Inverting bijective polynomial maps over finite fields
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Abstract—We study the problem of inverting a bijective degree(dn)°™M), with d := max; <<, deg ;. The algorithm
polynomial map F : F;* — ;" over a finite field If;. Our interest  performs (Lnd)©() arithmetic operations if,, where L is
mainly stems from the case Wherd?.encc()ges a permutation given the nymber of arithmetic operations necessary to evalHate
by some cryptographic scheme. Givery” " € ', we are able to From the cryptographic point of view, the critical problem is

compute the valuez® € E* for which F(z(?) = 4 holds in : ) : ; )
time O(Ln°M§*) up to Iogqarithmic terms. Here L is the cost of that of computing the inverse image of a given paiftt < F;'

the evaluation of F and 4 is a geometric invariant associated to Under a mapF’, rather than that of inverting” itself. In
the graph of the polynomial map F, called its degree. this sense, we solve the former under much less stringent

hypotheses than those of [8]. More precisely, we exhibit a
B (probabilistic) algorithm that, given a point® € E" and
Let F, be the finite field ofq elements, letF, denote g straight-line program evaluating in F,[X], computes the
its algebraiciglosure and let" denote then—dimensional point (9 ¢ E" for which F(z) = y(© holds. For this
affine spaceF, . Let X := (Xi,...,X,) be a vector of purpose we make the additional (geometric) hypothesis that
indeterminates and lefy, ..., F;, be polynomials inF,[X]. the projection of the graph of on the Y-axis is what in
Assume that the mag” : F' — F defined by F(z) := algebraic geometry is called a finite morphism. This assures
(Fi(z),...,Fa(x)) is bijective. In this paper we exhibit anthat the fibersF—(y) are nonempty and finite for every
algorithm which, on inputy(® e F', computes the point y € A". We remark that this is a reasonable assumption from
2 € E for which F(z(©) = 4(© holds. the cryptographic point of view, because it is typically met in
This problem is tightly related to the classical algebraithe public—key schemes proposed.
geometry problem of finding arf,—rational solution of a The complexity of our algorithm is roughly of order
polynomial system and has direct applications in the domai(Ln*+6%)né?), whereL is the complexity of the evaluation
of public—key cryptography (see e.g. [1]). of F and § is a geometric invariant associated to the map
Algebrists and other computer scientists have tried to tackleé the (geometric) degree of its graph. This degree is a basic
this problem (see e.g. [2], [3], [4]). It is well-known thatmeasure of the complexity of the description of the graph’ of
this is a hard problem, even when restricting to quadratisee e.g. [13], [14]), which may play a significant role to assess
equations ([5], [6]). Indeed, the solutions proposed in [2{he difficulty of inverting F'. In this sense§ should be taken
[3] have exponential running time, and only [4] achieves iato account as &ecurity estimation parameteNotice that
polynomial complexity in the Bzout number of the system§ is upper bounded by the&@out numberleg F; - - - deg F,,
(which is nevertheless exponential in worst case). [8], [9] arahd this bound is attained in worst case (see e.g. [13]).
[10] exhibit efficient algorithms for special cases. Finally, if the hypotheses of [8] hold, then our algorithm
In the setting of cryptography, since [11] researchers hawesets also the complexity bourfdnd)®™) of [8].
unsuccessfully tried to construct public—key schemes based
on the (allegedly) difficult problem of solving polynomial
systems over finite fields, but proposals are typically provedLet K be a subfield off, containingF,. Let V be aK-
to be weak throughad hoc attacks (see [12], [9]). This definable affine subvariety af™ (a K—variety for short). We
might be seen as an indication that the polynomial mapenote byl (V') ¢ K[X] its defining ideal and b¥K[V] its co-
used in public—key cryptography —typically with underlyingordinate ring, namely, the quotient rifig[V'] := K[X]/I(V).
guadratic polynomials— are not intrinsically difficult to invert, If V is an irreducibleK—variety, we define itsimensionas
and calls for the study of parameters to measure such difficultiye transcendence degree of the field exten&on K(V),
In [8] Sturtivant and Zhang exhibit an algorithm for in-whereK (V) is the field of fractions of the domail[V], and
verting a bijective polynomial mapF over F,, assuming the degreeas the maximum number of points lying in the
that F' is an automorphism off,[X]” whose inverse has intersection oft” with an affine linear subspacke of A™ of

