
Binary Diffing

by Nicolás A. Economou

EKO-PARTY 2009

 Compare byte a byte 2 binary files

 Binary File Examples:

– .exe

– .wav

– .ppt

– .jpg

What is binary diffing ?

TURBODIFF

 Compare functions between 2 executable

binary files.

 It’s necessary to use heuristics (compare byte

to byte doesn’t work !)

What is executable binary diffing ?

– Because we don’t have the source code 

Why we need to compare binary files ?

FILE1.C

FILE2.C

FILE3.C

FILE.OBJ FILE.EXE

PROGRAMER

WE

 Looking for coincidences:

– Code Theft Detection

 Looking for differences:

– Security Patch Detection

– Added/Removed Code Detection

 Misc:

– Virus/Worms Mutation Detection, Firmware Updates

What is the use of that ?

void check_arguments (int argc , char *argv [])

{

if (argc == 3)

{

printf ("arguments ok\n");

}

}

“C” Code Example

“asm x86” Code Example

check_parameters function

“binary x86” Code Example

“function graph” example

“partial call graph” example

“complete call graph” example

check_arguments
function

void file_reader (FILE *f , char buffer [256])

{

int len;

/* Read the len */

fread (&len , sizeof (int) , 1 , f);

/* Check the len */

if (len <= 256)

{

/* Read the data */

fread (buffer , len , 1 , f);

}

}

test1.exe (vulnerable application)

SECURITY PROBLEM

-2.147.483.648 to 2.147.483.647

0 to 4.294.967.295

EXAMPLE (signed/unsigned)
LEN = -1
LEN = 4.294.967.295

void file_reader (FILE *f , char buffer [256])

{

unsigned int len;

/* Read the len */

fread (&len , sizeof (unsigned int) , 1 , f);

/* Check the len */

if (len <= 256)

{

/* Read the data */

fread (buffer , len , 1 , f);

}

}

test2.exe (the patched application)

SECURITY PATCH

Comparing binary diferences

File_reader()

File_reader()

PATCH

Comparing function graph differences

Diffing “test1.exe” vs “test2.exe”

– Using Bindiff v2 (commercial)

– Using Patchdiff v2.0.6 (free)

– Using Darumgrim 2 v1.0 (free)

– Using Turbodiff 1.01b release 1 (free)

Simple Diff Demo (1 + 1 = 2)

Once upon a time ...

Story

An exploit writer

Story

And a boss ...

Story

One day his boss
said

Story

Hey look at this !

Vulnerability on test1.exe

CVE-9999-9999

Patch Available from here

Story

Do the exploit !

Story

No problem the
exploit writer said

Story

I will find the
vulnerability with

bindiff ...

Story

Mmm it’s rare ...

Story

I couldn’t find the
vulnerability ...

Story

I going to use
another differ ...

Patchdiff

Story

WTF !!!!!

Story

It’s my last chance
said the EW

Story

Please Darumgrim 2
help me !

Story

Story

#&?¿%$!!!!

One week later ...

Story

His boss asked him
...

Story

Are you working
very hard in the

exploit ?

Story

Yes, of course said
the exploit writer

Story

While he was looking to
Angeline in his screen

Story

Is there another
differ said the

EW?

Story

Story

Story

http://corelabs.coresecurity.c
om/index.php?module=Wiki&a
ction=view&type=tool&name=t
urbodiff

Story

Using turbodiff ...

Story

Story

IT WAS
AMAZING !

 Functions matching:

– test1.main ()  test2.main ()

– ? test1.sub_401030 ()  test2.???

 Searching differences between
matched functions:

– ? test1.file_reader () != test2.file_reader ()

Binary diffing problems

Uncertainty

Many heuristics are required for a

correct match

A good handling of probabilities

is required (common sense !)

