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Imagine there is certain content we want to maintain private until some particular event occurs,
when we want to have it automatically disclosed. Suppose furthermore, that we want this done
in a (possibly) malicious host. Say, the confidential content is a piece of code belonging to a
computer program that should remain ciphered and then “be triggered” (i.e., deciphered and
executed) when the underlying system satisfies a preselected condition which must remain secret
after code inspection. In this work we present different solutions for problems of this sort, using
different “declassification” criteria, based on a primitive we call secure triggers. We establish the
notion of secure triggers in the universally-composable security framework of [Canetti 2001] and
introduce several examples. Our examples demonstrate that a new sort of obfuscation is possible.
Finally, we motivate its use with applications in realistic scenarios.

Categories and Subject Descriptors: K.6 [Management of computing and information
systems]: Security and Protection— Unauthorized access; E.3 [Data Encryption]: ; C.2.4
[Computer-communication Networks]: Distributed Systems

General Terms: Security, Theory, Algorithms.
Additional Key Words and Phrases: Malicious host problem, mobile code security, obfuscation,
secure triggers, universally-composable security.

1. INTRODUCTION

Fix a bitstring, that we regard as a secret. Let be given a family of predicates, and
secretly draw a predicate from this family according to a known distribution. Think
of predicates as functions with range in {true, false}. We consider algorithms that
return the secret if their input evaluates to true on the chosen predicate, else they
return nothing. Such algorithms are called triggers. A trigger is called secure if it
is infeasible for an adversary, given a description of the family of predicates, the
distribution used to draw predicates, and the trigger’s code, to recover any semantic
content of the secret.

Secure triggers have applications in malicious host problems ([Hohl 1998]) and
software protection. Two areas of computer security that are closely related, as
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2 . Futoransky et al.

we shall argue, and are in need of solutions (see, e.g., [Classens et al. 2003], [van
Oorschot 2003]). This introduction to secure triggers is devoted to providing a
framework for analyzing triggers and motivating their use in these areas.

We start our description with the simple trigger. For k € Z, a fixed security
parameter, simple triggers are defined by the family of predicates {py : {0,1}F —
{true, false};b € {0,1}*}, where an element py is defined by the rule py(z) =
true if z = b and else py(z) := false. The simple trigger has been used tradition-
ally for bootstrapping a secret, for example, in the case of a self-decryptable file
that can only be decrypted by a party holding the key'. We shall construct secure
implementations of this trigger (Section 4.1). However, our interest in the simple
trigger is marginal —though it makes a good introductory example. Our interest
lies in investigating further predicate families in order to provide a catalog of secure
triggers for applications, and showing how to profit from this catalog in realistic
applications.

We choose the universally-composable (UC) framework ([Canetti 2001]) to model
secure triggers. Intuitively, UC-secure protocols emulate ideal processes where par-
ties interact with a trusted third party, the ideal functionality, that receives the
input from the parties, makes the necessary computations, and hands them the
output. In the case of secure triggers, we want the ideal functionalities to, after a
successful setup, answer with the secret if and only if the input satisfies the trigger
predicate. In the next section, we will give more details on this framework.

An instance of an ideal functionality for a secure trigger gets defined by two
parameters: a family of predicates and a sampling algorithm. In practice, we will
select predicates arbitrarily, hence the sampling algorithm models the attacker’s a
priori information on the predicate selection process (see, for example, Section 5).

In this work, we start a catalog of secure trigger instances with a few examples
that capture the intuition of secure triggers. In each case we instantiate the secure
trigger ideal functionality with a family of polynomial-time computable predicates
and a polynomial-time sampling algorithm, to then describe a protocol securely
realizing this (instantiated) ideal functionality. Let k € Z be the security parameter.

—The simple trigger, defined by instantiating the secure trigger ideal functionality
with the family of predicates {py : b € {0,1}*}, where py(7) := true if and only
if = b, and the sampling of {p,} is done uniformly.

—The subsequence triggeris our first non-trivial example. It allows a size parameter
s € Z, with s > k, and is defined by instantiating the ideal functionality with
the family of predicates {px : {0,1}* — {true,false}}, varying over the sets
K = {(i1,b1),..., (G, bk)} C {1,2,...,s} x {0,1} such that i, # i, holds, for
all £ # ¢'. A predicate px in this family is defined by the rule px(x) := true
if 2;, = by for all £ with 1 < ¢ < s, and else pi(x) := false. Sampling is done
uniformly.

—The multiple-strings trigger allows a size parameter. For an integer s, with s > 1,
we instantiate the ideal functionality (of size s) with the family of predicates

INotice that the “immediate” implementation (see Section 2) of the simple trigger that given
H(b) and Ency(S), decrypts the encrypted secret using the input x as a key, i.e., Decy(Encp(S)),
if the input’s hash value, H(x), agrees with the key’s hash value, H(b), is not a priori secure
under standard cryptographic assumptions (e.g., H is one-way function).
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Py o bU) € {0,1}*,Vj = 1,..., s}, where the predicate Do), ple) €valu-
ates to true on input x € {0,1}*, of size |z|, if there exist indices 1 < iy,...,i5 <
|z| — k 4 1 such that (2;,,...,%i1k-1) = bl for every j, with 1 < j < s.
Sampling is done uniformly.

These triggers have immediate applications, as we show in Sections 1.1 and 5.
However, the job of broadening this catalog remains. One of our main aims is
to study the extent of secure triggers, particularly in the cases of malicious host
problems and software protection. In this sense, our study of sampling algorithms is
left at an introductory level (see Remark 4.4), and thus, the design for applications
will require much caution (see, for example, Section 5).