I. INTRODUCTION

Il. NOTIONS AND NOTATIONS



codimensiondim V' for which #(V N L) < oo holds. More
generally, ifV = C; U--- U Cy is the decomposition of/

We deduce thal” has dimensiom and that the image of
F is a dense subset df"*. ThusYy,...,Y,, are algebraically

into irreducible K—-components, we define the dimension dhdependent i, [V]. We seté := degV and D := deg .

V asdimV := max;<;<y dimC; and the degree oV as
degV := 2N | deg C; (cf. [13]).

A K-variety V. C A™ is absolutely irreducibléf it is an
irreducibleF,—variety.

Let V be an irreducibleéK—variety of A™ and letr : V —

Lemma 3.1:V is an absolutely irreducibl&,—variety.
Proof: The ideall := (Y; — F;(X) : 1 < i < n) C

F,[X, Y] is contained in/ (V). SinceF, [ X, Y]/I is isomorphic

to F,[X], I is a prime ideal, and thus= (V) holds. m
Suppose that we are given a geometric solutiori/ofBy

A" be a finite morphism, that is, a morphism which induces 4he remark after Definition 2.1, we see tHatis birationally

integral ring extensiofK[A"] — K[V']. The degreeleg  of =
is defined as the degree of the field extendigi”) — K(V).
We say thaty € A™ is alifting point of 7 if the number of
inverse images of is equal to the degree of the morphism

A. Geometric solutions

equivalent to the hypersurfacH defined by the minimal
polynomial m € F,[Y,T]. SinceV is absolutely irreducible,
so is H and thenm.

Suppose that we are givep?) € F and letV,«) be the
corresponding zero—dimensional fiber. In order to compute
the pointz(® € E" for which (z(©,y®) € V,« holds,

We shall use a representation I¢-varieties which is well we shall deform the systen#’(X) = y© into a system
suited for algorithmic purposes (cf. [15]). L& c A" be a F(X) = F(«")) with a point z(!) randomly chosen in a
K-variety of dimension- and degre& and suppose that thesuitable finite field extensiofiK of F, to be determined (cf.

linear projectionr : V' — A" defined byr(x) := (z1,...,2,)
is a finite morphism of degre®.

Definition 2.1: A geometric solutiorof V' consists of the

following items:

« a linear formU € K[X] which induces a primitive ele-

ment of the ring extensioiK[ X1, ..., X,] — K[V], i.e.

an element: € K[V] whose (monic) minimal polynomial
, X, | satisfies the

m € K[Xy,...,X,][T] overK[Xy,...
conditiondeg, m = D. Observe thatlegm < § holds.
« the minimal polynomiatn € K[X;,..., X, |[T] of u.

[16]). The next two lemmas state suitable bounds on the degree
of the genericity conditions underlying the choiceadt).
Lemma 3.2:There exists a polynomial € F,[X] of degree
at most3ds* such that for anyr € A™ with A(z) # 0, the
pointy := F'(z) satisfies the following conditions:
(7) yis alifting point of 7 : V' — A",
(44) The curveC defined byF(X) =y + (S — 1)(y — )
is absolutely irreducible.
Proof: Let £ € F,[X] be a linear form inducing a
primitive element of the ring extensiof,[Y] — F,[V] and

« a generic parametrizatiofi of the varietyV by the zeros 1€t mc € Fy[Y][T] be its minimal polynomial.

of m, of the form(Om/0T) X — v, (r+1 < k < n) with
vp € K[X1,..., X, ][T]. We require thatdeg, v, < D,
degy vr, < dand(0m/0T) (U)X —v,(U) € I(V) hold.

