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Abstract. We study the problem of finding the inverse image of a point in the
image of a rational map F : F

n

q
→ F

n

q
over a finite field Fq. Our interest mainly stems

from the case where F encodes a permutation given by some public–key cryptographic
scheme. Given an element y(0)

∈ F (Fn

q
), we are able to compute the set of values

x(0)
∈ F

n

q
for which F (x(0)) = y(0) holds with O(Tn4.38D2.38δ log2 q) bit operations, up

to logarithmic terms. Here T is the cost of the evaluation of F1, . . . , Fn, D is the degree
of F and δ is the degree of the graph of F .
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1. Introduction. Let Fq be the finite field of q elements, let Fq de-
note its algebraic closure and let A

n denote the n–dimensional affine space
F

n

q considered as a topological space endowed with the Zariski topology.
Let X := (X1, . . . , Xn) be a vector of indeterminates and let F1, . . . , Fn

be elements of the field Fq(X) := Fq(X1, . . . , Xn) of rational functions in
X1, . . . , Xn with coefficients in Fq. We consider the rational map F : A

n →
A

n defined as F (x) := (F1(x), . . . , Fn(x)). Assume that the restriction of
F to F

n
q is a partially–defined mapping F : F

n
q → F

n
q , i.e., F is well–defined

on a nonempty subset of F
n
q . In such a case, we have that F : F

n
q → F

n
q

agrees with an Fq–definable polynomial map F ∗ on its domain (see, e.g.,
[25]). Unfortunately, the degrees of the polynomials defining F ∗ may grow
exponentially, which prevents us to replace the rational mapping F with the
corresponding polynomial map F ∗. In this paper we exhibit an algorithm
which, given y(0) ∈ F (Fn

q ), computes x(0) ∈ F
n
q such that F (x(0)) = y(0)

holds.

A possible approach to this problem consists in computing the inverse
mapping of F , provided that F is polynomially or rationally invertible.
This is done in [41], where the authors describe an algorithm for inverting
a bijective polynomial map F : A

n → A
n defined over Fq, assuming that F
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is an automorphism of Fq[X ]n whose inverse has degree (dn)O(1), where d is
the maximum of the degrees of the polynomials F1, . . . , Fn. The algorithm
performs (Tnd)O(1) arithmetic operations in Fq, where T is the number of
arithmetic operations required to evaluate F . Nevertheless, the assump-
tion of the existence of a polynomial or rational inverse of F with degree
polynomially bounded seems to be too restrictive to be useful in practice.

From the cryptographic point of view, the critical problem is that of
computing the inverse image of a given point y(0) ∈ F (Fn

q ) under the map
F , rather than that of inverting F itself. In this sense, our problem may
be reduced to that of solving polynomial systems over a finite field. Un-
fortunately, it is well known that solving polynomial systems over a finite
field is an NP–complete problem, even with quadratic equations with coef-
ficients in F2 [19]. This has led to the construction of several multivariate
public–key cryptoschemes whose security is based on this difficulty. In fact,
since [24] researchers have tried to construct public–key schemes based on
this apparent difficulty (see, e.g., [36]), but proposals are typically proved
to be weak through ad hoc attacks (see, e.g., [35], [29], [43]). This might
be seen as an indication that the polynomial systems used in public–key
cryptography are not intrinsically difficult to solve, and calls for the study
of parameters to measure such difficulty.

In this article we exhibit a probabilistic algorithm that computes the
inverse image of a point y(0) ∈ F (Fn

q ) with a cost which depends polyno-
mially on two geometric parameters: the degree D of the map F and the
degree δ of the graph of F .

1.1. Outline of our approach. Let Y = (Y1, . . . , Yn) be a vector
of new indeterminates. We consider the Zariski closure of the graph Y =
F (X) of the morphism F as an Fq–variety V ⊂ A

2n, i.e., as the set of
common zeros in A

2n of a finite set of polynomials in Fq[X, Y ]. We suppose
that the projection morphism π : V → A

n defined as π(x, y) = y is a
dominant map of degree D and denote by δ the degree of V . It turns
out that V is an absolutely irreducible variety of dimension n, and the
generic fiber of π is finite. With a slight abuse of notation we shall identity
F−1(y(0)) with the fiber π−1(y(0)).

In order to compute all the q–rational points of F−1(y(0)), i.e., the
points in the set F−1(y(0)) ∩ F

n
q , we shall deform the system F (X) = y(0)

into a system F (X) = y(1) := F (x(1)) with a point x(1) randomly chosen
in a suitable finite field extension K of Fq. The deformation is given by the
curve C ⊂ A

n+1 defined by the equations F (X) = y(1)+(S−1)(y(1)−y(0)).
For this purpose, we obtain upper bounds on the degree of the generic
condition underlying the choice of x(1), which allows us to determine the
cardinality of a finite field extension K of Fq where such a random choice is
possible with good probability of success (see Section 4.2).

The algorithm computing the set F−1(y(0)) ∩ F
n
q may be divided in

three main parts. First, we compute a polynomial mS(S, T ) defining a
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plane curve birationally equivalent to C. This polynomial is obtained as
the solution of a system of linear equations whose matrix is block–Toeplitz.
Such a solution is computed by applying an efficient algorithm based on the
theory of matrices of fixed displacement rank due to [8] (see Section 5.1).
Then, in Section 5.2 we extend the computation of the defining polynomial
mS(S, T ) of the plane curve birationally equivalent to C to the computa-
tion of the birational inverse itself. Finally, in Section 5.3 we substitute 0
for S in the birational inverse computed in the previous step and recover
the 0–dimensional fiber π−1(y(0)), from which we obtain all the points of
F−1(y(0)) with coordinates in Fq.

The cost of our algorithm is roughly O(Tn4.38D2.38δ log2 q) bit oper-
ations, up to logarithmic terms, where T is the cost of the evaluation of
the rational map F . Therefore, we extend and improve the results of [12],
which require F to be a polynomial map defining a bijection from F

n
q to

F
n
q . This extension allows us to deal with cryptographic schemes such as

the so–called “Tractable Rational Map” cryptosystem (see [42], [43, Sec-
tion 6]). On the other hand, we observe that, if the hypotheses of [41] hold,
then our algorithm meets also the complexity bound (Tnd)O(1) of [41].

As mentioned before, another alternative approach in order to compute
one or all the q–rational points of F−1(y(0)) could be to apply a general al-
gorithm for finding one or all the q–rational solutions of a given polynomial
system over a finite field. Algorithms directly aimed at solving polynomial
systems over a finite field are usually based on Gröbner basis computations
([16], [3], [4]), elimination techniques ([23], [10]) or relinearization ([29],
[14]). Unfortunately, all these algorithms have worst–case exponential run-
ning time, and only [10] achieves a polynomial cost in the Bézout number of
the system (which is nevertheless exponential in worst case). Furthermore,
it is not clear how these algorithms could profit from the knowledge that a
given map has associated geometric parameters of “low” value, as happens
in certain cryptographic situations.

Finally, from the cryptographic point of view, we observe that with-
standing the differential cryptanalysis of E. Biham and A. Shamir ([6],
[15]) has become a de facto requirement for any block cipher. On the other
hand, there is no “strong” test which allows one to analyze the security
of cryptosystems based on the problem of solving multivariate equations.
Our algorithm may be considered as a first step in this direction.

2. Notions and notations. Throughout this paper we shall denote
by |A| the number of elements of a given finite set A.

Let K be a finite field extension of Fq, let A
n := A

n(Fq) be the n–
dimensional Fq

n endowed with its Zariski topology, and let V ⊂ A
n be a K–

variety, that is, the set of common zeros in A
n of a finite set of polynomials

of K[X ]. We denote by I(V ) ⊂ K[X ] the ideal of the variety V , by K[V ] :=
K[X ]/I(V ) its coordinate ring and by K(V ) its field of total fractions.
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For a given irreducible K–variety V ⊂ A
n, we define its degree deg V

as the maximum number of points lying in the intersection of V with an
affine linear variety L ⊂ A

n of codimension dimV for which |V ∩L| is finite.
More generally, if V = C1 ∪ · · · ∪ CN is the decomposition of V into irre-
ducible K–components, we define the degree of V as deg V :=

∑N

i=1 deg Ci

(cf. [22]).
We say that a K–variety V ⊂ A

n is absolutely irreducible if it is an
irreducible Fq–variety.