Some other problems that we analyzed were left open. We are particularly in-
terested in what we called the finite-state-machine trigger. That is, a finite-state
machine such that both its states and transitions are (probabilistically) encrypted
and the machine runs in this ciphered form until the “trigger state” is reached,
when all information is automatically deciphered. It remains to see if one such
secure trigger exists. Applications of this trigger include software protection and
remote pattern matching.

1.1 Motivation

The malicious host problem deals with securing the execution of trusted mobile code
run on untrusted hosts. Solutions to these problem based on secure triggers hide
“sensitive” functionalities as “completely obfuscated” code until required for use.
The mobile code is deployed on this host after a setup stage. Once deployed, the
mobile code processes the data in this host’s memory —for example, scans databases
or maybe is fed by input sent to these servers—, and provides the embedded trigger
with inputs. When an input satisfies the underlying predicate, the obfuscated (i.e.,
encrypted) functionalities are deciphered and executed. Hence, malicious hosts can
neither tamper with nor determine these functionalities before they are triggered
(though, they can be blocked).

The following application examples show possible uses of secure triggers in the
malicious host problem setting. The first one shall be revisited in detail in Section 5.

Anonymous shopping agent: Some gentleman wants to buy a very rare product
(make/model/color/price) using a mobile-code program that crawls some etailers’
websites. Given the nature of his business, he requires that no other party can find
out his identity, what is he looking for, or how much money is he prepared to pay
(except for the etailer where he will make the buy). He thus implements a secure
trigger —to be deployed in several etailers servers as anonymous mobile code—
that searches for this target product and then, only when it is found, the secure
trigger produces his name an emails himself the details. The trigger produces the
sensitive information only when needed. Moreover, the only parties finding out this
information are the etailers that have the target product in their sites. Assuming
that the range of products sold world wide by etailers is large enough, we can
guarantee that brute-force attacks to this trigger become infeasible.

More generally, this problem relates to private-information retrieval. Under cer-
tain assumptions on databases, the user is able to search databases for a target
entry (described partially by some of its attributes) while no attacker examining or
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controlling a database missing the target entry can infer it from the mobile code.

Information warfare worm attack: Anticipating an international-conflict scenario,
the information-warfare department of one of the nations involved anonymously
disseminates a worm over the Internet. The worm looks inconspicuous enough:
takes control of a machine, records keystrokes, steals passwords, and tries to infect
other systems.

As systems are infected, an embedded trigger is fed with configuration informa-
tion used to detect potential targets. To make it resistant to brute-force attacks,
only a small portion of the target parameters satisfy the trigger predicate. For
example, assuming that there is a sufficiently large set of possible configurations,
we can use the subsequence trigger to check if certain bits of a description match
those same bits in the target description without leaking them. When a matching
target is found, the trigger decrypts and executes a sophisticated module that scans
the machine’s hard drives for sensitive information, compresses, encrypts and uses
a steganographic channel to transmit the information back to the worm’s creators.

None of this specialized behavior can be inferred by inspecting the worm’s code
(until it triggers): The security team of the nation under attack cannot answer
“What is the worm looking for?” nor “What does the worm do after finding it?”.

Our interest in secure triggers grew from research done by the authors and others
in the design of a practical software protection tool ([Bendersky et al. 2003]). The
goal of this framework is to enforce license policy and embed robust watermarks.
Its basic ingredient, is obfuscation through secure triggers. The software protection
application is very complex in itself and its description lies beyond the scope of this
work. For a deeper discussion on this, we refer to [Bendersky et al. 2003]. We will
briefly get back to other obfuscation issues in Section 2.

2. RELATED WORK

A few protocols similar to certain trigger instances have already been published,
though most of them are only related to the simple trigger. In this sense it is worth
pointing out the paper [Juels and Sudan 2002], where authors introduce fuzzy vaults:
a scheme that reconstructs an encrypted secret from a set of shares permitting a
small portion of them to be corrupted (e.g., the secret can be re-constructed with
any eighteen out of twenty shares). Fuzzy vault is an example of secure trigger that
complements our catalog.

Simple triggers have been used for the construction of virus. In the early 90s a
virus called Cheeba searched in the file-system of infected machines for a specific
file (USERS.BBS) to launch the virus program ([Perriot 2003]). The search was
done in a trigger-like manner by matching the hash value of each of the infected
computer’s files with a “hard-coded” value (see [Gryaznov 1992]). A post in the
Slashdot webpage comments on a worm with this behavior [Anonymous 2002]2.

More generally, the simple trigger can be related to well-known cryptographic
protocols such as: password authentications —checked by comparing the candi-
date’s digest to the original password’s digest— before decryption; oracle hashing

2These applications hint on our cyber-warfare application described earlier in this section.
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([Canetti 1997; 2000b; Canetti et al. 1998]); commitment ([Blum 1981]); all-or-
nothing transforms ([Rivest 1997]); etcetera. These constructions agree on one
thing, after a secret value is fed they disclose a secret while they remain secure
against offline attacks. We remark that these notions and secure triggers are es-
sentially distinct. Primarily, because secure triggers permit arbitrary predicate
families, other than the simple trigger, while it is not apparent if any one of these
primitives could be used to construct other instances of secure triggers. Another
difference can be spotted when comparing these notions at protocol level, since the
party intended to “hit” the trigger in the execution of a trigger protocol is not nec-
essarily that who sets up the trigger procedure (and knows the secret), but external
parties which hold the information satisfying the trigger predicate. Indeed, simple
triggers are not commitment schemes, since the party doing the setup for a secure
trigger (e.g., the commitment) is not required to open the secret (e.g., decommit)?.
(Compare with protocol Tgimpre—a in Section 4.1.) Conversely, it is not the focus of
this work to give further implementations of the simple trigger.

Other primitives worth mentioning include those coming from timed-release cryp-
tography (e.g., [Dwork and Naor 1993], [Rivest et al. 1996], [Di Crescenzo et al.
1999] and [Boneh and Naor 2000]), where the goal is to maintain secrecy until a
predetermined amount of time has passed. But, with secure triggers the goal is to
maintain secrecy until a predetermined event occurs.