Let A; € E,[Y] be the discriminant ofn with respect to
T. The absolutely irreducibility ofn, implies A; # 0. Let
Ay = A (F(X)) € E,[X]. Since the image of is a dense

The polynomialm can be also defined as follows: considefUPSet o™, there exists: € A" such thatd, (z) # 0. Hence,

the linear mapry : V. — A"! defined byry(z) =
(z1,...,2,,U(z)). The Zariski closure ofry (V) is a K-
hypersurfaced of A™*!, which is indeed defined by:.

We remark that in the case= 0, a linear formU induces
a primitive element of the ring extensidd — K[V] if and
only if U separates the points &f.

Ill. PREPARATION OF THE INPUT DATA
Let Fi,..

d. Let F : A — A" be the polynomial map defined by

Fy,..., F,. Observe that the restriction ¢t to " is a well—

defined polynomial map frori;* to ", also denoted by-.
LetY := (Y1,...,Y,)

and letV c A?" be the affineF,—variety defined by

Vi={(z,y) € A’ y; = Fy(z),1<i<n}.

We make the following assumptions on the m&p(usually

met in the cryptographic situations we are interested in):

(i) F:E'— Eis a bijective map.

(#4) The projection mapr : V — A" defined byr(y,z) :=y
is a finite morphism. In particular, the fibgf, := 71 (y)
is a zero—dimensional subvariety Bf for everyy € A™.

., F, € E,[X] be polynomials of degree at mostb

be a vector of new indeterminates

A; is a nonzero polynomial of degree bounded(B —1)ds.

Set mg(X,8,T) = me(F(X) + (S — DH(F(X) —
yO),T) € F[X,S,T]. Sincem, is monic inF,[Y][T], we
see thatm, is a monic elemenff,[X, S][T]. This implies
that mp(x,1,T) = mg(y,T) is a separable polynomial of
F,[X][T] for any lifting pointy of 7 and anyz € V.

Following [17, Theorem 5], in the version of [4, Theorem
3.6], there exists a polynomial, € F,[X] of degree bounded
y 2ds* such that for anyz € F, with As(z) # 0 the
polynomialm,(z, S, T) is absolutely irreducible.

Let A := A; 4> € F[X]. Observe thatd has degree at
most 3dé*. Let x € A™ be any point satisfyingd(z) # 0
and lety := F(x). We claim that conditiong:) and (i:) of
the statement of the lemma are satisfied. Indeedyx) # 0
implies thatA, (y) # 0, that is, the discriminant of.(y, T)
with respect tdl" is nonzero. We deduce that.(y,T) hasD
distinct roots and therefore, is a lifting point of . Finally,
sincey is a lifting point of = and As(x) # 0, mg(z, S, T) is
absolutely irreducible and hence, sdCis ]

Suppose that we have chosen a pairg A" satisfying the
conditions of Lemma 3.2 and let:= F(x).

Lemma 3.3:Let A := (Ay,...,A,) be indeterminates.
There exists a polynomiab € F,[A] \ {0} of degree at most



2D? such that for any\ € A™ with B(\) # 0, the linear form mg(1,T) = Hle(T—U(Pi)). Sincez(") belongs to the fiber
U= AX;+ -+, X, separates the points &, andV, ). 75" (1), we see that there existsor which U (z(V)) = () (1)
Proof: Let V,, UV, = {Pi,...,Pp}. Let Uy := holds. For simplicity, we shall denote suct’) by o.

MXi+--+ A X, and letB(A) :=i<icj<p (Ur(P;) — The algorithm that computes the polynomials(S,T")
Ux(P;)). Observe thatD’ < 2D holds. ThenB € F,[A] is a starts computing the power series truncated up to order
nonzero polynomial of degree at masb?2. Furthermore, if N := 2DJ. Let o be the polynomial ofF,[S] of degree
A € A" satisfiesB()\) # 0 holds, then by construction it is at most N satisfyingo = oy mod (S — 1)V+1. Our next
clear thatU' separates the points &f, and of V. B result shows how to computes(S,T) from oy.