Functions matching problems

 Use symbols if they exist

– High probability of correct

matches

– Matching via function names
» Mangled names (C): “_main ()”

» Demangled names (C++): “file::read ()”

The simplest Heuristic

Matching functions by name

 test.1.exe test2.exe

 00401000 _main - 00401000 _main

 00401030 file_reader - 00401030 file_reader

 00401068 start - 00401068 start

 004010c1 __GetExceptDLLinfo - 004010c1 __GetExceptDLLinfo

 004011b8 _calloc - 004011b8 _calloc

 004011e4 __rtl_close - 004011e4 __rtl_close

 004011f4 __close - 004011f4 __close

 00401204 @_virt_reserve - 00401204 @_virt_reserve

Function list (example)

What if we don’t have symbols ?

???

 test.1.exe test2.exe

 00401000 _main - 00401000 sub_401000

 00401030 file_reader - 00401030 sub_401030

 00401068 start - 00401068 sub_401068

 004010c1 __GetExceptDLLinfo - 004010c1 sub_4010c1

 004011b8 _calloc - 004011b8 sub_4011b8

 004011e4 __rtl_close - 004011e4 sub_4011e4

 004011f4 __close - 004011f4 sub_4011f4

 00401204 @_virt_reserve - 00401204 sub_401204

Function list without symbols

Entering the graph world ...

BASIC BLOCK

TRUE
CONDITIONAL

EDGEUNCONDITIONAL
EDGE

FALSE
CONDITIONAL

EDGE

CHILD

 A function is made of:

–Basic Blocks

»Have Parents (calls from functions)

»Have Children (calls to functions)

–Edges
»Conditionals (TRUE/FALSE)

»Unconditionals (GOTOs)

Essential function graph characteristics

 3 basic blocks

– 2 without children

– 1 child

 3 edges

– 1 true

– 1 false

– 1 unconditional

check_argument () characteristics

 A = 0x401015 B = 0x40101e C = 0x401029

 1 = green edge 2 = red edge 3 = blue edge

 * A B C

 A - 1 2

 B - - 3

 C - - -

Matrix representation

CONNECTIONS
A  B
A  C
B  C

The Function Graph Comparation Heuristic

???

 A = 0x401030 B = 0x401052 C = 0x401063

 1 = green edge 2 = red edge 3 = blue edge

 A = 0x401030 B = 0x401052 C = 0x401063

 1 = green edge 2 = red edge 3 = blue edge

* A B C * A B C

A - 1 2 A - 1 2

B - - 3 B - - 3

C - - - C - - -

test1.file_reader vs. test2.file_reader

VS

test1.file_reader()

test2.file_reader()

The same graph

=

test2.file_reader () test3.file_reader ()

/* Read the len */ /* Read the len */

if (len <= 256) if (len <= 256)

{ {

/* Read the data */ /* Read the data */

fread (buffer , len , 1 , f); fread (buffer , len , 1 , f);

} }

else

{

printf ("len error !\n");

}

We add code

test2. file_reader vs test3. file_reader

 test2.exe

 A = 0x401030 B = 0x401052 C = 0x401063

 test3.exe

 A = 0x401030 B = 0x401065 C = 0x401052 D = 0x401070

* A B C A B C D

A - 1 2 A - 1 2 -

B - - 3 B - - - 3

C - - - C - - - 3

D - - - -

test2.file_reader vs. test3.file_reader

VS

Different Graph

=

 test2.exe test3.exe

The call graph heuristic

IDEA:
MATCH sub_401030
WITH xxx

 test2.exe test3.exe

A place in the world

DIFFERENT FUNCTION
GRAPH

 test2.exe test3.exe

Exploring the call graph

BY SKIPPING
UNCERTAIN NODES
WE CONFIRM ITS

IDENTITY

PREVIOUSLY
MATCHED

 test2.exe test3.exe

Uncertainty

DIFFERENT
GRAPH

STILL NOT
MATCHED

? ?

? ?

Taking information from ...

BASIC BLOCKS

Checksumming basic blocks

- 4 INSTRUCTIONS
- 9 BYTES
- 0 CHILDREN
- 0 GLOBAL REFERENCES
- 0 INPUTS
- 2 OUTPUTS

CHECKSUM = 0x429

TRUE CONDITIONFALSE CONDITION

Be careful with this!