Finally, it is important to compare our results with recent obfuscation results
([Barak et al. 2001], [Lynn et al. 2004]). One can argue that, in order to achieve
a reasonable form of software protection in todays computers (e.g., without requir-
ing special hardware), obfuscation is required. For example, if a program includes
license checks that can be analyzed and tampered with by a skilled programmer,
then pirates will probably be able to thwart these license checks. From a cryp-
tographic standpoint, one cannot design an obfuscation algorithm (for sufficiently
general Turing machines) as defined and proved in [Barak et al. 2001]. Let us
mention that the “trigger obfuscation” is of a different nature, as secure triggers
can only be used to obfuscate very special Turing machines; “trigger obfuscation”
blocks analysis before the code is executed —but not after.

As a side note, let us mention that this new paradigm, proved to be very useful in
the construction of a software protection framework ([Bendersky et al. 2003]). The
key idea here, is to have certain portions of the code —possibly containing license
checks— obfuscated with triggers. Each of these portions of code is embedded in
a trigger (as a secret), and the predicate is selected according to the value held
by certain local variables, in an untampered run of the program, at the instant
immediately before the portion of code must be executed. Commercial software
is complex (branching) and will typically include several portions of code that are
executed under very stringent conditions, e.g., rare events are described by rare
values of the local variables, it happens that it is difficult for an attacker to infer
the value of these variables (and hit the trigger). See more on this in op. cit..

In [Lynn et al. 2004], authors adapt the definition of obfuscation of [Barak et al.
2001] to the random oracle model in order to design a family of algorithms, point-

3In particular, simple triggers are not UC commitment schemes and the impossibility result of
[Canetti and Fischlin 2001] cannot be applied.
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functions with general output, that is obfuscatable. This functions and the simple
trigger ideal functionality have the same input/output behavior!

3. THE UNIVERSALLY COMPOSABLE SECURITY FRAMEWORK

By now, Canetti’s UC framework ([Canetti 2000a; 2001]) has become popular in
cryptology, as many authors analyze the security of protocols using it. The best
reference is Canetti’s own paper [Canetti 2000c] (see also [Canetti and Fischlin
2001], [Canetti and Krawczyk 2002], [Damgaard and Nielsen 2002]).

The UC framework aims to capture the task of secure function evaluation in an
asynchronous, ideally authenticated network. To this end two models are consid-
ered, a first model that represents a protocol execution in real life and a second
model that captures the security requirements of the given task in an idealized
setting. A protocol is said secure in the UC sense if no interactive distinguisher can
tell apart an execution in the real-life model from one in the idealized setting.

Explicitly, in both worlds the parties are interactive, probabilistic, polynomial-
time Turing machines (ITM for short). All parties participate in a message-driven
protocol inside an asynchronous network without guaranteed delivery of messages,
where communication is public and unauthenticated. These parties interact with
two adversarial parties called environment (the interactive distinguisher) and ad-
versary —also I'TMs.

—Real-life protocol: parties interact during the execution of the protocol communi-
cating through channels accessible to the attacker (for eavesdropping, stopping,
or inserting messages). The parties receive their input directly from the envi-
ronment, through special I/O channels inaccessible to the attacker, and work
out the result by themselves. The output of the protocol is forwarded to the
environment.

—Ideal process: A protocol execution amounts to the environment delivering the
input to dummy parties that make no computations and forward their input to
a trusted party, the ideal functionality, an additional ITM which remains unseen
by the environment. This party makes all the necessary protocol calculations
and returns parties with the result, which they output for the environment. In
this scenario, the attacker cannot eavesdrop on communications, but can freely
communicate with the ideal functionality; it can only detect and stop a message
from the ideal functionality to the parties (but cannot see its contents).

The environment acts as an interactive distinguisher: over a coin toss (its result
being secret to the environment), it will participate in the execution of a real-life
protocol or an ideal process. It will provide parties with their input and witness
their outputs. It will communicate with the adversary arbitrarily. Once the protocol
execution is finished, it must decide whether it has participated in a real-life protocol
or in an ideal process. A protocol is said to securely realize an ideal functionality
with respect to a class of adversaries C if for every real-life adversary in C, there
exists an ideal-process adversary in C such that no environment can tell with non-
negligible probability whether it participates in a real-life protocol or in an ideal
process. We consider two settings: static adversaries and adaptive adversaries. In
the adaptive setting, as in [Canetti and Krawczyk 2002], we will allow protocol
parties to erase local data.
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Functionality F

F proceeds as follows running with parties D, T and adversary S.

(1) Wait for a message from D of the form (Setup, S) and record S. Put the message Trigger-
Activated in the outgoing communication tape with recipient 7', and send (Setup, |S]) to
S.
(2) Wait for one of the messages (Trigger, F) or (Trigger,S) from S and record this message.
a) If the message was (Trigger, F), use Samp to draw a predicate p from {p}. Next,
For any input (Check, z) received from T, if p(x) = true holds, return the secret to 7.
Else, do nothing.
b) If it was (Trigger, S), hand any input (Check, z) received from T to S. If S answers
this message, forward the answer to T; else, do nothing.

Fig. 1. The Secure Trigger Ideal Functionality

4. SECURE TRIGGER PROCEDURES

We want to model trigger algorithms as non-interactive algorithms that do not
leak semantic information for the secret nor information reveal the selected predi-
cate, when the setup occurs without active intervention from the attacker. This is
captured by the secure trigger ideal functionality described below.

The following assumption will be used throughout the paper. Ideal functionalities
do not accept secrets of size smaller than the security parameter. The condition is
not required by all our protocols, but will be assumed throughout for the sake of
simplicity. Note that it is not particularly restrictive in practice, e.g., for typical
choices of security parameter and secret.