Our algorithm works in a finite field extensioK of F, Lemma 4.1:Let ¢ € K|[S,T] be a polynomial with
such that there exisk,x € K" satisfying the requirementsdegg g < ¢ anddegy g < D such that the congruence relation
of Lemmas 3.2 and 3.3. Our next result states that we ma
randomly choose\ and . ! 9(S,ox) =0 mod (S — 1) @

Corollary 3.4: With notations as in Lemmas 3.2 and 3.3, fiiolds. Thenmg divides g in KIS, T).

1> 0 and letK be a finite field extension df, of cardinality Proof: Letg € K[S,T] be a solution of (2). The resultant
greater tharduds®. Then a random choicér,\) € K** 1 ¢ K[S] of g andmg with respect tol’ has degree at most
satisfies(AB)(x, A) # 0 with probability at leastl —1/p. N and belongs to the ideal generated f: and g. Since
Proof: The numzber of zeros iK™ of the polynomialA  1,4(S 55) andg(S, o) are congruent to 0 mogs — 1)V +1,
is at mosB3dd* (#K)™ ~' [18, Theorem 6.13]. Then a randomye see that(S) = 0 mod (S — 1)V+! holds. Then we have
choice ofz € K" satisfiesA(x) # 0 with probability at least ;, = 0, which implies thatms and g have a common factor
1 — 3d6* /#K > 1 — 3/4p. Given such a choice, a randomin K(S)[T]. Combining the irreducibility ofns in K(S)[T]
choice of A ¢ K" SatiSﬁeSB(A) 7é 0 with probablllty at least with the Gauss lemma finishes the proof_ u
1—2D?/#K > 1 — 1/4u. This shows that a random choice From Lemma 4.1 we conclude thats can be characterized
(A, ) € K* satisfies(AB)(z,\) # 0 with probability at as the nonzero solution of (2) of minimal degree.

least(1 —3/4p)(1—1/4p) =1 —1/p. u Notice that (2) is a linear system in the coefficientsgof
IV. THE ALGORITHM In order tg obtain the equations of (2), we neeo_l the powers
N,-..,0p truncated at ordelN + 1. The computation of

g

In this section we exhibit an algorithm which computes thg hased on a multivariate Newton iteration over the power
point () € Ey for which F/(z(*) = ) holds. By Corollary ggyies ringK[S — 1]. Substituting 1 forS in (1), we obtain the
3.4 we may assume that we are givéhz(V) € K*" gystemy(® — F(X). Sincey(™ is a lifting point of , from [4,
satisfying the requirements of Lemmas 3.2 and 3.3, whergmma 2.1] we see that none of the solutiong@f = F(X)

K is a finite field extension of, of cardinality O(dé*). This gnnihilates the determinant of the Jacobian matfix =
means thay“) = F(aj(l)) is a lifting point of 7 : V" — A", (aFi)/<an)1<i,j<n- In particular, det JF(.’E(l)) # 0 holds.
the space curv€ of A™** defined by Let Nr be the Newton—Hensel operator:

y+ (S -1 -y ) = F(X) €y Np(X) = X — JFH(X)G(S, X),
is absolutely irreducible, and the linear forth := A\ X1 +  ith G(S,X) = F(X) — y( — (S — 1)(y(1) _ y(o)> and
-+ A X, € K[X] separates the points &f,) andV, . Let o N¥) denote thek—fold iteration of N. Then, for ¥, :=
7s : C — Al be the projection map defined by (s,z) := N(k)(x(l)) € K[S — 1]", it is well-known that
s. We have thatrg is a finite morphism of degre®, the F '
identitiesC := 75" (1) = V, o, andrg'(0) = V,0 hold, and G(S,W;,) = 0 mod (S —1)%" 3)
S =1 is lifting point of 7g. SinceU separates the points of _ _ _
Vo) = C; and S = 1 is lifting point of 7g, it follows thaty  holds. Sincems (S, U(X)) vanishes orC, it belongs to the
is a primitive element ofK[S] — K[C]. ideal of K[S, X] generated byG. 'k!'herefore, (3) implies that