Let V ⊂ A
n be an irreducible K–variety and let π : V → A

n be a
dominant mapping. Then we have an algebraic field extension K(An) →֒
K(V ). The degree deg π of π is defined as the degree of the field extension
K(An) →֒ K(V ). We called a point y ∈ A

n a lifting point of π if the number
of inverse images of y equals the degree of the morphism π.

2.1. Data structures. Algorithms in elimination theory are usually
described using the standard dense (or sparse) complexity model, i.e., en-
coding multivariate polynomials by means of the vector of all (or of all
nonzero) coefficients. Taking into account that a generic n–variate polyno-

mial of degree d has ( d + n
n

) = O(dn) nonzero coefficients, we see that

the dense or sparse representation of multivariate polynomials requires
an exponential size, and their manipulation usually requires an exponen-
tial number of arithmetic operations with respect to the parameters d
and n. In order to avoid this exponential behavior, we are going to use
an alternative encoding of input and intermediate results of our compu-
tations by means of straight–line programs (cf. [9]). A straight–line pro-
gram β in K(X) := K(X1, . . . , Xn) is a finite sequence of rational func-
tions (F1, . . . , Fk) ∈ K(X)k such that for 1 ≤ i ≤ k, the function Fi is
either an element of the set {X1, . . . , Xn}, or an element of K (a parame-
ter), or there exist 1 ≤ i1, i2 < i such that Fi = Fi1 ◦i Fi2 holds, where ◦i is
one of the arithmetic operations +,−,×,÷. The straight–line program β
is called division–free if ◦i is different from ÷ for 1 ≤ i ≤ k. A natural
measure of the complexity of β is its time (cf. [38]) which is the total num-
ber of arithmetic operations performed during the evaluation. We say that
the straight–line program β computes or represents a subset S of K(X)
if S ⊂ {F1, . . . , Fk} holds.

2.2. The algorithmic model. Our algorithms are of Monte Carlo
or BPP type (see, e.g., [2], [18]), i.e., they return the correct output with
a probability of at least a fixed value strictly greater than 1/2. This in
particular implies that the error probability can be made arbitrarily small
by iteration of the algorithms. The probabilistic aspect of our algorithms is
related to certain random choices of points with coordinates in a given finite
field not annihilating certain nonzero polynomials. In order to perform a
given random choice with a prescribed probability of success, we must know
how many zeros the polynomial under consideration has. For this purpose,
we have the following classical result, first shown by Oystein Ore in 1922.
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Proposition 2.1 ([32, Theorem 6.13]). Let K be a finite field exten-
sion of Fq and let F ∈ Fq[X ] be a polynomial of degree d. The number of
zeros of F in K is at most d|K|n−1.

For the analysis of our algorithms, we shall interpret the statement
of Proposition 2.1 in terms of probabilities. More precisely, assuming a
uniform distribution of probability on the elements of the finite field K, we
have the following corollary, also known as the Zippel–Schwartz lemma in
the computer algebra community (cf. [18, Lemma 6.44]).

Corollary 2.1. Fix µ > 0 and suppose that |K| > µd holds. Then
the probability of choosing x ∈ K

n with F (x) 6= 0 is at least 1 − 1/µ.

2.3. Cost of the basic operations. In this section we briefly re-
view the cost of the basic algorithms we shall employ. The cost of such
algorithms will be frequently stated in terms of the quantity

M(m) := m log2 m log log m.

If K is a finite field, an arithmetic operation in K requires O(M(log |K|))
bit operations. More generally, for a given domain R, the number of arith-
metic operations in R necessary to compute the multiplication or division
with remainder of two univariate polynomials in R[T ] of degree at most m
is O

(
M(m)/ log(m)

)
(cf. [18], [7]).

If R is any field, then we shall use algorithms based on the Extended
Euclidean Algorithm (EEA for short) in order to compute the gcd or the
resultant of two univariate polynomials in R[T ] of degree at most m with
O

(
M(m)

)
arithmetic operations in R (cf. [18], [7]).

Finally, we recall that for the cost O(nω) of the multiplication of two
matrices of size n × n with coefficients in R, we have ω < 2.376 (cf. [7]).

3. Geometric solutions. We shall use a representation of varieties
which is well suited for algorithmic purposes (see, e.g., [20], [37], [21]).
This representation is called a geometric solution or a rational univariate
representation of the given variety. The notion of a geometric solution of an
algebraic variety was first implicitly introduced in the works of Kronecker
and König in the last years of the XIXth century. This section is devoted to
motivate this notion and to describe certain underlying algorithmic aspects.

Let K be a perfect field and let K denote its algebraic closure. We
start with the definition of a (K–definable) geometric solution of a zero-
dimensional K–variety. Let V = {P (1), . . . , P (D)} be a zero–dimensional
K–variety of A

n, and suppose that there exists a linear form L ∈ K[X ]
which separates the points of V , i.e., which satisfies L(P (i)) 6= L(P (k)) if
i 6= k. A geometric solution of V consists of

• a linear form L := λ · X := λ1X1 + · · · + λnXn ∈ K[X ] which
separates the points of V ,

• the minimal polynomial mλ :=
∏

1≤i≤D(T − L(P (i))) ∈ K[T ] of L
in V (where T is a new variable),
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• polynomials w1, . . . , wn ∈ K[T ] with deg wj < D for every
1 ≤ j ≤ n satisfying the identity:

V = {(w1(η), . . . , wn(η)) ∈ K
n
; η ∈ K, mλ(η) = 0}.

Next, we define this notion for irreducible K–varieties of dimension
greater than 0. Let V ⊂ A

n be an irreducible K–variety of dimension
r > 0 and degree δ. Suppose that the indeterminates X1, . . . , Xr form a
separable transcendence basis of the field extension K →֒ K(V ), that is,
K(X1, . . . , Xr) →֒ K(V ) is a finite, separable field extension. Denote by D
its degree. In particular, we have that the linear projection π : V → A

r

defined by π(x) := (x1, . . . , xr) is a dominant morphism of degree D. From
the behavior of the degree of a variety under linear maps (see, e.g., [22,
Lemma 2]), it follows that D ≤ δ holds.

Let Λ := (Λ1, . . . , Λn) be a vector of new indeterminates. Observe that
the extension VK(Λ) of V to A

n(K(Λ)) is an irreducible K(Λ)–variety of di-
mension r and the coordinate ring of VK(Λ) as a K(Λ)–variety is isomorphic
to K(Λ) ⊗K K[V ]. Consider the generic linear form

LΛ := Λ · X := Λ1X1 + · · · + ΛnXn. (3.1)

Let ξ1, . . . , ξn ∈ K[V ] be the coordinate functions induced by X1, . . . , Xn,

and set L̂ := LΛ(ξ1, . . . , ξn) ∈ K(Λ) ⊗K K[V ]. Since ξ1, . . . , ξr, L̂ are al-
gebraically dependent over K(Λ), there exists an irreducible polynomial
mΛ ∈ K[Λ, X1, . . . , Xr, T ], separable with respect to T , such that the fol-
lowing identity holds in K(Λ) ⊗K K[V ]:

mΛ(Λ, ξ1, . . . , ξr, L̂) = 0. (3.2)

From, e.g., [39, Proposition 1], we deduce the following bounds:
• degT mΛ = D,
• degX1,...,Xr

mΛ ≤ δ,
• degΛ mΛ ≤ δ.

Taking partial derivatives at both sides of equation (3.2) we deduce
that for every j = 1, . . . , n the identity

∂mΛ

∂Λj

(Λ, ξ1, . . . , ξr, L̂) + ξj

∂mΛ

∂T
(Λ, ξ1, . . . , ξr, L̂) = 0 (3.3)

holds in K(Λ) ⊗K K[V ]. As a consequence of the separability of mΛ with
respect to T we see that the polynomial ∂mΛ/∂T is nonzero.

