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Abstract— We study the problem of inverting a bijective
polynomial map F : Fn

q → Fn
q over a finite field Fq. Our interest

mainly stems from the case whereF encodes a permutation given
by some cryptographic scheme. Giveny(0) ∈ Fn

q , we are able to
compute the valuex(0) ∈ Fn

q for which F (x(0)) = y(0) holds in
time O(LnO(1)δ4) up to logarithmic terms. Here L is the cost of
the evaluation of F and δ is a geometric invariant associated to
the graph of the polynomial map F , called its degree.

I. I NTRODUCTION

Let Fq be the finite field ofq elements, letFq denote
its algebraic closure and letAn denote then–dimensional
affine spaceFn

q . Let X := (X1, . . . , Xn) be a vector of
indeterminates and letF1, . . . , Fn be polynomials inFq[X].
Assume that the mapF : Fn

q → Fn
q defined byF (x) :=(

F1(x), . . . , Fn(x)
)

is bijective. In this paper we exhibit an
algorithm which, on inputy(0) ∈ Fn

q , computes the point
x(0) ∈ Fn

q for which F (x(0)) = y(0) holds.
This problem is tightly related to the classical algebraic

geometry problem of finding anFq–rational solution of a
polynomial system and has direct applications in the domain
of public–key cryptography (see e.g. [1]).

Algebrists and other computer scientists have tried to tackle
this problem (see e.g. [2], [3], [4]). It is well–known that
this is a hard problem, even when restricting to quadratic
equations ([5], [6]). Indeed, the solutions proposed in [2],
[3] have exponential running time, and only [4] achieves a
polynomial complexity in the B́ezout number of the system
(which is nevertheless exponential in worst case). [8], [9] and
[10] exhibit efficient algorithms for special cases.

In the setting of cryptography, since [11] researchers have
unsuccessfully tried to construct public–key schemes based
on the (allegedly) difficult problem of solving polynomial
systems over finite fields, but proposals are typically proved
to be weak throughad hoc attacks (see [12], [9]). This
might be seen as an indication that the polynomial maps
used in public–key cryptography —typically with underlying
quadratic polynomials— are not intrinsically difficult to invert,
and calls for the study of parameters to measure such difficulty.

In [8] Sturtivant and Zhang exhibit an algorithm for in-
verting a bijective polynomial mapF over Fq, assuming
that F is an automorphism ofFq[X]n whose inverse has

degree(dn)O(1), with d := max1≤k≤n deg Fk. The algorithm
performs(Lnd)O(1) arithmetic operations inFq, whereL is
the number of arithmetic operations necessary to evaluateF .

From the cryptographic point of view, the critical problem is
that of computing the inverse image of a given pointy(0) ∈ Fn

q

under a mapF , rather than that of invertingF itself. In
this sense, we solve the former under much less stringent
hypotheses than those of [8]. More precisely, we exhibit a
(probabilistic) algorithm that, given a pointy(0) ∈ Fn

q and
a straight–line program evaluatingF in Fq[X], computes the
point x(0) ∈ Fn

q for which F (x(0)) = y(0) holds. For this
purpose we make the additional (geometric) hypothesis that
the projection of the graph ofF on the Y –axis is what in
algebraic geometry is called a finite morphism. This assures
that the fibersF−1(y) are nonempty and finite for every
y ∈ An. We remark that this is a reasonable assumption from
the cryptographic point of view, because it is typically met in
the public–key schemes proposed.

The complexity of our algorithm is roughly of order
O((Ln4+δ2)nδ2), whereL is the complexity of the evaluation
of F and δ is a geometric invariant associated to the map
F : the (geometric) degree of its graph. This degree is a basic
measure of the complexity of the description of the graph ofF
(see e.g. [13], [14]), which may play a significant role to assess
the difficulty of invertingF . In this sense,δ should be taken
into account as asecurity estimation parameter. Notice that
δ is upper bounded by the Bézout numberdeg F1 · · ·deg Fn,
and this bound is attained in worst case (see e.g. [13]).

Finally, if the hypotheses of [8] hold, then our algorithm
meets also the complexity bound(Lnd)O(1) of [8].

II. N OTIONS AND NOTATIONS

Let K be a subfield ofFq containingFq. Let V be a K–
definable affine subvariety ofAn (a K–variety for short). We
denote byI(V ) ⊂ K[X] its defining ideal and byK[V ] its co-
ordinate ring, namely, the quotient ringK[V ] := K[X]/I(V ).