Formally, the environment interacts with an adversary and two protocol par-
ties: a dealer, D, and a triggerer, T. A secure trigger ideal functionality instance
is parametrized by a family of polynomial-time computable predicates {p} and
a polynomial-time sampling algorithm Samp (supported on {p}). An instance
F = FUPHSamp) expects to receive a message of the form (Setup, S) from D. If
the size of the secret, |S|, is smaller than the security parameter k, it terminates.
Else, it uses Samp to draw a predicate p from the given family of predicates, it
forwards the message (Setup, |:S|) to the ideal-process adversary, and sends the out-
put TriggerActivated to T. At any time, the ideal functionality waits for one of the
messages (Trigger,S) or (Trigger, F) from the ideal-process adversary. In the first
case, for every input (Check,x) received from T', F will output S for the triggerer
if p(z) = true. In the second case, the ideal functionality will forward every input
(Check, x) to the ideal-process adversary and return 7' with whatever S answers.
Else it does nothing. This is summarized in Figure 1.

Step 2 in Figure 1 might require some explanation. Indeed, we will assume
in practice that the setup (Step 1) is done without active participation of the
adversary. This means in particular that no attacker can tamper with the setup
message (in which case S answers (Setup, F), thus simplifying the ideal process).
We do not require this here and make no further assumptions. We could, of course,
have the setup message authenticated; but this would also require unnecessary
preliminary work. Instead, we allow the ideal functionality to “change plans” if
faced with a real-life adversary that tampers with the setup message sent by D to
T (Fig. 1, (2.b)). The ideal-process adversary will detect if the real-life adversary
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tampers with the setup message and interact with the ideal functionality so that
the tampering does not allow the environment to distinguish one protocol from the
other.

In order to design real-life protocols for secure triggers we might require the use of
certain cryptographic primitives: a ind-cpa secure symmetric cipher (Gen, Enc, Dec),
a one-way function h : {0,1}* — {0,1}*, and a collection of pseudo-random gener-
ators. In the latter case, for integers k,s € Z with s > k, we shall denote by Gy, s
a pseudo-random generator that expands strings of size k£ to strings of size k + s.
See for instance [Goldreich 2001; 2004].

4.1 The simple trigger

Let £ € Z. The ideal functionality for a simple trigger, Fgimp1e, With security
parameter k is defined by the predicate family

{pb :{0,1}* — {true, false};b € {0, 1}’“},

where py(x) := true if z = b, else pp(z) := false; together with the sampling
algorithm that selects b € {0, 1}* according to the first k bits of its random tape.
We shall design two protocols, one securely realizing Fginp1e With respect to static
adversaries (Wsimple_s) and another one securely realizing it with respect to adap-
tive adversaries when local erasure of data is allowed (wsimple_a). The former is
concise, easier to understand, and might be enough for most applications. The
latter, presents a more delicate problem and requires a less direct solution.

Protocol 7gimpre—s: The dealer waits for an input of the form (Setup, S) and ter-
minates if |S| < k holds. Else, D uses the key generation algorithm Gen to generate
b := Gen(1%), writes the message (Setup, Ency(0%),Ency(9)) in its outgoing com-
munication tape with recipient 7', and terminates. The triggerer expects a message
of the form (Setup, A, B), for A, B € {0,1}*, and outputs TriggerActivated. Then,
for every input (Check, x) that T receives, it will output Dec,(B), if Enc,(0%) = A.
Else, it does nothing.

THEOREM 4.1. Protocol Tginp1e—s securely realizes Fsimpre with respect to static
adversaries.

PROOF. Fix a real-life adversary. We construct an ideal-process adversary such
that no environment Z can distinguish if it participates in a real-life protocol or an
ideal-process execution with more than negligible probability.

The ideal-process adversary, S, we construct does the following. In parallel to
the ideal-process execution, it simulates a virtual copy, A, of the real-life adversary
in a black-box way. It imitates a copy of the execution of the real-life protocol
Tsimple—s for A, and forwards all messages from Z to A and back. More explicitly,
the ideal process behaves as follows.

Assume that no party is corrupted. When S receives the size of the secret, |S|,
from the ideal functionality, it generates b’ := Gen(1¥) and simulates the message
(Setup, Ency (0F), Ency (1191)) for A with sender D and recipient T'. Here 0% and 1!5|
denote the all-zeroes string of size k and the all-ones string of size |S|, respectively.

At any time S waits for A to send a setup message to T, which we denote
by (Setup, A, B), and lets through all messages from the ideal functionality to
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the triggerer. If this setup message agrees with that simulated by S, i.e., if
Ency (0F) = A and Ency (1!°1) = B, then the ideal-process adversary sends the
message (Trigger, Fsimpre) to the ideal functionality. Else, it sends the message
(Trigger, S); next, for every message (Check, ) it receives from Fginpie, it returns
Dec,(B) if Enc,(0%) = A; else, it does nothing. This finishes the description of S
in the uncorrupted case.

Assume that some party is corrupted, and recall that in the static setting corrup-
tion occurs on startup. Then, § corrupts the corresponding party, provides A with
the internal state of the corrupted party, and follows A’s instructions. If the dealer
was corrupted, then S will also deliver S to A. Notice that S needs to imitate the
behavior of the corrupted parties for A, for example, if A corrupts the dealer and
instructs it to run according to its algorithm, then S will compute and deliver the
setup message (Setup, Ency,(0%),Ency(S)) to A, with sender D and receiver T, for
some b = Gen(1%).

