017-1 that includes all the (16

decimal digits, or 56 binary digits) credit cards.
– Assume that each page disk contains n=512=29 keys.

• We need to invoke ≈46=(56-10) times the binary-search
algorithm, each invocation requiring <512 inserts, plus the
search in the last step. This amounts to an upper bound of
11500 inserts.

Attacking MySQL-InnoDB

1. Scenario and Results
2. Attack details

a) How splitting works in InnoDB
b) The attack algorithm
c) Node Split detection algorithm

3. Statistics

Scenario summary

• MySQL is an open-source and very popular DbMS.

• InnoDB is one of the storage engines that come with MySQL
– It requires a clustered index and uses a B+-tree structure for

indexes.

• The DbMS
– Clean install of MySQL-InnoDB
– Populate the database with different data types and table sizes
– Connect as a MySQL user through an Intranet (i.e., one switch)
– Only allowed to make inserts.

• Noise
– There are other users in the net
– No other users connecting to MySQL.
– The web server might run other services.

Experimental results

• We tested our attack
– against three tables, with one key 113111 plus other

uniformly chosen values between 0 and 10M.
– The (theoretic) estimate for the number of inserts

required for the attack is 6 x 574 x 3 = 14100.

of keys Success
rate

of inserts Time

1 3/3 14100 10:37
101 3/3 13145 10:39
1001 3/5 14371 10:47

Number of
node splits Keys per

page

Split detection
algorithm

Attack details

• We need to understand page splits under
InnoDB,
– Indexes are stored in a B+-tree structure, with

some ad hoc optimizations.
– The restructuring of the tree after a node

addition depends on the last few inserts.
– When making consecutive inserts it has a

special behavior.
– Else, pages are split in halves when full.

Page splitting in InnoDB

Attack details

InnoDB and B+-trees
• We analyze for a non-full node

what is the effect of inserting consecutive
values i,i+1,… until there is a split?
– When i has no value to its right.
– When i has one key to its right.
– When i has several keys to its right.

…i

… i
K1i

K1 K2 …i

…

…

Attack details

Case 1
• What is the effect of inserting consecutive

values i,i+1,… until there is a split?
– When i has no value to its right.

... i … i+m-1 i+m …

Before the split... i … i+m-1 …

After the split

… Initial status

Attack details

Case 2
• What is the effect of inserting consecutive

values i,i+1,… until there is a split?
– When i has one key to its right.

K…

... i … i+m-1 i+m

... i … i+m-1 …K

…K …

Before the split

After the split

Initial status

Attack details

Case 3
• What is the effect of inserting consecutive

values i,i+1,… until there is a split?
– When i has several keys to its right.

… Initial status

... i … i+m

Before the split

... i … i+m-1 …

After the split

K1 K2 …

…K1 K2 …

K1 K2 …

Attack details

1. SETUP
– We insert certain values so that: we get values a

and b such that a< K <b, there is no other key
between a and b, and K is the first element in its
page.

2. BINARY SEARCH
– We iterate over a procedure that, at each step, it

halves the interval, it can tell in which half is K, and
K is still the first element in its page.

3. FINAL STEP:
– When the size of the interval is smaller than the

page size, we check a, a+1, a+2,… until we find K.

How to retrieve a secret key K

a bK ...

Attack details

• As input we have values a, b such that
– a < K < b, where a and b are known and K is

unknown.
– There is no value other than K between a and

b.
– K is the first element on its page

• What is the effect of inserting (a+b)/2,
(a+b)/2+1,… until there is a split?

a bK ...

The binary search algorithm

IF (a+b)/2<K THEN

• If all the values inserted are smaller than K
the state of the tree after the split would be

a i K bi+n-1… i+n-2

(here i = (a+b)/2.)
Notice that the number of values we inserted is

n = the size of a page!

The binary search algorithm

IF (a+b)/2>K THEN

• If all the values inserted are greater than K
the state of the tree after the split would be

a K i i+n-2 b… i+n-3…

The binary search algorithm

Notice that the number of values we inserted is n-1

This assumes that the leaf on the right contained no other
values than K,b. Else the split occurs before the (n-1)-th
insert.