If V is an irreducibleK–variety, we define itsdimensionas
the transcendence degree of the field extensionK ↪→ K(V ),
whereK(V ) is the field of fractions of the domainK[V ], and
the degreeas the maximum number of points lying in the
intersection ofV with an affine linear subspaceL of An of



codimensiondim V for which #(V ∩ L) < ∞ holds. More
generally, ifV = C1 ∪ · · · ∪ CN is the decomposition ofV
into irreducibleK–components, we define the dimension of
V as dim V := max1≤i≤N dim Ci and the degree ofV as
deg V :=

∑N
i=1 deg Ci (cf. [13]).

A K–variety V ⊂ An is absolutely irreducibleif it is an
irreducibleFq–variety.

Let V be an irreducibleK–variety ofAn and letπ : V →
An be a finite morphism, that is, a morphism which induces an
integral ring extensionK[An] ↪→ K[V ]. The degreedeg π of π
is defined as the degree of the field extensionK(An) ↪→ K(V ).
We say thaty ∈ An is a lifting point of π if the number of
inverse images ofy is equal to the degree of the morphismπ.

A. Geometric solutions

We shall use a representation ofK–varieties which is well
suited for algorithmic purposes (cf. [15]). LetV ⊂ An be a
K–variety of dimensionr and degreeδ and suppose that the
linear projectionπ : V → Ar defined byπ(x) := (x1, . . . , xr)
is a finite morphism of degreeD.

Definition 2.1: A geometric solutionof V consists of the
following items:

• a linear formU ∈ K[X] which induces a primitive ele-
ment of the ring extensionK[X1, . . . , Xr] ↪→ K[V ], i.e.
an elementu ∈ K[V ] whose (monic) minimal polynomial
m ∈ K[X1, . . . , Xr][T ] over K[X1, . . . , Xr] satisfies the
conditiondegT m = D. Observe thatdeg m ≤ δ holds.

• the minimal polynomialm ∈ K[X1, . . . , Xr][T ] of u.
• a generic “parametrization” of the varietyV by the zeros

of m, of the form(∂m/∂T )Xk−vk (r+1 ≤ k ≤ n) with
vk ∈ K[X1, . . . , Xr][T ]. We require thatdegT vk < D,
degX vk ≤ δ and(∂m/∂T )(U)Xk−vk(U) ∈ I(V ) hold.

The polynomialm can be also defined as follows: consider
the linear mapπU : V → Ar+1 defined by πU (x) :=
(x1, . . . , xr, U(x)). The Zariski closure ofπU (V ) is a K–
hypersurfaceH of Ar+1, which is indeed defined bym.

We remark that in the caser = 0, a linear formU induces
a primitive element of the ring extensionK ↪→ K[V ] if and
only if U separates the points ofV .

III. PREPARATION OF THE INPUT DATA

Let F1, . . . , Fn ∈ Fq[X] be polynomials of degree at most
d. Let F : An → An be the polynomial map defined by
F1, . . . , Fn. Observe that the restriction ofF to Fn

q is a well–
defined polynomial map fromFn

q to Fn
q , also denoted byF .

Let Y := (Y1, . . . , Yn) be a vector of new indeterminates
and letV ⊂ A2n be the affineFq–variety defined by

V := {(x, y) ∈ A2n : yi = Fi(x), 1 ≤ i ≤ n}.

We make the following assumptions on the mapF (usually
met in the cryptographic situations we are interested in):

(i) F : Fn
q → Fn

q is a bijective map.
(ii) The projection mapπ : V → An defined byπ(y, x) := y

is a finite morphism. In particular, the fiberVy := π−1(y)
is a zero–dimensional subvariety ofV for everyy ∈ An.

We deduce thatV has dimensionn and that the image of
F is a dense subset ofAn. ThusY1, . . . , Yn are algebraically
independent inFq[V ]. We setδ := deg V andD := deg π.

Lemma 3.1:V is an absolutely irreducibleFq–variety.
Proof: The idealI := (Yi − Fi(X) : 1 ≤ i ≤ n) ⊂

Fq[X, Y ] is contained inI(V ). SinceFq[X, Y ]/I is isomorphic
to Fq[X], I is a prime ideal, and thusI = I(V ) holds.

Suppose that we are given a geometric solution ofV . By
the remark after Definition 2.1, we see thatV is birationally
equivalent to the hypersurfaceH defined by the minimal
polynomial m ∈ Fq[Y, T ]. SinceV is absolutely irreducible,
so isH and thenm.