The proof is completed by showing that Z cannot use the differences between
the two runs to distinguish one from the other. But there is only one differ-
ence*, and it happens in the uncorrupted case: the environment receives the string
Ency (0F),Ency (11°1) from the adversary in the ideal process, while it receives
Enc,(0%),Enc,(S) in the real-life protocol. It is easy to see that an environment
that distinguishes one from the other with non-negligible probability, breaks the
given ind-cpa secure encryption scheme. [

Protocol Tgimp1e—s is insecure against adaptive adversaries, this is easy to see
because if the real-life adversary corrupts the dealer after delivering the setup mes-
sage, it retrieves both b (or b’) and S. However, at that point of the protocol execu-
tion, the ideal-process adversary has already delivered (Setup, Ency (0%), Ency (1191))
which is inconsistent with b’ and S. That is, the value Ency (1/°1) binds S to 115]. In
order to construct a protocol secure with respect to adaptive adversaries, we will use
one-time pad encryption (compare with [Canetti and Krawczyk 2002, Section 5.1]).

Protocol 7gimpie—a: The dealer waits for an input of the form (Setup,.S) and
terminates if |[S| < k holds. Else, D uses a pseudo-random generator to expand
k bits from its random tape, b, to a bitstring (b(1), b)) := Gy |5 (b) in {0, 1}* x
{0, 1}‘5 | and deletes the value of b from its memory. Then, the dealer puts the
message (Setup7b(1),b(2) @ S)% in its outgoing communication tape with recipient
T and terminates. The triggerer expects a setup message (Setup, A, B), for some
A, B € {0,1}*, and outputs TriggerActivated. Next, for every input (Check,z) it
receives, it computes (z(1),2(?)) 1= G} |5/(2), and if 2 = A, it outputs z(? & B.
Else it does nothing.

For s > k, consider Gy s as a function with range in {0,1}* x {0,1}*. Notice
that by [Goldreich 2001, Proposition 3.3.8], the map {0,1}* — {0, 1}* defined by
the rule z +— (M for (z(V), 2?)) = G}, 4(2), defines a one-way function. Therefore,
if (zM,2®?) 1= Gy 4(z), (61, b)) := G(b), and z; = b, then 2?) = b(?) holds
except with negligible probability. We are ready to prove the following theorem.

40Other differences occur with negligible probability and can be ignored, e.g., it might happen that
Enc;(0F) = Ency,(0%) but py(z) = false —but only with negligible probability.
5Here @ stands for the bitwise X-OR operation.
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THEOREM 4.2. Protocol Tsipp1e—a securely realizes Fgimpre with respect to adap-
tive adversaries if local data erasure is allowed.

PrROOF. Fix a real-life adversary. We define an ideal-process adversary S such
that no environment Z can distinguish one from the other with non-negligible
probability.

The adversary S runs a virtual copy of the real-life adversary A in parallel with
the execution of the ideal process. It imitates a copy an execution of the real-
life protocol Tginp1e—a for A, and will forward all messages from Z to A and vice
versa. Let the ideal process execution start, and assume for now that A has not
corrupted the dealer yet. Then, the ideal-process adversary waits for a message
containing the size of the secret, |S|, from the ideal functionality and selects the
strings ¢; € {0,1}*,¢o € {0,1}!5! from to its random tape, and hands the message
(Setup, ¢1,¢2) to A with sender D and recipient T'.

The ideal-process adversary waits for 4 to send a setup message (Setup,
A,B) to T, for some A, B € {0,1}*, at any time of the protocol execution. Once
sent, S lets through all messages from the ideal functionality to the triggerer. If this
setup message agrees with the one simulated by S, i.e., if ¢; = A and ¢; = B, then &
sends the message (Trigger, Fsimpre) to the ideal functionality, and sends (Trigger, S)
otherwise. In the latter case, for every message (Check, x) received from Fgimpre, S
computes (z(V),2(?)) := Gy, |5/(z), and returns B & z(? if (V) = A. Else, S does
nothing.

In the case that A corrupts D or T', then S corrupts the corresponding party and
provides A with its internal state. If D is corrupted before |S| has been received,
then S simulates a “real” dealer for A: it hands S along with the setup message
(Setup, b b3 @ S), with sender D and recipient T, where b € {0,1}* is chosen
from the ideal-process adversary’s random tape and (b(1), b)) := G, g (b). If the
corruption occurs after |S| was received (thus, b has already been deleted and A has
received the “fake” setup message (Setup, ¢1,c2)), then the ideal-process adversary
obtains the secret S from the dealer and hands A the values c1,co & S that are
consistent with the setup message and secret.

In order to show that protocol mginpie—a securely realizes Fgimpie, we notice that
there is a single difference between the two runs. The values b®) and b generated
by D in the real-life protocol are computationally independent, whereas the values
c1 and ¢y & S generated by S in the ideal process are independently distributed.
However, one can see that breaking the security of this protocol can be reduced
to breaking the security of Gy, || ([Goldreich 2001, Definition 3.3.1]), which proves
the theorem. [J

4.2 The subsequence trigger

Let s,k € Z be fixed integers with s > k. The subsequence trigger ideal function-
ality, Fsupset, is defined by the family of predicates

{pK :{0,1}° — {true, falsel; K = {(i1,b1), ..., (ix,bp)} C {1,..., s} x {0,1},
such that ip # ip if £ # e’},
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where a predicate px in this family evaluates to true on input z = (x1,...,
xs) € {0,1}*%, if and only if, 2;, = by holds for every ¢ with 1 < ¢ < k. The
sampling algorithm, will independently select (b1, ...,b;) € {0, 1}* according to its
random tape and k distinct integers iy, ...,i; in {1,...,s} (see Figure 2).

let J:={1,...,s};
for £:=1 to k do: {
set by — {0,1};
set iy «— J;
let J:= J\ {i¢};

output K = {(i1,b1),..., (i, br)};

Fig. 2. Sampling algorithm for K

We remark that according to this ideal functionality, both the sequence i1, . .., i
and b = (by,...,b;) are not leaked during the protocol execution, except if the
trigger is hit.