In the first step of this algorithm we compute the minimats(S,U(¥)) = 0 mod (S — 1)>" holds. From the identity
polynomial mg(S,T) of U in the ring extensiorK[S] — U(¥x)(1) = U(z() we deduce that/(¥;) = o mod
K[C]. This is a monic absolutely irreducible element ofS —1)* . Hence, we obtaimy as the power serie§ (V)
K[S][T] with degg mg < § anddeg, mg = D. with k := [logy(N + 1)] truncated at ordetV + 1. From
. . on we easily compute the powers;, ..., 0% by successive
A. The computation of the polynomials multiplication and truncation.

Consider the factorization ofng(S,7T) in K[S — 1][T]. In order to state the complexity of this procedure, we shall
From the fact thatng(1,7) is separable of degre®, we use the quantityV(m) := mlog? mloglogm. An arithmetic
conclude thaing(S,T") has a factorization of the fornns =  operation inK requiresO(M(log #K)) bit operations, and the
Hil(T — o®) with ¢ € K[S — 1] for 1 < i < number of arithmetic operations i necessary to compute
D. Furthermore,mg(1,T) can be factored ass(1,7) = the multiplication, division or gcd of univariate polynomials
Hp(l(T—a(i)(l)), wheres(?) (1) represents the constant ternof K[77] of degree at mostr is also of orderO(M(m)) (cf.

of o9 for 1 <i<D.lLetng'(1) = {P,..., Pp}. We have [19], [20]). On the other hand, we shall also use the expoment



of the complexityO(n*) of the multiplication of two(n x n)— Proposition 4.4: The polynomialmg € K[S,T] can be
matrices with coefficients ifK. We have (theoretically)y < computed withO ((L +n“*! + D?)M(D4)) operations ink.
2.376, but for practical issues it is usually taken= log, 7 ~ ] ) )
2.81 (cf. [20]). We have: B. Computation of a geometric solution ©f
Proposition 4.2:0y,...,0k mod(S—1)N+! can be com- In this section we extend the algorithm of the previous
puted withO((L + n'T<)M(D§)) operations ink. section to an algorithm computing a geometric solution of the
Proof: The evaluation of the Newton—Hensel iteraioy  curveC defined in (1). LetA := (A4,...,A,) be a vector of
requires the inversion of the Jacobian matix. Since the new indeterminates and lety : A” x C — A" x A! be the
polynomials F, ..., F,, can be evaluated witl. arithmetic projection map defined by, (), s, z) := (A, s). Sincerng is a
operations, from the Baur-Strassen theorem [21] we have tfiatte morphism, we deduce that, is a finite morphism. Fur-
the entries of/r can be evaluated wit®(L) arithmetic oper- thermore, the minimal polynomiah (A, S, T) € K[A, S, T
ations and its determinant and adjoint matrix can be evaluatidthe linear formU, := A1 X7 + --- + A, X, in the ring
with O(L + n'*) arithmetic operations [20]. In order toextensionK[A,S] — K[A™ x C] induced bym, satisfies
computeW,,; we compute the inverse matrlxgl(\lfk) as degpmp < D, deggmp < § anddegy mpa < § (see e.g.
the productJ,'(¥;) = det Jp(¥y)" ! - Adj(Jr(¥)) of [7, Proposition 6.1]). We have that, is a separable element
the reciprocal of the power serigst Jr(¥y) by the adjoint of K[A, S][T] anddm, /0T is not a zero divisor oK[A™ x C]
matrix Adj (Jr(¥)). The truncation oflet Jp(¥;)~! can be (see e.g. [7, Proposition 6.1]).
computed using fast power series inversion ([19], [20]) with Let &,...,&, be the coordinate functions @|[C] defined
O((L+n'*t*)M(2*)) arithmetic operations. With similar costby X7, ..., X, and letUy = > k1 Ak &. Taking the partial
we computeAdj(JF(\I/k)) and the productlet Jr(¥;)~! - derivative with respect to the variable, at both sides of the
Adj(Jp(¥)). Therefore, the computation ob, for 2 < identity ma(A,S,Upx) =0 of K[A" x C] for 1 < k < n, we
k < & requiresO((L + n'+*) 82 M(2F)) = O((L + see that the following identity holds HK[A™ x C]:
n'T“YM(DJ)) arithmetic operations. The remaining steps do
not c)har(lge )t)he overall asymptotic complexity. (Omy [OT)(A, S, Un) & + (0ma /OAK)(A, 5, Us) = 0. (5)
Next we discuss how we can solve (2). This is a Iinear SY®bserve thabm, /OA, (A, S, T) satisfiesdegg dmy /0N, <