Suppose that we are giveny(0) ∈ Fn
q and letVy(0) be the

corresponding zero–dimensional fiber. In order to compute
the point x(0) ∈ Fn

q for which (x(0), y(0)) ∈ Vy(0) holds,
we shall deform the systemF (X) = y(0) into a system
F (X) = F (x(1)) with a point x(1) randomly chosen in a
suitable finite field extensionK of Fq to be determined (cf.
[16]). The next two lemmas state suitable bounds on the degree
of the genericity conditions underlying the choice ofx(1).

Lemma 3.2:There exists a polynomialA ∈ Fq[X] of degree
at most3dδ4 such that for anyx ∈ An with A(x) 6= 0, the
point y := F (x) satisfies the following conditions:

(i) y is a lifting point of π : V → An,
(ii) The curveC defined byF (X) = y + (S − 1)(y − y(0))

is absolutely irreducible.
Proof: Let L ∈ Fq[X] be a linear form inducing a

primitive element of the ring extensionFq[Y ] ↪→ Fq[V ] and
let mL ∈ Fq[Y ][T ] be its minimal polynomial.

Let Ã1 ∈ Fq[Y ] be the discriminant ofmL with respect to
T . The absolutely irreducibility ofmL implies Ã1 6= 0. Let
A1 := Ã1(F (X)) ∈ Fq[X]. Since the image ofF is a dense
subset ofAn, there existsx ∈ An such thatA1(x) 6= 0. Hence,
A1 is a nonzero polynomial of degree bounded by(2D−1)dδ.

Set m̃L(X, S, T ) := mL(F (X) + (S − 1)(F (X) −
y(0)), T ) ∈ Fq[X, S, T ]. SincemL is monic in Fq[Y ][T ], we
see thatm̃L is a monic elementFq[X, S][T ]. This implies
that m̃L(x, 1, T ) = mL(y, T ) is a separable polynomial of
Fq[X][T ] for any lifting point y of π and anyx ∈ Vy.

Following [17, Theorem 5], in the version of [4, Theorem
3.6], there exists a polynomialA2 ∈ Fq[X] of degree bounded
by 2dδ4 such that for anyx ∈ Fn

q with A2(x) 6= 0 the
polynomialm̃L(x, S, T ) is absolutely irreducible.

Let A := A1A2 ∈ Fq[X]. Observe thatA has degree at
most 3dδ4. Let x ∈ An be any point satisfyingA(x) 6= 0
and lety := F (x). We claim that conditions(i) and (ii) of
the statement of the lemma are satisfied. Indeed,A1(x) 6= 0
implies thatÃ1(y) 6= 0, that is, the discriminant ofmL(y, T )
with respect toT is nonzero. We deduce thatmL(y, T ) hasD
distinct roots and therefore,y is a lifting point of π. Finally,
sincey is a lifting point of π andA2(x) 6= 0, m̃L(x, S, T ) is
absolutely irreducible and hence, so isC.

Suppose that we have chosen a pointx ∈ An satisfying the
conditions of Lemma 3.2 and lety := F (x).

Lemma 3.3:Let Λ := (Λ1, . . . ,Λn) be indeterminates.
There exists a polynomialB ∈ Fq[Λ] \ {0} of degree at most



2D2 such that for anyλ ∈ An with B(λ) 6= 0, the linear form
U = λ1X1 + · · ·+λnXn separates the points ofVy andVy(0) .

Proof: Let Vy ∪ Vy(0) := {P1, . . . , PD′}. Let UΛ :=
Λ1X1 + · · ·+ ΛnXn, and letB(Λ) := Π1≤i<j≤D′(UΛ(Pi)−
UΛ(Pj)). Observe thatD′ ≤ 2D holds. ThenB ∈ Fq[Λ] is a
nonzero polynomial of degree at most2D2. Furthermore, if
λ ∈ An satisfiesB(λ) 6= 0 holds, then by construction it is
clear thatU separates the points ofVy and ofVy(0) .

Our algorithm works in a finite field extensionK of Fq

such that there existλ, x ∈ Kn satisfying the requirements
of Lemmas 3.2 and 3.3. Our next result states that we may
randomly chooseλ andx.

Corollary 3.4: With notations as in Lemmas 3.2 and 3.3, fix
µ > 0 and letK be a finite field extension ofFq of cardinality
greater than4µdδ4. Then a random choice(x, λ) ∈ K2n

satisfies(AB)(x, λ) 6= 0 with probability at least1− 1/µ.
Proof: The number of zeros inKn of the polynomialA

is at most3dδ4(#K)n2−1 [18, Theorem 6.13]. Then a random
choice ofx ∈ Kn satisfiesA(x) 6= 0 with probability at least
1 − 3dδ4/#K ≥ 1 − 3/4µ. Given such a choice, a random
choice ofλ ∈ Kn satisfiesB(λ) 6= 0 with probability at least
1 − 2D2/#K ≥ 1 − 1/4µ. This shows that a random choice
(λ, x) ∈ K2n satisfies(AB)(x, λ) 6= 0 with probability at
least(1− 3/4µ)(1− 1/4µ) ≥ 1− 1/µ.