We shall design a protocol that securely realizes this ideal functionality with
respect to adaptive adversaries. To implement the real-life protocol we construct
an auxiliary family of (polynomially-computable) functions {7 : {0,1}* — {0,1}*}.
Given K = {(i1,b1),..., (ix,bi)} as above we can produce (an algorithm for) a
function 7 such that pg(z) = true if and only if 7(z) = (b1,...,bg); then the
triggerer will be able to decide if px(z) = true by checking if the first entry of
Gr.s(7(2)) agrees with b for given 7 and b™) (where (b(*),b(?)) = G} ,(b)). But
with the added property that 7 and b do not leak b (cf., Protocol Tgimpre—a)!
The family {7} verifies the following properties:

(1) Let be given K = {(1,b1),..., (ix,br)} as above and = € {0,1}* such that
pi (x) = true, then we can compute the algorithm for a function 7 such that
T(ZL’) = (xil,...,xik) = (bl,...,bk).

(2) Every function 7 in this family is onto, and maps an input « in {0, 1}* to 7(x) =
T(21,...,2s) = (2j,,...,%j,), for some distinct integers ji,...,j5% € {1,...,s}.
Furthermore, if y € {0,1}® is such that y;, = z;, for 1 < ¢ < k, then both
values have the same output 7(z) = 7(y).

Now, we can see from the above properties, that the conditions “pg(x) = true”
and “7(z) = (by,...,br)” are equivalent.

With out further delays let H be a length-preserving one-way function, e.g.,
|H(z)| = s for every z € {0,1}*. Let

{a(tl,,,,’ts) (1,2, 8} x 0,1} — {0,1Y%:¢, € {0,1}°, for 1 <i < s}

be a family of functions, where o, . ;. )(i,) :=y := (y1,...,yx) is defined by the
algorithm in Figure 3. We need some notation. Let J denote the finite sequence
J :=(1,...,s). For every finite sequence of distinct integers I, and every integer
tin I, let I\ {i} denote the sequence obtained by deleting i and re-indexing all
integers to the right of 4. For example (1,2,3,4) \ {2} = (1, 3,4).
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Stored: (t1,...,ts).
Input: j, (z1,...,2s).

let ji:=jiy1 =537 = (L,...,8) \ {in }s

for ¢ :=2 to k do: {
compute n := (H(j1ly1] ... [je—1lye—1) ® tj,_,) mod (s — £+ 1);
let j denote the n-th entry in J;
let jg := jiye := 255 J = J\ {Je};

output (y1,...,yr);

Fig. 3. The auxiliary function

This algorithm is short but might not be so easy to follow. A function o is
uniquely defined by elements ¢1,...,ts. Assume them fixed. We briefly describe
how to evaluate ¢ in an input ji,z for x € {0,1}°,51 € Z with 1 < j; < s.
According to the algorithm (Figure 3), the first bit of the output, y;, is defined as
Y1 := xj,. Assume that i1,y1,...,%—1,y—1 have been computed and ¢ < k. To
compute ¢,y we let n:= H(ji|lyi| - |je—1|ye—1) @ tj,_,, consider this bitstring as
an integer, and compute its remainder modulo s — £ 4+ 1 (the pipe symbol above
stands for the concatenation). The next line in the algorithm simply means that j,
must be selected as the n—th undeleted integer from {1,..., s}, counting from the
left. Then, we set y, := x;,.

Given any function o, notice that for every j (1 < j < s), the function

T:=0(j, ):{0,1}* = {0,1}F

trivially verifies property 2 above. To see that property 1 is also verified, notice
that given K and x € {0, 1}® such that px (x) = true, one can run the algorithm on
input (i1, z) without specializing the values of ¢1, ..., s, and sequentially specialize
each t;,_, when required so that j, = i,. We are now ready to describe the protocol

for this trigger.

Real-life protocol for the subsequence scheme (Wsubseq,a).— The dealer waits
for an input of the form (Setup,S) and terminates if |S| < k holds. Else, D sets
b € {0,1}* and ty,...,t, € {0,1}* according to k + s? bits of its random tape,
uses the pseudo-random generator algorithm to compute (b, b)) := G, s/(b),
deletes b from its memory, writes the message (Setup, (1,...,%s), b b @ ) in
its outgoing communication tape with recipient T, and terminates. The triggerer
expects a setup message of the form (Setup, R, 4, B), for R € ({0,1}*)*, and A, B €
{0,1}*, and outputs TriggerActivated. Next, for every input (Check,z) that T
receives, for every ¢ = 1,...,s: the triggerer runs the algorithm of Figure 3 with
input 4, z. Denote its output by o(i,z), and write (%1, 2(42) := Gy |5/(0 (i, z)).
Then, the triggerer checks whether z(#1) = A, and if it does, it outputs z(»? @& B.
Else, it does nothing.

Notice that T' does not evaluate a function  — 7(z) but the collection of func-
tions {z + o(i,x);1 < i < s}. Asymptotic computations for 7' remain in (sk)°™).

THEOREM 4.3. Protocol Tsupseq—a securely realizes Fsupseq with respect to adap-
tive adversaries if local erasure of data is allowed.
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PrOOF. The proof follows the lines of the proof of Theorem 4.2. Given a real-
life adversary, we construct an ideal-process adversary S such that no environment
can decide if it participates in a real-life protocol or in an ideal-process execution
with non-negligible probability. The proof is again by simulation, and only a few
modifications need to be made. That is, S simulates a copy of the real-life adversary
A, it functions as an interface so that 4 and the environment communicate freely,
and imitates a copy of Tgypser—a for A.