Assume that there exists λ ∈ K
n such that the linear form L := λ·X in-

duces a primitive element of the separable field extension K(X1, . . . , Xr) →֒
K(V ). Let ℓ be the coordinate function of K[V ] defined by L. From the
fact that degT mΛ = D holds, it follows that mΛ(λ, X1, . . . , Xr, T ) is the
minimal polynomial of ℓ in the field extension K(X1, . . . , Xr) →֒ K(V ).
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Setting

mλ(X1, . . . , Xr, T ) := mΛ(λ, X1, . . . , Xr, T ),

vj(X1, . . . , Xr, T ) := −
∂mΛ

∂Λj

(λ, X1, . . . , Xr, T ),

and substituting λ for Λ in (3.2)–(3.3), we obtain the following identities
of K[V ]:

mλ(ξ1, . . . , ξr, ℓ) = 0,
∂mλ

∂T
(ξ1, . . . , ξr, ℓ)ξj − vj(ξ1, . . . , ξr, ℓ) = 0,

(3.4)

which show that the polynomials

mλ(X1, . . . , Xr,L),
∂mλ

∂T
(X1, . . . , Xr,L)Xj−vj(X1, . . . , Xr,L) (1≤j≤n),

belong to I(V ). We observe that the polynomials v1, . . . , vn have coeffi-
cients in K and satisfy the conditions deg vj ≤ δ and degT vj ≤ D.

Finally, we remark that the polynomials mλ(X1, . . . , Xr,L) and
(∂mλ/∂T )(X1, . . . , Xr,L)Xj − vj(X1, . . . , Xr,L) (r + 1 ≤ j ≤ n) con-
stitute a system of equations for the variety V in the Zariski dense open
subset V ∩ {(∂mλ/∂T )(X,L) 6= 0} of V . This motivates the definition of
a geometric solution of an irreducible K–variety of arbitrary dimension:

Definition 3.1. With assumptions as above, a geometric solution of
V consists of the following items:

• a linear form L := λ ·X ∈ K[X ] which induces a primitive element
ℓ of the field extension K(X1, . . . , Xr) →֒ K(V ),

• the minimal polynomial mλ ∈ K[X1, . . . , Xr][T ] of ℓ,
• a generic parametrization of the variety V by the zeros of mλ, of the

form (∂mλ/∂T )Xj−vj (r+1 ≤j≤ n), with vj ∈ K[X1, . . . , Xr][T ],
degT vj < D, degX vj ≤ δ and (∂mλ/∂T )(L)Xj − vj(L) ∈ I(V ).

We observe that the polynomial mλ ∈ K[X1, . . . , Xr][T ] of the second
item of the previous definition can be also defined as follows: consider the
linear map πλ : V → A

r+1 defined by πλ(x) := (x1, . . . , xr, λ · x). The
Zariski closure of πλ(V ) is a K–hypersurface H of A

r+1 of degree at most
δ, which is indeed defined by mλ(X1, . . . , Xr, T ) = 0.

3.1. Algorithmic aspects of the computation of a geometric

solution. From the algorithmic point of view, the crucial step towards
the computation of a geometric solution of a variety V consists in the
computation of the minimal polynomial mΛ of the generic linear form LΛ.
In this section we shall show how we can derive an algorithm for computing
a geometric solution of an r–dimensional K–variety V from a procedure for
computing the minimal polynomial of the generic linear form LΛ (cf. [1],
[21], [39]).
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Assume that we have already chosen λ ∈ K
n such that the linear

form L := λ · X induces a primitive element of the separable field exten-
sion K(X1, . . . , Xr) →֒ K(V ). Let mλ ∈ K[X1, . . . , Xr, T ] be its minimal
polynomial.

Suppose that we are given an algorithm Φ over K(Λ) for computing
the minimal polynomial of the linear form LΛ = Λ · X . Suppose further
that the vector (λ1, . . . , λn) of coefficients of L does not annihilate any
denominator in K[Λ] of any intermediate result of the algorithm Φ. In
order to compute the polynomials vr+1, . . . , vn of Definition 3.1, we observe
that the Taylor expansion of mΛ(Λ, X1, . . . , Xr, T ) in powers of Λ − λ :=
(Λ1 − λ1, . . . , Λn − λn) has the following expression:

mΛ(Λ, X1, . . . , Xr, T ) = mλ(X1, . . . , Xr, T ) +
n∑

j=1

(∂mλ

∂T
(X1, . . . , Xr, T )Xj−vj(X1, . . . , Xr, T )

)
(Λj−λj) mod(Λ−λ)2.

We shall compute this first–order Taylor expansion by computing the first–
order Taylor expansion of each intermediate result in the algorithm Φ. In
this way, each arithmetic operation in K(Λ) arising in the algorithm Φ
becomes an arithmetic operation between two polynomials of K[Λ] of degree
at most 1, and is truncated up to order (Λ−λ)2. Since the first–order Taylor
expansion of an addition, multiplication or division of two polynomials of
K[Λ] of degree at most 1 requires O(n) arithmetic operations in K, we have
that the whole step requires O(nT) arithmetic operations in K, where T is
the number of arithmetic operations in K(Λ) performed by the algorithm
Φ. Summarizing, we have the following result:

Lemma 3.1. Suppose that we are given:
1. an algorithm Φ in K(Λ) which computes the minimal polynomial

mΛ ∈ K[Λ, X1, . . . , Xr, T ] of LΛ := Λ ·X with T arithmetic opera-
tions in K(Λ),

2. a separating linear form L := λ · X ∈ K[X ] such that the vector λ
does not annihilate any denominator in K[Λ] of any intermediate
result of the algorithm Φ.

Then a geometric solution of the variety V can be (deterministically) com-
puted with O

(
n(T + M(D))

)
arithmetic operations in K.

4. Preparation of the input data. Let F1, . . . , Fn ∈ Fq(X) be ratio-
nal functions having a reduced representation Fi = Pi/Qi with numerator
and denominator of degree at most d for 1 ≤ i ≤ n. Consider the rational
map F : A

n → A
n defined by F (x) := (F1(x), . . . , Fn(x)). Since the ratio-

nal functions F1, . . . , Fn have coefficients in Fq, we see that the restriction
of F to F

n
q induces a (partially–defined) mapping from F

n
q to F

n
q which we

shall also denote by F , with a slight abuse of notation.

4.1. The graph of the mapping F . Let Y := (Y1, . . . , Yn) be a
vector of new indeterminates. Our algorithm shall deal with the Fq–variety
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V ⊂ A
2n representing the Zariski closure of the graph of the mapping

F . More precisely, let Fi := Pi/Qi be a reduced fraction representing the
rational function Fi for 1 ≤ i ≤ n and set Q := Q1 · · ·Qn. Let I ⊂ Fq[X, Y ]
be the ideal generated by the polynomials Qi(X) − YiPi(X) (1 ≤ i ≤ n).
Then we define V as

V := V (I : Q∞),

where Q∞ denotes the multiplicatively closed subset of Fq[X, Y ] generated
by 1 and Q and (I : Q∞) denotes the saturation of the ideal I by Q∞, that
is, (I : Q∞) := {P ∈ Fq[X, Y ]; PQs ∈ I for some s ∈ Z≥0}.

Let π : V → A
n be the projection mapping defined by π(x, y) := y. In

what follows, we shall assume that F and π satisfy the following conditions,
which are usually met in the cryptographic situations we are interested in.

(i) F is partially defined over F
n
q .

(ii) π is a dominant mapping. In particular, the fiber Vy := π−1(y) is
a zero–dimensional subvariety of V for a generic y ∈ A

n.

We observe that (i) is required by most cryptographic schemes based
on multivariate equations (see, e.g., [30, Chapter 4], [43]), while (ii) is re-
quired for example in cryptographic schemes based on “tractable” rational
maps (see, e.g., [42], [43, Section 6]).