tem with V 41 equations and)§ indeterminates, namely, theg anddeg, dmy /A, < D. Substituting), for Ay, in (5) we
coefficients of the solutioy € K[S, 7] of (2). Best general- optain the parametrizations

purpose algorithms solving a system of si@éDJ x DJ)
require O((D#)) arithmetic operations [20]. We shall profit (Oms/OT)(S,T) Xk —ve(S,T) (1<k<n) (6)
from the structure of (2) in order to improve this complexit)(Ne are looking for. In order to compute _v,,, e observe

i 2
estimate tOO(D M(Dé)) that the Taylor expansion ofix (A, S,T) in powers of A —
Lemma 4.3:For a suitable ordering of the indeterminates, . _ (A1 — A1, ..., An —A,) of order one has the expression:

the matrix defining (2) is block—Toeplitz wit® blocks.
Proof: Fix ¢ with 0 < ¢ < N and consider the— 9

th equation of (2), which expresses the condition that th8A = s T Z ( S ”k)(Ak = Ak) mod(A — A)%.

coeff|C|ent of(S 1)%in g(S,on) must vanish. Ley(S,T) :=

ZJ 0 Zk 0 Aik(S — 1)IT* and ok, = Zh o k(S — 1)» We shall compute this (truncated) Taylor expansion applying

mod (S — 1)¥+1. Then theith equation reads the algorithm underlying.Proposition 4.4 to the generic linear
s b form U,. Each arithmetic operation in this algorithm now
Z Z A 0 @) becomes an arithmetic operation between two polynomials of
i—gk gk = K[A], truncated at ordefA — \)2. Since adding or multiplying

J=0k=0 two polynomials ofK[A] truncated at ordefA — \)? requires

with a;;_j, = 0 for i — j < 0. Fix ko and letM () pe the O(n) arithmetic operations ifK, we obtain:
(N+1) x é—submatrix of the matrid/ defining (2) formed by  Proposition 4.5: A geometric solution ofC can be com-
the columns of} corresponding to the indeterminatds ,, puted withO((L + n“** + D?)nM(D4)) operations inkK.
for 0 < j < 6. From (4) we see that/ (*0) is a Toeplitz matrix. _ o)
Arranging the indeterminatest; , according to the inverse G- Computation of the point
lexicographical order on the set of paifs, j) we deduce that In this section we describe the computation of the point
M is a block—Toeplitz matrix, withD blocks. m 2 e Er for which F(z(©) = y© holds, given akK-
Lemma 4.3 enables us to solve (2) using the theory définable geometric solution of the cur@edefined in (1).
matrices of fixed displacement rank (cf. [20], [22]). From Set 75'(0) =: {0} x Co. Our hypotheses imply that
[22, Chapter 5] it follows that a basis of the null space of(®) is the only F,—rational point of Cy. Since U sep-
a block-Toeplitz(2D3 x DJ)—matrix with D blocks can be arates the points ofrg'(0), from a geometric solution
probabilistically computed WiﬂO(DQM(D(S)) operations in of C we easily obtain a geometric solution «fy. In-
K. From such a basis we easily obtaing within the same deed, substituting 0 forS in mg,vy,...,v,, we ob-
asymptotic complexity. In conclusion, we have: tain polynomialsmg(0,7),v1(0,T),...,v,(0,T) € K[T]



which represent a complete description @f, eventually the

hypotheses of [8]. Recall that [8] requires the polynomial

including multiplicities. Such multiplicities are representethapF' : A™ — A" to be polynomially invertible, with inverse

by multiple factors of mg(0,7), which are also factors G :

= (G,...