In the case that D is not corrupted before setup, the ideal adversary simulates
a setup message for A: (Setup, (t},...,t.),c1,c2), where t},...,t. are s random
values selected uniformly in {0,1}* and ¢; and cp are random values in {0, 1}* and
{0, 1}%, respectively. Again, the ideal-process adversary waits for A to forward a
setup message to the triggerer, and lets through messages from Fgypser to 1. If the
setup message was modified to (Setup, R, A, B) (or created), with R € ({0,1}*)®
and A, B € {0,1}*, then the adversary sends the message (Trigger,S) to the ideal
functionality. Next, for every input (Check,z) it receives from Fgypset, and for
every i with 1 <4 < s, it computes (z("1), z(4?)) := G} /(o (4, 2)), and it returns
202 @ B if 251 = A (here ¢ := op denotes the auxiliary function defined by R
according to the algorithm in Figure 3). Else, it returns nothing.

If some party is corrupted, then S corrupts the corresponding party, it pro-
vides A with its internal state, and follows A’s instructions. Additionally, if
the dealer was corrupted, it will deliver the secret S along with the setup mes-
sage (Setup, (t1,...,ts),b1 6@ @ 8) for (b b?) = G,)s/(b), randomly chosen
t1,...,ts in {0,1}° and b € {0,1}*.

The proof is completed by showing that Z cannot use the differences between the
two runs to distinguish one from the other. And again, there is a single difference
from the environment’s perspective. It occurs in the case that no party is corrupted
before setup. In the ideal-process, Z receives from S the values (t,...,t.),c1,co
while it receives (t1,...,ts), b, 6 @S from A. The values b(*) and b generated
by D in the real-life protocol are computationally independent, whereas the values
c1 and co @ S generated by S in the ideal process are independently distributed.
Since the values ti,...,ts and t},...,t. are both drawn independently in {0,1}%,
it follows immediately that an environment that distinguishes one view from the
other with non-negligible probability, breaks the security of Gy s|, which proves
the theorem. [

A word on sampling. It is important to notice that the sampling in the ideal
process and the selection process for tq,...,ts and b in the real-life protocol define
identical distributions supported in K.

REMARK 4.4. The selection process for K in the real-life protocol is not straight
forward. One chooses by, ..., b, randomly (same as in the ideal process) and then
chooses t1,...,ts from which we the values i1,...,1; are deduced along with the
information necessary to evaluate the auxiliary function o. However, we could
actually choose the value of the key K = {(i1,b1),..., (ir, bx)} and then deduce some
values ty, ..., ts € {0,1}® so that the function o, .. ..y verifies o, .. 4.(i1,2) =b
if and only if pr (x) = true (Property 1). Since the function oy, .. +.(i1,-) is onto,
for every t1,...,ts € {0,1}°, we would like to argue that by changing the original
setup method for the real-life protocol Teupser—s by this new setup method does not
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damage its security. However, it is unclear if one can actually do it.

4.3 Multiple-strings trigger

Let k,s € Z be integers with s > 2, where k is the security parameter. The ideal
functionality for a multiple-strings trigger, Fyu1+, is defined by the predicate family

{pb(l),...,b(S) : {0, 1}* - {true, false}; b(l)a s 7b(5) € {07 1}k}a

where pya)  p) is defined by pyay  po (7) 1= true if, writing x = (z1,...,2¢),
there exist indices iy,...,is such that (z,..., %5 15-1) = O . (2i,...,
T 11—1) = b and Do), v (x) := false if not. The sampling algorithm draws
the values of b, ... b(®) e {0,1}* according to sk bits of its random tape. Notice
that the ideal functionality can feasibly evaluate predicates; it runs in (sk)©1).
Real-life protocol (my1t—a).— The dealer waits for an input of the form (Setup, S)
and terminates if |S| < k holds. Else, it draws strings b(),... b(*) in {0,1}* from
it random tape, uses the pseudo-random generation algorithm G, |5 to compute
(D b)) = Gy 15 (D), ..., (bD, p2)) = Gy 5(0) in {0,1}F x {0,1}*,
and deletes the values of b®) ... b(®) from its memory. Finally, it writes the
message (Setup, bV ... b S @ (9;b(?)) in its outgoing communication tape
with recipient 7' and terminates®. The triggerer expects a message of the form
(Setup, 41,...,A,, B), with Aq,...,As, B € {0,1}*, and outputs TriggerActivated.
Then, for every input (Check,x) it receives, the triggerer outputs every substring
(w4, ..., Tiyx—1) such that the first entry in Gy, |s(%4, ..., Tiyr—1) equals Aj;, for
some 4,7 with 1 <7 < |z| —k+ 1,1 < j < s. Additionally, it this condition holds
for all Aq,..., As, then the triggerer also outputs B & (EBZ- (x4, . .. 7xi+k,1)) —here
the X-OR is taken over one substring (z;, ..., z;4+,—1) matching A;, for each j with
1 < j < k (without repetitions). Else, it returns nothing.

The real-life protocol .1+ _a realizes the ideal functionality Fyuu1¢ with respect to
static adversaries. However, this ideal functionality does not mimic an “idealized
computation” as expected, since the protocol myy1¢—a leaks some information (with
negligible probability). Explicitly, if an input @ € {0,1}* is such that several, but
not all, of the b(!s are contained in z, then T discovers these values. Therefore, we
need to modify the secure trigger ideal functionality replacing step (2) in Figure 1
by (2’) as in Figure 4.

THEOREM 4.5. Protocol myy1t—a securely realizes Fpq, with respect to adaptive
adversaries if local erasure of data is allowed.

PROOF. The proof follows the lines of the proofs of Theorems 4.2 and 4.3. Given
a real-life adversary, we design an ideal-process adversary such that no environment
can distinguish one from the other with non-negligible probability. Again, the ideal-
process adversary, S, will simulate a real-life adversary, A, imitate a copy of Tyu1t—a
for A, and act as an interface between A and Z.