Assumption (ii) and the definition of V imply that V is an absolutely
irreducible Fq–variety of dimension n. Indeed, it is easy to see that Fq(V )
is isomorphic to Fq(X), which implies that V is absolutely irreducible and
of dimension n. Further consequences of our assumptions are that the set
of variables Y is algebraically independent in Fq(V ) and the polynomials
Qi(X)Yi − Pi(X) (1 ≤ i ≤ n) generate a radical ideal of the localization
Fq[X, Y ]Q∞ .

In the sequel, we shall denote by δ the degree of V and by D the degree
of the morphism π : V → A

n.

4.2. Random choices. Let L := λ ·X ∈ Fq[X ] be a linear form such
that the corresponding coordinate function of Fq[V ] is a primitive element of
the field extension Fq(Y ) →֒ Fq(V ). In particular, the minimal polynomial
mλ ∈ Fq[Y, T ] of the coordinate function defined by L satisfies the degree
estimate degT mλ = D. By the remark after Definition 3.1 we see that
V is birationally equivalent to the hypersurface H ⊂ A

n+1 defined by the
polynomial mλ ∈ Fq[Y, T ]. We observe that the fact that V is absolutely
irreducible implies that H , and thus mλ, is absolutely irreducible.

For a given point y(0) ∈ F
n
q , we denote by Vy(0) the π–fiber of y(0).

In order to compute the points of the set F−1(y(0)) ∩ F
n
q , or equivalently,

the set Vy(0) ∩ F
2n
q , we shall deform the system F (X) = y(0) into a system

F (X) = F (x(1)) with a point x(1) randomly chosen in a suitable finite field
extension K of Fq to be determined. The kind of deformations we shall
apply is inspired by the approach of [34]. In our next result we establish
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suitable bounds on the degree of the genericity conditions underlying the
choice of x(1).

Lemma 4.1. There exists a nonzero polynomial A ∈ Fq[X ] of degree
at most 3dδ4 such that for any x ∈ A

n with A(x) 6= 0, the point y := F (x)
satisfies the following conditions:

(i) y is a lifting point of π,
(ii) Let S be a new indeterminate and let IC ⊂ Fq[S, X ] be the ideal

IC :=
(
Pi(X) − Qi(X)

(
y + (S − 1)(y − y(0))

)
; 1 ≤ i ≤ n

)
.

Then the curve C := V (IC : Q∞) ⊂ A
n+1 is absolutely irreducible.

Proof. Let mλ ∈ Fq[Y ][T ] be the minimal (primitive) polynomial of
the linear form L := λ ·X ∈ Fq[X ]. Let A∗

1 ∈ Fq[Y ] denote the discriminant
of mλ with respect to the variable T . From the absolutely irreducibility
of mλ we conclude that A∗

1 6= 0 holds. Furthermore, for any y ∈ A
n with

A∗
1(y) 6= 0 we have that the fiber Vy consists of D distinct points, that

is, y is a lifting point of π. Hence, the nonvanishing of the polynomial
A∗

1 ∈ Fq[Y ] represents a suitable genericity condition underlying the choice
of a lifting point y ∈ A

n.
In order to obtain a genericity condition underlying the choice of a

point x ∈ A
n for which y := π(x) is a lifting point, consider a reduced

representation A∗
1

(
F (X)

)
= P ∗

1 /Q∗
1 of the rational function defined by

A∗
1

(
F (X)

)
and set A1 := P ∗

1 Q∗
1. By definition it follows that A1 ∈ Fq[X ]

has degree bounded by (2D − 1)dδ. Since F is a dominant mapping, we
have that there exists x ∈ A

n such that A1(x) 6= 0 holds (see, e.g., [40,
II.6.3, Theorem 4]). This implies that A1 is a nonzero polynomial.

Next we consider a reduced representation

mλ

(
F (X) + (S − 1)

(
F (X) − y(0)

)
, T

)
=

P1(X)P2(X, S, T )

Q(X)

of the rational function mλ

(
F (X)+(S−1)

(
F (X)−y(0)

)
, T

)
∈ Fq(X)[S, T ],

where P2(X, S, T ) is a primitive polynomial of Fq[X ][S, T ]. Observe that
such a representation is unique up to scaling by nonzero elements of Fq. Set

m̃λ(X, S, T ) :=
Q(X)

P1(X)
mλ

(
F (X)+(S−1)

(
F (X)−y(0)

)
, T

)
= P2(X, S, T ).

Let x ∈ A
n be any point with Q(x) 6= 0. Then the value F (x) is well–

defined, and hence mλ(F (x) + (S − 1)(F (x) − y(0)), T ) and m̃λ(x, S, T )
are both well–defined nonzero polynomials of Fq[S, T ] of degree D. As a
consequence, for any lifting point y of π and any x ∈ Vy, the polynomial
m̃λ(x, 1, T ) is a nonzero scalar multiple of mλ(y, T ), and thus a separable
element of Fq[T ] of degree D.

Following [28, Theorem 5], in the version of [10, Theorem 3.6], there
exists a polynomial A∗

2 ∈ Fq[Y ] of degree bounded by 2δ4 + δ such that for
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any y ∈ A
n with A∗

2(y) 6= 0 the polynomial mλ(y + (S − 1)(y − y(0)), T )
is absolutely irreducible. Let A2 ∈ Fq[X ] be the numerator of a reduced
representation of the rational function A∗

2(F (X)) ∈ Fq(X). It follows that
A2 has degree bounded by 2dδ4 + dδ and, for any x ∈ A

n with A2(x) 6= 0,
the polynomial m̃λ(x, S, T ) is absolutely irreducible.

Let A := A1A2. Observe that A ∈ Fq[X ] and has degree at most
3dδ4. Now, if we consider any point x ∈ A

n satisfying A(x) 6= 0 and set
y := F (x), we claim that conditions (i) and (ii) of the statement of the
lemma are satisfied. Indeed, A1(x) 6= 0 implies that A∗

1(y) 6= 0, that is,
the discriminant of mλ(y, T ) with respect to T is nonzero. We deduce
that mλ(y, T ) has D distinct roots and therefore, y is a lifting point of
π. Finally, since y is a lifting point of π and A2(x) 6= 0, the polynomial
m̃λ(x, S, T ) is absolutely irreducible and hence, so is the curve C.

We remark that in the case of a field of large characteristic, say
char(Fq) ≥ 2δ2 or char(Fq) ≥ δ(δ − 1) + 1, the bound of the statement of
Lemma 4.1 can be improved applying the approach of [17] or [31] respec-
tively. More precisely, applying [31, Theorem 6] (see also [17, Theorem 5.1]
for a slightly worse bound) it follows that there exists a nonzero polynomial
A ∈ Fq[X ] of degree at most 4dδ2 for which the conditions of the statement
of Lemma 4.1 hold. Nevertheless, taking into account that in cryptographic
applications fields of characteristic 2 are very common, we shall not pursue
the subject any further.

Suppose that we have already chosen a point x ∈ A
n satisfying the

conditions of Lemma 4.1 and let y := F (x). Let Λ := (Λ1, . . . , Λn) be a
vector of new indeterminates.

Lemma 4.2. There exists a nonzero polynomial B ∈ Fq[Λ] of degree
at most 2D2 such that for any λ ∈ A

n with B(λ) 6= 0, the linear form
L := λ · X separates the points of Vy and Vy(0) .

Proof. Let Vy ∪ Vy(0) := {P1, . . . , PD′}. We consider the generic linear
form LΛ := Λ · X and define

B(Λ) :=
∏

1≤i<j≤D′

(LΛ(Pi) − LΛ(Pj)).

Since D′ ≤ 2D holds, it follows that B ∈ Fq[Λ] is a nonzero polynomial of
degree at most 2D2. Any λ ∈ A

n not annihilating B provides a linear form
L that separates the points of Vy and Vy(0) .

Now we can determine the degree of a field extension K of Fq for which
the existence of points λ, x ∈ K

n satisfying Lemmas 4.1 and 4.2 can be
assured. Our next result states that for a random choice of the coordinates
of λ and x in a field extension K of Fq of suitable degree the statements of
Lemmas 4.1 and 4.2 hold with high probability of success.