RELIABLE PART UNRELIABLE PART
SENSITIVE TO CHANGES

Checksumming basic blocks

CHECKSUM
=

0x110059

UNCONDITIONAL

- 3 INSTRUCTIONS
- 11 BYTES
- 1 CHILD
- 1 GLOBAL REFER.
- 1 INPUT
- 1 OUTPUT

Comparing function checksums

CHK
0x100AC7

CHK
0x100605

CHK
0x1D4

CHK
0x100ACD

CHK
0x100605

CHK
0x1D4

Problem: Dependence of architecture
x86 ARMCHK1 != CHK2 !!!

 test2.exe test3.exe

Edges order

 test2.exe test3.exe

Edges order 1

A A’ B’

Is It Correct ?

 test2.exe test3.exe

Edges order 2

A B’ A’

Is It Correct ?

NODE 1 vs NODE 2

Reliable subgraph

Following the call graph 1 ... 

Following the call graph 2 ... 

 test2.exe test3.exe

The Correct Edges Order

A A’ B’

It is Correct !

 Reliable points from which we can start to
match functions.

 It is the first thing to do.

 If we dont’t have Fixed Points the
function matching is more difficult.

Fixed Points

 test2.exe test3.exe

Fixed Point Example

FIXED POINT

Another Example

x86 ARM

FIXED
POINT

 Imported function names (eg.
LoadLibrary)

 Strings (eg. “arguments ok”)

 Vtables

 Global variables

 Constants

 Etc ...

Other info we can use...

 Shared Basic Blocks between different

functions

 Reverted Conditions (reordered basic blocks

TRUEFALSE, FALSE TRUE)

 JUMPs added (reordered basic blocks)

 Different registers used to represent the

same variable

Problems

 Problems:

– The differ has to deal with:

» Independent Function Positions

» Partial Matches

» Different Compilers

» Different Architectures

Detecting Possible Code Theft

 Heuristics:

–Looking for matches

»Functions graph (flow chart)

»Partial calls graph ()

»Strings (Very useful)

–An expert has to confirm it !!!

Detecting Possible Code Theft

 Researched by Nicolás A. Economou

 Independent Investigation

 Developed on C++

 More than 7300 lines of code (ver 1.01b r1)

 Architecture Independent Diffing

 Oriented to detect changes (for now ...)

 It works best with binaries compiled by the
same compiler (for now ...)

The Turbodiff Project

Benchmarks

 TURBODIFF:

– VERSION 1.01 beta release 1

 MACHINE:

– AMD ATHLON 2800+ 1.8 GHz

– 1 GB RAM

 SOME TESTS:

– TEST1.EXE/TEST2.EXE (PRESENTATION)

– VMM.SYS (MS09-033)

– SRV.SYS (MS08-063)

– EXCEL.EXE (MS09-021)

Benchmarks

 test1.exe/test2.exe

– 338 functions vs 338 functions

 Results:

– Elapsed time: 1.5 seconds

– Match: 335 identical, 1 changed, 2-2 unmatched

Benchmarks

 vmm.sys (Virtual PC) (MS09-033)

– 552 functions vs 554 functions

 Results:
– Elapsed time: 2.5 seconds

– Match: 436 identical, 103 changed, 13-15 unmatched

Benchmarks

 srv.sys (Windows SMB) (MS08-063)

– 766 functions vs 766 functions

 Results:

– Elapsed time: 5 seconds

– Match: 667 identical, 97 changed, 2-2 unmatched

Benchmarks

 excel.exe (MS09-021)

– 21539 functions vs 21334 functions

 Results:

– Elapsed time: 210 seconds

– Match: 20766 identical, 359 changed, 414-209 unmatched.

Benchmarks

DEMO: MS09-038

 EkoParty Reverse && GO challenge

– http://www.immunityinc.com/contest-

es.html

 Find a bug in a XML Parser

Immunity Challenge

Questions ?

NO! PLEASE
DON’T !