6The selection of the secret sharing scheme used to reconstruct the key @;b; from the shares
b1 ... b5 is arbitrary and could be modularly replaced with the same security results. We use
this one here for the sake of simplicity.
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Functionality F, ..

(2’) Wait for one of the messages (Trigger, F/ ;.) or (Trigger,S) from S.

mult

—a) If the message was (Trigger, Fo;), for every input (Check,z) received from T, for
every ,j € Z, with 1 < ¢ < |z| — k,1 < j < s such that (x;,...,%i1k—1) = b, output
(zi,...,%i4k—1) for T. (Here |z| denotes the size of the bitstring x.) Additionally, if
Py(1), . p(=) (¥) = true holds, return the secret to 7.

—b) If it was (Trigger, S), for any input (Check, ) received from 7', hand it to S. If S answers
this message, forward the answer to 7.

Fig. 4. Modified Ideal Functionality

Assume that the dealer is not corrupted before setup. When the ideal-process
adversary receives the size of the secret from Fyu¢, it sends the setup message
(Setup, c1, ..., s, Bid;) to A, where ¢1,...,cs and dy,. .., ds are uniformly selected
in {0,1}* and {0, 1}®!, respectively. Next, the ideal-process adversary waits for A
to forward a setup message to the triggerer, and starts letting through messages
from F} 1, to T. If the real-life adversary forwarded the setup message without mod-
ifications, then S sends (Trigger, Fuyy) to the ideal functionality. If the setup mes-
sage was modified to (Setup, Ay, ..., As, B) (or created), for Ay,..., As, B € {0,1}*,
the ideal-process adversary sends the message (Trigger,S) to the ideal functional-
ity. Next, for every input (Check,z) it receives from F, .., for every i,j, with
1 <i<|o|-k+1,1 <5 <s, such that the first entry of Gy s/(2i,. .., Tizr—1)
agrees with A;, the ideal-process adversary outputs (z;,...,%;4x—1). Also, if all
the Aj,..., A, were matched, S hands (®; (zi;,...,Zi;4k-1)) ® B) to Fpyy.

In case that A corrupts D or T, then S corrupts the corresponding party and
provides A with its internal state. If D is corrupted before |S| has been received,
then S will simulate a “real” dealer for A: it will compute the setup message
(Setup, bV . 1) (8,620) @ §), for (b)) b2V 1= G} 5(b?) and b €
{0,1}* uniformly chosen (for all 7 with 1 < i < s), and send it to T along with the
secret S. If D is corrupted after setup, (thus, the values of b, ..., b®) have already
been deleted in the real-life protocol), then the ideal-process adversary obtains the
secret S from the dealer and hands A the strings (¢1,d1), ..., (cs—1,ds—1), (cs, dsDS)
representing values that are consistent with the setup message and secret.

In order to show that protocol mmu,1¢—a securely realizes F ., we notice that there
is a single difference between the two runs. The values (b1 D) . (b(1),
b(2’5)) generated by D in the real-life protocol are computationally independent,
whereas the values (c1,d1),. .., (cs—1,ds—1), (cs,ds ® S) generated by S in the ideal
process are independently distributed. However, one can see that breaking the
security of this protocol can be reduced to breaking the security of Gy s, which
proves the theorem. [

Finally, it is interesting to compare the subsequence trigger with the multiple-
strings trigger. A first comparison shows that Fgupser accepts fixed-size inputs while
F! .1 accepts arbitrary inputs. Even more, they provide different security, for exam-

ple, assume that we want to trigger a secret procedure if an input @ = (z1, ..., Z1024)
verifies the conditions (xh N ,1’10) = (kl, ey klo), (%101, . 796110) = (klla ey kzo),
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ooy (2700, - -y 2710) = (K71, - -, kso), for some secret values (ki,. .., kso) € {0,1}80.
That is, we want to check if 8 different strings within the input match 8 secret
strings, these strings being secret. If we use the multiple-strings trigger then an
attacker can succeed by doing a brute-force attack on 8 strings of 10 bits, each. In
fact, by using the subsequence trigger ensure that attackers do not learn which are
the bits being checked. However, if we use a subsequence trigger, then we can get
80 bits security!

5. APPLICATIONS

We return to the example “anonymous shopping agent” from Section 1.1. In this
setting, etailers provide an anonymous shopping service whereby customers are
allowed to submit an agent that crawls databases searching for the product they
like. A customer wants to use an agent to crawl these databases for his targeted
product without the product’s description nor his name. It is required that the code
resists reverse-engineering analysis and does not leak the sensitive information.

To design the mobile code we will make use of the subsequence trigger. But first,
let us state our assumptions.

—Let us assume without loss of generality that the etailer databases have all the
same format (or support a single crawling APT), and each entry can be described
by a bitstring of size N, for some N € Z.

—FEach entry is described by a set of attributes of a fixed length,
—Customers can deploy their mobile code anonymously,
—Ftailers can run the agents safely (e.g., sandboxing),

—The number of possible products on etailers databases is large (e.g., of size larger
than 289). Moreover, we can assume that the distribution deduced from market-
ing information (and all that other information available to etailers) is such that
the number of products with probability greater than the target product’s own
probability is large, too.

To design the trigger, we write the description of the selected product and its
price as a bitstring of a considerable size (e.g., kK > 160). To do this, we uniformly
choose certain bits from the target product description, writing their index and
their value as K C {1,...,N} x {0,1} (and possibly add some pairs (i,b) so that
the product, and its preferred price, are described unequivocally by K). Finally, we
run the setup for a subsequence trigger real-life protocol and compute a triggerer
T with K selected as above and S to be a procedure that sends an email to the
buyer with a description of the product it found and the name of the etailer.

From the above assumptions one can deduce that no brute-force attack on this
secure trigger can succeed, and therefore the agent is secure.
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