Corollary 4.1. With notations as in Lemmas 4.1 and 4.2, fix µ > 0
and let K be a finite field extension of Fq such that |K| > 4µdδ4 holds. Then
a random choice of (λ, x) in K

2n satisfies the condition (AB)(λ, x) 6= 0 with
error probability at most 1/µ.
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Proof. By Proposition 2.1, the number of zeros in K
n of the polynomial

A is at most 3dδ4|K|n−1. Then a random choice of x ∈ K
n satisfies A(x) 6= 0

with probability at least 1 − 3dδ4/|K| ≥ 1 − 3/4µ. Given such a choice,
a random choice of λ ∈ K

n satisfies B(λ) 6= 0 with probability at least
1 − 2D2/|K| ≥ 1 − 1/4µ. This shows that a random choice (λ, x) ∈ K

2n

satisfies (AB)(λ, x) 6= 0 with probability at least (1 − 3/4µ)(1 − 1/4µ) ≥
1 − 1/µ.

We remark that the polynomial AB of statement of Corollary 4.1 will
not be computed during the execution of our algorithm, and therefore our
algorithm will proceed with a random choice (λ, x) ∈ K for which the
identity AB(λ, x) = 0 might hold. In such an unlikely event, certain in-
termediate values which are expected to be nonzero are equal to zero, and
the algorithm must be restarted with another random choice of (λ, x).

A second remark is that, as we do not know in general the values of
D and δ a priori (although in some cryptosystems such values are known),
in order to determine the size of the field K these values can be estimated
by dn. This will not increase significatively the cost of our algorithm, since
the cost depends linearly on the logarithm of |K|.

5. The algorithm. Let K be a finite field extension of Fq whose car-
dinality will be determined later. Let (λ, x(1)) ∈ K

2n be a point randomly
chosen. By Corollary 4.1 we have that (λ, x(1)) satisfies the conditions
in the statements of Lemmas 4.1 and 4.2 with error probability at most
4dδ4/|K|. This means that with such an error probability the following
assertions hold:

• y(1) := F (x(1)) is a well–defined lifting point of π;

• let IC :=
(
Pi(X) − Qi(X)(y

(1)
i + (S − 1)(y

(1)
i − y

(0)
i )

)
. Then

C := V (IC : Q∞) (5.1)

is an absolutely irreducible curve of A
n+1;

• the linear form L := λ ·X ∈ K[X ] separates the points of the fibers
Vy(1) and Vy(0) .

In what follows, we shall assume that all these conditions hold.
We consider the projection πS : C → A

1 defined by πS(s, x) := s. We
have that πS is a dominant mapping of degree D, that S = 1 is a lifting
point of πS and that the identities π−1

S (1) = {1}×C1 and π−1
S (0) = {0}×C0

hold, where C1 := F−1(y(1)) and C0 := F−1(y(0)) denote the fibers defined
by y(1) and y(0) respectively. Since L separates the points of Vy(1) it follows
that L is a primitive element of the field extension K(S) →֒ K(C).

The algorithm that computes all the points of Vy(0) may be divided
in three main parts, which will be considered in Sections 5.1, 5.2 and 5.3
below. In the first step, we compute the minimal primitive polynomial
mS(S, T ) of L in the field extension K(S) →֒ K(C). For this purpose, we
apply a Newton–Hensel iteration to the rational point x(1) in order to ob-
tain the vector of power series Ψ ∈ K[[S−1]]n which parametrizes the branch
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of C passing through (x(1), y(1)), truncated up to a suitable precision. It
turns out that the least–degree nonzero polynomial mS(S, T ) ∈ K[S, T ]
which annihilates the power series L(Ψ) up to a certain precision equals
the minimal polynomial of the coordinate function defined by L in the field
extension K(S) →֒ K(C) (see Lemma 5.1 below).

In the second step we extend the computation of the minimal poly-
nomial mS(S, T ) of L in the field extension K(S) →֒ K(C) to the com-
putation of a geometric solution of the curve C, applying the algorithm
underlying Lemma 3.1. Finally, in the third step we find the coordinates
of the q–rational points of Vy(0) . In order to do this, we first obtain a
geometric solution mS(1, T ), w1(T ), . . . , wn(T ) of the zero–dimensional va-
riety C0 = F−1(y(0)), substituting 0 for S in the polynomials which form
the geometric solution of C computed in the previous step. Then we easily
obtain the q–rational points of C0 among the points x := (x1, . . . , xn) ∈ A

n

satisfying the following equations:

mS(1, T ) = 0, T |K| − T = 0, xi = wi(T ) (1 ≤ i ≤ n).

The whole algorithm for computing the q–rational points of F−1(y(0)) may
be briefly sketched as follows:

Algorithm 5.1.
1. Choose the coefficients of a vector (λ, x(1)) ∈ K

2n at random.
2. Set G(S, X) := F (X) − y(1) − (S − 1)(y(1) − y(0)). Compute the

Newton–Hensel operator NG(X) := X − J−1
F (X)G(S, X).

3. Compute κ := ⌈log2(2Dδ + 1)⌉ iterations of the Newton–Hensel
iterator NG applied to x(1). Let Ψκ be the resulting vector of power
series truncated up to order 2Dδ + 1.

4. Find the least–degree nonzero polynomial mS ∈ K[S, T ] such that
mS(S,L(Ψκ)) ≡ 0 mod (S − 1)2Dδ+1 holds. This is the minimal
polynomial of L in K(S) →֒ K(C) (see Lemma 5.1).

5. Obtain a geometric solution of the curve C applying the proof of
Lemma 3.1.

6. Substitute 0 for S in the polynomials which form the geometric
solution of C computed in the previous step. The univariate poly-
nomials obtained form a complete description of C0 (eventually in-
cluding multiplicities).

7. Clean multiplicities of the polynomials computed in the previous
step to obtain a geometric solution m0, w1, . . . , wn ∈ K[T ] of the
variety C0.

8. Compute h := gcd(m0, T
|K| − T ) and the roots α(1), . . . , α(M) of h

in K.
9. Compute the q–rational points of C0 = F−1(y(0)) as the intersec-

tion
{(

w1(α
(i)), . . . , wn(α(i))

)
; 1 ≤ i ≤ n

}
∩ F

n
q .

We observe that, in order to determine the size of the field K and
to execute steps (3)–(4), the values D and δ are required. Although in
some cases these values are known a priori, we cannot in general assume
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that they are given. Concerning the determination of the field K, from
the complexity point of view we may simply estimate D and δ by dn and
proceed, since the the cost of our procedure depends quasi–linearly on the
value log2(Dδ). On the other hand, for the execution of steps (3)–(5),
the value N := 2Dδ can be found by a process which, roughly speaking,
starts with the value N = 2, and incrementally doubles the value N until
the output of steps (3)–(5) is a geometric solution of the curve C. The
efficiency of this process relies on the fact that one can efficiently check
if a candidate to be a geometric solution of a given irreducible variety is
actually a geometric solution. Such a modification would only contribute
with logarithmic factors to the asymptotic cost of our procedure.

5.1. The computation of the polynomial mS. We consider the
factorization of mS(S, T ) in the ring K[[S − 1]][T ], where K[[S − 1]] de-
notes the power series ring in S − 1. From the fact that mS(1, T ) is sep-
arable of degree D we conclude that there exist D distinct power series
σ(1), . . . , σ(D) ∈ K[[S − 1]] such that the monic version m̃S of mS(S, T )

can be factored as m̃S =
∏D

i=1(T − σ(i)). Furthermore, m̃S(1, T ) can be

factored as m̃S(1, T ) =
∏D

i=1(T − σ(i)(1)), where σ(i)(1) represents the
constant term of σ(i) for 1 ≤ i ≤ D.

Since m̃S(1, T ) is the minimal polynomial of the linear form L in the
K–algebra extension K →֒ K[Vy(1) ], if we write Vy(1) := {P1, . . . , PD} we

have that m̃S(1, T ) =
∏D

i=1(T − L(Pi)). Given that (x(1), y(1)) belongs to
the fiber Vy(1) , there exists a power series σ(i) such that L(x(1)) = σ(i)(1).