Attack details

• By looking at the number of values we insert until there
is a split, we know if (a+b)/2 < K or (a+b)/2 > K, so we
can shorten the original interval [a,b] in half as follows

if we inserted n values, we set
a := (a+b)/2 + n

if we inserted n-1 values
b := (a+b)/2 – 1

• So repeating this procedure we get that the search of K
is done at an exponential speed!

The binary search algorithm

Split detection

Split detection
• About noise:

– In most cases the inserts that do not produce splits take
much less time than inserts that produce splits.

– But, there are many indistinguishable cases.
– In any case, there is a “time threshold value.”
– Timing with functions QueryPerformanceCounter and
QueryPerformanceFrequency in kernel32.dll

• An experiment
– we insert consecutive values and time them t[1], t[2],…
– For each i, such that the values t[i], t[i+n], t[i+2n] are all

bigger than the time threshold, we check whether they
correspond to node splits (Case 1).

– Yes, it is improbable that t[i], t[i+n], t[i+2n]>threshold and no
split occurred.

Split detection (2)
• The previous experiment can be translated into a split

detection algorithm.
– We need a table (e.g., (i,i+n,i+2n) => Case 1, (i,i+n-1,i+2n-

1)=> Case 2, etcetera).

• INPUT: a value i.
• OUTPUT: left node or right node.

• Remarks:
– the algorithm is probabilistic.
– it may need to make more than 2n inserts.
– This is basic signal processing, and could be improved!

Combining both algorithms

• We need to piece together the split
detection and binary search algorithms,
and show that this produces the expected
result.

• Let’s return to the cases (a+b)/2 < K and
K<(a+b)/2

Combining both algorithms

• First, when (a+b)/2 < K

a i K bi+n-1 …… i+n-2 …

In this case, if we insert i, i+1 … and eventually stop when we
detect a split, e.g., at (i+n-1,i+2n-1,i+3n-1), then notice that:
• Node splits correspond to cases 1,1 and 1.
• i+3n-1 < K < b, and there is no key between i+3n-1 and b.
• K remains the first element in a node.

So we take a:=i+3n-1 and continue with the binary search.

Combining both algorithms

• Second, when K<(a+b)/2

In this case, if we insert i, i+1 … and eventually stop when
we detect a split, e.g., at (i+n-2,i+2n-3,i+3n-4), then notice
that:
• Node splits correspond to cases 1, 2 and 2.
• a < K < i, and there is no key between i+2(n-1)-1 and b.
• K remains the first element in a node

So we take b:=i and continue with the binary search.

a K i i+n-2 b… i+n-3…

Combining both algorithms

• Similarly, the setup procedure can be
combined with this split detection algorithm.

• The number of inserts required to execute
the attack is multiplied by 3 (we expect!).
– This is nothing if we consider that the speed of

the search is logarithmic (e.g., 3·log(N) << N)

Future work and
coutermeasures

Future work

• How to improve our attack
– Can we get outside the lab?
– Better split detection through signal processing.
– Require less inserts in order to produce one split.
– Heuristic optimizations: E.g., if the values are

assumed to be uniformly distributed, then we can
replace the binary search for a more general divide-
and-conquer.

– Optimize the attack for getting many keys.

Future work (2)

• Other DbMSs require a lot of work!
– Varies depending on DbMS implementation

details.
– Transactional systems, caches and journaling

can play for/against the attack.
– To adapt our technique, say to other DbMSs

which use B-tree indexing, one needs to:
• Provide split detection algorithms
• Find a method to use the node split information leak

to narrow the space for potential keys.

Countermeasures
• Don’t index privacy searching data: then every query

lasts the same amount of time!

• Transaction throttling: Block a user from making more
than 10 inserts per day/session.

• Blinding at the DbMS: encode the search-key values.

• Introduce random time delays so that the two types of
inserts are indistinguishable from the time they take.

• NIDS: Block certain types of behavior.

Thanks!

Any questions?