,G,,) of degree(nd)®™). Then the authors

of v1(0,T),...,v,(0,T) (see e.g. [23,§6.5]). Therefore, show thatG' can be computed witl{Lnd)°") operations.
they may be removed in the following way: first weUnder these conditions, we have that the projection map

compute a(T)

ged(ms(0,T), (8ms/0T)(0,T)), and = :V — A™ has degree 1, i.e) = 1 holds. Furthermore, it is

we clean the multiplicites ofmg(0,7) by computing easy to see that the minimal polynomiak (S, T") has degree

mo := mg(0,7)/a(T). Then we obtain the parametrizationdounded bye

((0ms/0T)(0,T)/a(T)) X — vk (0, T)/a(T) (1 < k < n)

‘= maxi<k<n deg Gy, and the algorithms

underlying Proposition 4.5 and 4.6 have actually complexity

which form a geometric solution of our input system. FinallyL(nd)®"). This shows that our complexity result meets this
taking into account thatng and (Omg/9T)(0,T)/a(T) are polynomial bound under the much stronger hypotheses of [8].

relatively prime inK[T], we invert (0mgs/0T)(0,T)/a(T)
modulom, and obtain parametrizations; — wy (T") for 1 <
k < n which are better suited for our purposes. Computindg!
the dense representation 0fs(0,7),v1(0,7),...,va(0,T) [
requiresO(nDJ¢) arithmetic operations ifK. The remaining

computations involve multiplications, gcd and modular inver-

sions of univariate polynomials of degree at masand thus 3l
requireO(nM(D)) operations inK. Thus we obtain:
Proposition 4.6: Given a geometric solution af, we can ]
compute a geometric solutiony(7"), X1 — w1 (T), ..., X, —
wy(T) of Cy with O(ndM(D)) operations ink.
Next, we compute thé&-rational points ofC,. Let h := [
ged(mo, T#®) — T) € K[T]. The computation of requires [6]

O(M(D)log #(K)) operations inK [19, Corollary 11.16].
The roots ofh, are the valued/(P) of the K—rational points |
P of Cy. In particular,U (z(®)) € K is a root ofh.

~

]

Sinceh factors into linear factors ifK[T], its factorization [8]
can be probabilistically computed wit® (M(D) log #(K)) -
operations IinK [19, Theorem 14.9]. We evaluate the poly-
nomialsw;, at the rootsae of h and obtainz(®) as the only 0

F,—rational point of the formw: (), ..., w,(a)).

Putting together these considerations and Propositions 4.5
and 4.6 we obtain our main result:

Theorem 4.7:The only F,—rational solution of the input [11]
systemF (X) = y(® can be computed witld (L + n'*+ +
D?*)nM(D§)M(log ¢8) + M(D)M?(log ¢6)) bit operations.  [12]

SinceD < ¢ holds, our complexity estimate may be roughly
described as polynomial in the complexityof the evaluation [13
of Iy,..., F,, the quantitiesn and logq, and a geometric
invariant: the degreé of the graph of the map'. In this sense, (14]
we see that the practical convenience of our algorithm, and the
subsequent (in)security of cryptosystems based on polynonii&l
maps over a finite field, essentially relies on this geometric
invariant. In worst case we havé = degF) - -degF,, [16]
which implies that our algorithm is exponential. Furthermore,
adapting the arguments of [14] it is possible to prove th&t’]
any universal algorithm solving F(X) = y® has neces- g
sarily complexity (deg F} - - - deg F},)*()), showing thus the [19]
security of the corresponding cryptosystem with respect
universal decoding algorithms. A universal algorithm is al !
algorithm which does not distinguish input systems accordirizf]
to geometric invariants and represents a model for the standegii
algorithms based on rewriting techniques, such ashGer
basis algorithms. [23]

Finally, we comment on the behavior of our algorithm under
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