In order to simplifify notations, we shall simply write σ instead of σ(i).
The algorithm that computes the polynomial mS(S, T ) starts comput-

ing the power series σ truncated up to order N + 1, where N := 2Dδ. Let
σN ∈ Fq[S] be the polynomial of degree at most N congruent to σ mod-
ulo (S − 1)N+1. Our next result shows that the polynomial mS(S, T ) we
want to compute can be obtained as the solution of a suitable congruence
equation involving σN .

Lemma 5.1. Let g ∈ K[S, T ] be a polynomial with degS g ≤ δ and
degT g ≤ D satisfying the following congruence

g(S, σN ) ≡ 0 mod (S − 1)N+1. (5.2)

Then mS divides g in K[S, T ].
Proof. Let g ∈ K[S, T ] be a solution of (5.2) satisfying the conditions

on the degree of the statement of the lemma. The resultant h ∈ K[S] of g
and mS with respect to T has degree at most N and belongs to the ideal
generated by mS and g. Since mS(S, σN ) and g(S, σN ) are congruent to
0 modulo (S − 1)N+1 by hypothesis, we deduce that h(S) ≡ 0 mod (S −
1)N+1 holds. Therefore, the fact that deg h ≤ N and h(S) ≡ 0 mod (S −
1)N+1 holds imply h = 0. In particular, we derive the existence of a
common factor of mS and g in K(S)[T ]. Finally, taking into account the
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irreducibility of mS in K(S)[T ] and the Gauss lemma, we easily deduce the
statement of the lemma.

From Lemma 5.1 we conclude that mS can be characterized as the
nonzero solution of (5.2) of minimal (total) degree.

In order to find the least–degree nonzero solution of (5.2), we shall in-
terpret (5.2) as a problem of Hermite–Padé approximation. Indeed, finding
a nonzero solution of the congruence equation (5.2) is equivalent to finding
g0, . . . , gD ∈ K[S] with deg gj ≤ δ for 0 ≤ j ≤ D such that the following
congruence equation holds:

g0(S) + g1(S)σN + · · · + gD(S)σD
N ≡ 0 mod (S − 1)N+1. (5.3)

We shall solve (5.3) applying an algorithm due to [8], which is based on fast
linear–algebra algorithms for matrices of fixed displacement rank (cf. [7],
[33]). This requires the computation of the successive powers σN , . . . , σD

N

of the power series σ truncated up to order N + 1.
The computation of σN is based on a multivariate Newton iteration

over the power series ring K[[S − 1]], which we now describe. Substituting
1 for S in the polynomials defining the ideal IC associated to the curve C
of (5.1), we obtain the system y(1) = F (X). Since y(1) is a lifting point
of π, it follows that none of the points of Vy(1) annihilate the denominator
Qi(X) of the rational function Fi for 1 ≤ i ≤ n. Furthermore, from, e.g.,
[10, Lemma 2.1] we conclude that none of the points of Vy(1) annihilate
the determinant of the Jacobian matrix JF := (∂Fi)/(∂Xj)1≤i,j≤n. In
particular, detJF (x(1)) 6= 0 holds.

Observe that the curve C of (5.1) is locally defined in a neighborhood

of each point of Vy(1) by the equations Fi(X) = y
(1)
i + (S − 1)(y

(1)
i − y

(0)
i )

(1 ≤ i ≤ n). Therefore, in order to compute the truncated power series
σN we consider the Newton–Hensel operator NG associated to the vector
of rational functions G(S, X) := F (X)− y(1) − (S −1)(y(1) − y(0)), namely,

NG(X) := X − J−1
F (X)G(S, X).

Let N
(k)
G denote the k–fold iteration of NG and define Ψk := N

(k)
G (x(1)) ∈

K[[S − 1]]n for k ≥ 0. Then it is well known that the following congruence
relation holds:

G(S, Ψk) ≡ 0 mod (S − 1)2
k

. (5.4)

Since Qi(Ψk)(1) 6= 0 holds for 1 ≤ i ≤ n, from (5.4) we deduce that

Pi(Ψk) ≡ Qi(Ψk)
(
y
(1)
i + (S − 1)(y

(1)
i − y

(0)
i )

)
mod (S − 1)2

k

. (5.5)

Since the polynomial mS(S,L(X)) belongs to the ideal of K[S, X ]Q∞ gen-

erated by Pi(X)−Qi(X)
(
y
(1)
i +(S−1)(y

(1)
i −y

(0)
i )

)
(1 ≤ i ≤ n), from (5.5)

we conclude that

mS(S,L(Ψk)) ≡ 0 mod (S − 1)2
k

.
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From the identity L(Ψk)(1) = L(x(1)) we deduce that L(Ψk) ≡ σ

mod (S − 1)2
k

holds. Hence, we obtain σN as the power series L(Ψκ) with
κ := ⌈log2(N+1)⌉ truncated up to order N+1. From σN we easily compute
the powers σ2

N , . . . , σD
N by successive multiplication and truncation.

We may summarize the algorithm underlying the above considerations
as follows:

Algorithm 5.2 (Computation of the powers of σN ).
1. Set κ := ⌈log2(N + 1)⌉ and Ψ0 := x(1).

2. Compute Ψk+1 := NG(Ψk) mod (S − 1)2
k+1

for 0 ≤ k ≤ κ − 1.
3. Compute σN := L(Ψκ) mod (S − 1)N+1.
4. Compute σj+1

N := σN · σj
N mod (S − 1)N+1 for 1 ≤ j ≤ D − 1.

The following proposition provides a complexity estimate of the pro-
cedure just described:

Proposition 5.1. If the rational functions F1, . . . , Fn are evaluated
with T operations in Fq, the powers σN , . . . , σD

N , truncated up to order N+1,
can be deterministically computed with O

(
(T + n1+ω)M(Dδ)

)
arithmetic

operations in K.
Proof. First, from the Baur–Strassen theorem [5] it follows that the

entries of JF can be computed with O(T) arithmetic operations. Then, the
determinant and adjoint matrix of JF can be evaluated with O(T + n1+ω)
arithmetic operations (see, e.g., [7]).

In order to compute the (k +1)th iteration Ψk+1 := NG(Ψk) from Ψk,
we compute the inverse matrix J−1

F (Ψk) as the multiplication J−1
F (Ψk) =

detJF (Ψk)−1 ·Adj
(
JF (Ψk)

)
of the reciprocal of the (truncated) power se-

ries detJF (Ψk) by each entry of the adjoint matrix Adj
(
JF (Ψk)

)
. Using

fast power series inversion we can compute detJF (Ψk)−1 with O
(
(T +

n1+ω)M(2k)
)

arithmetic operations in K (see, e.g., [18], [7]). With a simi-

lar cost we compute the evaluation Adj
(
JF (Ψk)

)
of the adjoint matrix of

JF at Ψk and the product det JF (Ψk)−1 · Adj
(
JF (Ψk)

)
.

Thus, the computation of Ψk for every 2 ≤ k ≤ κ requires

O
(
(T + n1+ω)

κ−1∑

k=0

M(2k)
)

= O
(
(T + n1+ω)M(Dδ)

)

arithmetic operations in K. The remaining steps do not change the overall
asymptotic cost.

Next we discuss how we can solve the Hermite–Padé approximation
problem (5.3). This is represented by a linear system with N +1 equations
and O(Dδ) unknowns, given by the coefficients of the solution g ∈ K[S, T ] of
(5.2). Best general–purpose algorithms solving a system of size O(Dδ×Dδ)
require O((Dδ)ω) arithmetic operations [7]. However, in this case we profit
from the structure of (5.3): it turns out that for a suitable ordering of the
unknowns, the matrix M of the system (5.3) is a block–Toeplitz matrix
(see, e.g., [12, Lemma 4.3], [8, Lemma 6]). This allows us to solve (5.3)
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using the theory of matrices of fixed displacement rank (cf. [7], [33]). We
shall apply the algorithm of [8], which is aimed at solving linear systems
defined by matrices of “large” displacement rank.

Further, as we are interested in the least–degree nonzero solution
g ∈ K[S, T ] of (5.3), we combine [8] with a strategy of binary search as in,
e.g., [7, Algorithm 8.2]. Fix ρ ≤ δ. From [8, Corollary 1] it follows that, if
there exist nonzero solutions g ∈ K[S, T ] of (5.3) with degS g ≤ ρ, then one
such solution can be computed with O

(
Dω−1M(Dρ) log(Dρ)

)
arithmetic

operations in K and error probability at most 2(Dρ)2/|K|. Therefore, ap-
plying a binary search we can determine the least–degree solution of (5.3)
with at most ⌈log δ⌉ such steps. As a consequence, we have the following
result:

Proposition 5.2. Suppose that we are given the dense representation
of the powers σN , . . . , σD

N , as provided by the algorithm underlying Propo-
sition 5.1. Then the minimal polynomial mS ∈ K[S, T ] can be computed
with O

(
Dω−1M(Dδ) log2δ

)
operations in K and error probability at most

2(Dδ)2 log δ/|K|.

Combining Propositions 5.1 and 5.2 we obtain an algorithm computing
the minimal polynomial mS from the rational functions F1, . . . , Fn:

Proposition 5.3. The polynomial mS ∈ K[S, T ] can be computed
with O

(
(T + n1+ω + Dω−1 log2δ)M(Dδ)

)
operations in K and error proba-

bility at most 2(Dδ)2 log δ/|K|.

5.2. A geometric solution of C. Our next task consists in extend-
ing the algorithm of the previous section to an algorithm computing a
geometric solution of the curve C defined in (5.1). Let Λ := (Λ1, . . . , Λn)
be a vector of new indeterminates and consider the projection map πΛ :
A

n × C → A
n × A

1 defined by πΛ(λ, s, x) := (λ, s). Since πS is a dom-
inant morphism, so is πΛ and K(Λ, S) →֒ K(Λ) ⊗K K(C) is an algebraic
field extension. The minimal polynomial mΛ ∈ K[Λ, S, T ] of the linear
form LΛ := Λ · X in K(Λ, S) →֒ K(Λ) ⊗K K(C) is a separable element
of K[Λ, S][T ] satisfying the degree bounds degT mΛ ≤ D, degS mΛ ≤ δ
and degΛ mΛ ≤ δ (see, e.g., [11, Proposition 6.1] and [39, Proposition 1]).
Notice that substituting λ for Λ we have mΛ(λ, S, T ) = mS(S, T ).

Applying the algorithm underlying Proposition 5.3 to the linear form
LΛ we compute the minimal polynomial mΛ(Λ, S, T ) with O

(
(T + n1+ω +

Dω−1 log2 δ) M(Dδ)
)

arithmetic operations in K(Λ). Therefore, by
Lemma 3.1 we obtain the following result:

Proposition 5.4. Suppose that the coefficients of the linear form
L are randomly chosen in K. Then we can compute a geometric solution
of C with O

(
(T + n1+ω + Dω−1 log2 δ)nM(Dδ)

)
operations in K. Further-

more, the algorithm output the right result with error probability at most
9Dδ log δ/|K|, where D := D(δ + 2)log δ.

Proof. As explained in the proof of Lemma 3.1, we apply the algorithm
for the computation of the minimal polynomial mS of Proposition 5.3 to
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the generic linear form LΛ, truncating each intermediate result up to order
(Λ−λ)2. Therefore, from Lemma 3.1 and Proposition 5.3 we easily deduce
the complexity estimate of the proposition.

In order to estimate the error probability of the algorithm we have to
estimate the probability of failure of the choice of the vector of coefficients
of the linear form L. Recall that the application of Lemma 3.1 requires
that the vector of coefficients λ := (λ1, . . . , λn) of the linear form L does
not annihilate any denominator in K[Λ] of any intermediate result of the
algorithm computing the minimal polynomial mΛ.

The algorithm for obtaining the polynomial mΛ consists of two steps:

the computation of the first D powers of σ
(Λ)
N := LΛ(Ψk), which is consid-

ered in Proposition 5.1, and the solution of the Hermite–Padé approxima-
tion problem (5.3), which is considered in Proposition 5.2. From Algorithm

5.2 we conclude that the computation of the powers σ
(Λ)
N , . . . , (σ

(Λ)
N )D does

not require any division by a nonconstant polynomial of K[Λ].
Next, we analyze the divisions necessary to solve the Hermite–Padé

approximation problem (5.3), which is solved applying an algorithm of [8].
This algorithm is an adaptation of Kaltofen’s Leading Principal Inverse
algorithm ([26], [27]). Kaltofen’s algorithm performs a recursive reduction
of the computation of the inverse of a “generic–rank–profile” square input
matrix

A =

(
A1,1 A1,2

A2,1 A2,2

)

to that of the leading principal submatrix A1,1 and its Schur complement
∆ := A2,2 − A2,1A

−1
1,1A1,2. The divisions which arise during the execution

of this recursive step are related to the computation of A−1
1,1 and ∆−1 and

a routine of “compression” (cf. [7, Problem 2.2.11.c]) of the generators of
matrices which are obtained as certain products involving A−1

1,1, ∆−1, A1,2

and A2,1. The latter in turn requires the computation of the inverses of
certain submatrices of the products under consideration.

Each entry of the matrix M of the linear system (5.3) is a coefficient

of a power (σ
(Λ)
N )j , which is therefore a polynomial in Λ of degree at most

j ≤ D. Since the generic–rank–profile matrix A is obtained by multiplying
M with suitable matrices with entries in K, we conclude that the entries
of A1,1 are polynomials of K[Λ] of degree at most D, while the numerators
and denominators of the entries of ∆−1 are polynomials of K[Λ] of degree
at most D(δ + 2). Therefore, by a simple recursive argument we see that
the numerators and denominators of all leading principal submatrices and
Schur complements which are inverted during the algorithm have degrees
bounded by D := D(δ +2)log δ. This in turn implies that the denominators
arising during the compression routine have degrees bounded by 3Dδ.

Finally, taking into account that the algorithm of [8] consists of at most
⌊log δ⌋ recursive steps, and that each recursive step requires the inversion
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of at most 4 matrices, we conclude that the product of all the denomi-
nators arising during the algorithm has degree bounded by 8Dδ log δ. By
Corollary 2.1, it follows that a random choice of λ := (λ1, . . . , λn) does not
vanish any denominator of the algorithm computing the minimal polyno-
mial mΛ with error probability at most 8Dδ log δ/|K|. Putting together
this estimate and the error probability 2(Dδ)2 log δ/|K| of the algorithm
underlying Proposition 5.3 we deduce the statement of the proposition.

5.3. Computation of the points of F−1(y(0))∩F
n
q . In this section

we show how to find the solutions in F
n
q of the system F (X) = y(0).

Assume that we are given a geometric solution defined over K of the
curve C defined in (5.1), as provided by the algorithm of Proposition 5.4.
This geometric solution consists of a linear form L ∈ K[X ], the minimal
polynomial mS ∈ K[S, T ] of L in the algebraic field extension K(S) →֒ K(C)
and the parametrizations (∂mS/∂T )Xj − vj(S, T ) (1 ≤ j ≤ n) of the
variables X1, . . . , Xn by the zeros of mS .

Let π−1
S (0) = {0} × C0, where C0 := F−1(y(0)). Since L separates

the points of π−1
S (0), from a geometric solution of C we obtain a geometric

solution of C0. Indeed, substituting 0 for S in mS , v1, . . . , vn we obtain poly-
nomials mS(0, T ), v1(0, T ), . . . , vn(0, T ) ∈ K[T ] which represent a complete
description of the fiber C0, i.e., we have the identity

C0 = {x ∈ A
n; mS(0,L(x)) = 0, m′

S(0,L(x))xj = vj(0,L(x)) (1 ≤ j ≤ n)},

where m′
S(0, T ) := ∂mS

∂T
(0, T ). Nevertheless, the polynomials mS(0, T ),

v1(0, T ), . . . , vn(0, T ) ∈ K[T ] do not necessarily form a geometric solution
of C0, because the polynomial mS(0, T ) might have multiple factors. In
such a case, it is easy to see that the multiple factors of mS(0, T ) are
also factors of v1(0, T ), . . . , vn(0, T ) (see, e.g., [21, §6.5]). To remove these
multiple factors, we proceed in the following way: first, we compute

a(T ) := gcd
(
mS(0, T ), m′

S(0, T )
)
, m0(T ) :=

mS(0, T )

a(T )
,

which yield the square–free representation m0(T ) of mS(0, T ). Next, given
that a(T ) divides vj(0, T ) for 1 ≤ j ≤ n, we obtain polynomials

m′
S(0, T )

a(T )
Xj −

vj(0, T )

a(T )
(1 ≤ j ≤ n),

which vanish on the points of C0. Finally, since m0 and m′
S(0, T )/a(T )

have no common factors in K[T ], we invert m′
S(0, T )/a(T ) modulo m0(T )

and obtain parametrizations Xj − wj(T ) (1 ≤ j ≤ n) of the coordinates
of the points of C0 by the zeros of m0(T ) which are better suited for our
purposes. In the next lemma we state the cost of this procedure:

Lemma 5.2. Given a geometric solution of the curve C, as provided
by the algorithm underlying Proposition 5.4, we can deterministically com-
pute a geometric solution m0(T ), X1 − w1(T ), . . . , Xn − wn(T ) of the zero
dimensional variety C0 with O(nδM(D)) operations in K.
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Proof. The dense representation of the polynomials mS(0, T ), v1(0, T ),
. . . , vn(0, T ) can be obtained from the dense representation of the polyno-
mials mS(S, T ), v1(S, T ), . . . , vn(S, T ) with O(nDδ) arithmetic operations
in K. The remaining computations are O(n) multiplications, greatest com-
mon divisors and a modular inversion of univariate polynomials, whose
degrees are less than or equal to D, which contribute with O

(
nM(D)

)
ad-

ditional arithmetic operations in K.
Finally, we compute the K–rational points of C0, which in particular

yield the solutions in F
n
q of F (X) = y(0). For this purpose, set

h := gcd(m0, T
|K| − T ) ∈ K[T ].

Following, e.g., [18, Corollary 14.16], we have that h can be computed
with O

(
M(D) log |K|

)
arithmetic operations in K. Since h factors into

linear factors, its factorization can be computed with O
(
M(D) log(µD|K|)

)

arithmetic operations in K and error probability at most 1/µ (see, e.g., [18,
Theorem 14.9]).

Observe that the roots of h are the values L(P ) resulting from the
evaluation of L in the points P ∈ C0 ∩ K

n. In particular, L(x) ∈ K is a
root of h for every point x ∈ C0 ∩ K

n. Thus, if we substitute the roots α
of h for T in the polynomials wj(T ) (1 ≤ j ≤ n), we obtain all the points
of C0 ∩ F

n
q as the points

(
w1(α), . . . , wn(α)

)
∈ F

n
q with h(α) = 0. Since

such substitutions require O(nD) additional arithmetic operations in K,
we have the following result:

Proposition 5.5. Given a geometric solution of the zero–dimensional
variety C0 = F−1(y(0)), as provided by the algorithm underlying Lemma
5.2, we can compute the set C0 ∩F

n
q with O

(
M(D)(n + log(µD|K|))

)
arith-

metic operations in K and error probability at most 1/µ.
Putting together Propositions 5.4 and 5.5 we obtain our main result:
Theorem 5.3. The solutions in F

n
q of the input system F (X) = y(0)

can be computed with

O
((

(T+n1+ω+Dω−1log2δ)M(Dδ)+M(D)M(log q+log2δ)
)
nM(log q+log2δ)

)

bit operations and error probability at most 1/4.
Proof. Let K be a field extension of Fq of cardinality greater than

128Dδ log δ, where D := D(δ +2)log δ. Choose randomly a point (λ, x(1)) ∈
K

2n and set L := λ · X ∈ K[X ]. Suppose that (λ, x(1)) ∈ K
2n satisfies the

following conditions:
1. y(1) := F (x(1)) is a lifting point of π : V → A

n,
2. the curve C ⊂ A

n+1 defined in (5.1) is absolutely irreducible,
3. the linear form L separates the fibers Vy(1) and Vy(0) ,
4. λ does not annihilate any denominator of the algorithm computing

the minimal polynomial mΛ underlying Proposition 5.3.
Applying the algorithm of Proposition 5.4 we obtain a geometric solution
of the curve C with O

(
(T + n1+ω + Dω−1 log2 δ)nM(Dδ)

)
operations in K.
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Then we apply the algorithm of Proposition 5.5 in order to compute the
solutions in F

n
q of F (X) = y(0) with O

(
M(D)(n + log(D|K|))

)
arithmetic

operations in K. Combining both complexity estimates, and taking into
account that every arithmetic operation in K requires O(M(log2 δ + log q))
bit operations, we deduce the estimate of the statement of the theorem.

By Corollary 4.1 we have that (λ, x(1)) satisfies conditions (1)–(3)
above with error probability at most 4dδ4/|K| ≤ 1/16. Furthermore, from
the proof of Proposition 5.3 we conclude that condition (4) is satisfied with
error probability at most 1/16. Finally, assuming that (1)–(4) hold, the
algorithms underlying Propositions 5.3 and 5.5 output the right results
with error probability at most 2(Dδ)2 log δ/|K| ≤ 1/16 and 1/16 (fixing
µ := 16 in Proposition 5.5) respectively. This shows that the overall error
probability is at most 1/4 and finishes the proof of the theorem.

We make a few remarks concerning Theorem 5.3. Observe that our
algorithm has a cost of O(n2+ωDωδ log q + nD log2 q) bit operations, up
to logarithmic terms. This improves and extends the algorithm of [12].
We have further contributed to the latter by providing estimates for the
corresponding error probability.

A second remark concerns the behavior of our algorithm under the hy-
potheses of [41]. Recall that [41] requires F : A

n → A
n to be a polynomial

map which is polynomially invertible, with inverse G := (G1, . . . , Gn) with
degrees polynomially bounded with respect to n and d := max1≤k≤n deg Fk.
Under these hypotheses, the authors exhibit an algorithm which computes
the inverse mapping G with a polynomial cost in T, n and d. Under these
conditions, we have that the projection mapping π : V → A

n has degree 1,
i.e., the identity D = 1 holds. Furthermore, it is easy to see that the min-
imal polynomial mS(S, T ) has degree bounded by e := max1≤k≤n deg Gk.
Therefore, the algorithms underlying Propositions 5.4 and 5.5 have actually
polynomial cost in T, n and e. This shows that the cost of our algorithm
meets this polynomial bound assuming the strong hypotheses of [41].

6. Conclusions. Our complexity estimate may be roughly described
as polynomial in the cost T of the evaluation of the input rational functions
F1, . . . , Fn, the number of variables n, the logarithm log q of the cardinality
of the field Fq and two geometric invariants: the degree D of the mapping
F and the degree δ of the graph of F . In this sense, we see that the
practical convenience of our algorithm, and the subsequent (in)security of
cryptosystems based on polynomial or rational mappings over a finite field,
essentially relies on these geometric invariants.

In worst case we have D = δ = deg(F1) · · · deg(Fn), which implies that
our algorithm is exponential in the input size. Furthermore, adapting the
arguments of [13] it is possible to prove that any universal algorithm solving
F (X) = y(0) has necessarily cost (deg(F1) · · · deg(Fn))Ω(1), showing thus
the security of the corresponding cryptosystem with respect to universal
decoding algorithms. Since a universal algorithm is one which does not
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distinguish input systems according to geometric invariants and represents
a model for the standard algorithms based on rewriting techniques, such
as Gröbner basis algorithms, such cryptosystems are likely to be secure.
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