IV. T HE ALGORITHM

In this section we exhibit an algorithm which computes the
point x(0) ∈ Fn

q for which F (x(0)) = y(0) holds. By Corollary
3.4 we may assume that we are given(λ, x(1)) ∈ K2n

satisfying the requirements of Lemmas 3.2 and 3.3, where
K is a finite field extension ofFq of cardinalityO(dδ4). This
means thaty(1) := F (x(1)) is a lifting point of π : V → An,
the space curveC of An+1 defined by

y(1) + (S − 1)(y(1) − y(0)) = F (X) (1)

is absolutely irreducible, and the linear formU := λ1X1 +
· · ·+λnXn ∈ K[X] separates the points ofVy(1) andVy(0) . Let
πS : C → A1 be the projection map defined byπS(s, x) :=
s. We have thatπS is a finite morphism of degreeD, the
identitiesC1 := π−1

S (1) = Vy(1) andπ−1
S (0) = Vy(0) hold, and

S = 1 is lifting point of πS . SinceU separates the points of
Vy(1) = C1 andS = 1 is lifting point of πS , it follows thatU
is a primitive element ofK[S] ↪→ K[C].

In the first step of this algorithm we compute the minimal
polynomial mS(S, T ) of U in the ring extensionK[S] ↪→
K[C]. This is a monic absolutely irreducible element of
K[S][T ] with degS mS ≤ δ anddegT mS = D.

A. The computation of the polynomialmS

Consider the factorization ofmS(S, T ) in K[[S − 1]][T ].
From the fact thatmS(1, T ) is separable of degreeD, we
conclude thatmS(S, T ) has a factorization of the formmS =∏D

i=1(T − σ(i)) with σ(i) ∈ K[[S − 1]] for 1 ≤ i ≤
D. Furthermore,mS(1, T ) can be factored asmS(1, T ) =∏D

i=1(T−σ(i)(1)), whereσ(i)(1) represents the constant term
of σ(i) for 1 ≤ i ≤ D. Let π−1

S (1) = {P1, . . . , PD}. We have

mS(1, T ) =
∏D

i=1(T−U(Pi)). Sincex(1) belongs to the fiber
π−1

S (1), we see that there existsi for which U(x(1)) = σ(i)(1)
holds. For simplicity, we shall denote suchσ(i) by σ.

The algorithm that computes the polynomialmS(S, T )
starts computing the power seriesσ truncated up to order
N := 2Dδ. Let σN be the polynomial ofFq[S] of degree
at mostN satisfying σ ≡ σN mod (S − 1)N+1. Our next
result shows how to computemS(S, T ) from σN .

Lemma 4.1:Let g ∈ K[S, T ] be a polynomial with
degS g ≤ δ anddegT g ≤ D such that the congruence relation

g(S, σN ) ≡ 0 mod (S − 1)N+1 (2)

holds. ThenmS dividesg in K[S, T ].
Proof: Let g ∈ K[S, T ] be a solution of (2). The resultant

h ∈ K[S] of g andmS with respect toT has degree at most
N and belongs to the ideal generated bymS and g. Since
mS(S, σN ) andg(S, σN ) are congruent to 0 mod(S−1)N+1,
we see thath(S) ≡ 0 mod (S − 1)N+1 holds. Then we have
h = 0, which implies thatmS and g have a common factor
in K(S)[T ]. Combining the irreducibility ofmS in K(S)[T ]
with the Gauss lemma finishes the proof.

From Lemma 4.1 we conclude thatmS can be characterized
as the nonzero solution of (2) of minimal degree.

Notice that (2) is a linear system in the coefficients ofg.
In order to obtain the equations of (2), we need the powers
σN , . . . , σD

N truncated at orderN +1. The computation ofσN

is based on a multivariate Newton iteration over the power
series ringK[[S−1]]. Substituting 1 forS in (1), we obtain the
systemy(1) = F (X). Sincey(1) is a lifting point ofπ, from [4,
Lemma 2.1] we see that none of the solutions ofy(1) = F (X)
annihilates the determinant of the Jacobian matrixJF :=
(∂Fi)/(∂Xj)1≤i,j≤n. In particular,det JF (x(1)) 6= 0 holds.
Let NF be the Newton–Hensel operator:

NF (X) := X − J−1
F (X)G(S, X),

with G(S, X) := F (X) − y(1) − (S − 1)(y(1) − y(0)) and
let N

(k)
F denote thek–fold iteration ofNF . Then, forΨk :=

N
(k)
F (x(1)) ∈ K[[S − 1]]n, it is well–known that

G(S, Ψk) ≡ 0 mod (S − 1)2
k

(3)

holds. SincemS(S, U(X)) vanishes onC, it belongs to the
ideal of K[S, X] generated byG. Therefore, (3) implies that
mS(S, U(Ψk)) ≡ 0 mod (S − 1)2

k

holds. From the identity
U(Ψk)(1) = U(x(1)) we deduce thatU(Ψk) ≡ σ mod
(S − 1)2

k

. Hence, we obtainσN as the power seriesU(Ψκ)
with κ := dlog2(N + 1)e truncated at orderN + 1. From
σN we easily compute the powersσ2

N , . . . , σD
N by successive

multiplication and truncation.
In order to state the complexity of this procedure, we shall

use the quantityM(m) := m log2 m log log m. An arithmetic
operation inK requiresO(M(log #K)) bit operations, and the
number of arithmetic operations inK necessary to compute
the multiplication, division or gcd of univariate polynomials
of K[T ] of degree at mostm is also of orderO

(
M(m)

)
(cf.

[19], [20]). On the other hand, we shall also use the exponentω



of the complexityO(nω) of the multiplication of two(n×n)–
matrices with coefficients inK. We have (theoretically)ω <
2.376, but for practical issues it is usually takenω = log2 7 ∼
2.81 (cf. [20]). We have:

Proposition 4.2:σN , . . . , σD
N mod(S−1)N+1 can be com-

puted withO
(
(L + n1+ω)M(Dδ)

)
operations inK.

Proof: The evaluation of the Newton–Hensel iteratorNF

requires the inversion of the Jacobian matrixJF . Since the
polynomialsF1, . . . , Fn can be evaluated withL arithmetic
operations, from the Baur–Strassen theorem [21] we have that
the entries ofJF can be evaluated withO(L) arithmetic oper-
ations and its determinant and adjoint matrix can be evaluated
with O(L + n1+ω) arithmetic operations [20]. In order to
computeΨk+1 we compute the inverse matrixJ−1

F (Ψk) as
the productJ−1

F (Ψk) = det JF (Ψk)−1 · Adj
(
JF (Ψk)

)
of

the reciprocal of the power seriesdet JF (Ψk) by the adjoint
matrix Adj

(
JF (Ψk)

)
. The truncation ofdet JF (Ψk)−1 can be

computed using fast power series inversion ([19], [20]) with
O

(
(L+n1+ω)M(2k)

)
arithmetic operations. With similar cost

we computeAdj
(
JF (Ψk)

)
and the productdet JF (Ψk)−1 ·

Adj
(
JF (Ψk)

)
. Therefore, the computation ofΨk for 2 ≤

k ≤ κ requiresO
(
(L + n1+ω)

∑κ−1
k=0 M(2k)

)
= O

(
(L +

n1+ω)M(Dδ)
)

arithmetic operations. The remaining steps do
not change the overall asymptotic complexity.

Next we discuss how we can solve (2). This is a linear sys-
tem withN +1 equations andDδ indeterminates, namely, the
coefficients of the solutiong ∈ K[S, T ] of (2). Best general–
purpose algorithms solving a system of sizeO(Dδ × Dδ)
requireO((Dδ)ω) arithmetic operations [20]. We shall profit
from the structure of (2) in order to improve this complexity
estimate toO

(
D2M(Dδ)

)
.

Lemma 4.3:For a suitable ordering of the indeterminates,
the matrix defining (2) is block–Toeplitz withD blocks.

Proof: Fix i with 0 ≤ i ≤ N and consider thei–
th equation of (2), which expresses the condition that the
coefficient of(S−1)i in g(S, σN ) must vanish. Letg(S, T ) :=∑δ

j=0

∑D
k=0 Aj,k(S − 1)jT k andσk

N ≡
∑N

h=0 αh,k(S − 1)h

mod (S − 1)N+1. Then theith equation reads

δ∑
j=0

D∑
k=0

αi−j,kAj,k = 0, (4)

with αi−j,k = 0 for i − j < 0. Fix k0 and letM (k0) be the
(N +1)×δ–submatrix of the matrixM defining (2) formed by
the columns ofM corresponding to the indeterminatesAj,k0

for 0 ≤ j ≤ δ. From (4) we see thatM (k0) is a Toeplitz matrix.
Arranging the indeterminatesAj,k according to the inverse
lexicographical order on the set of pairs(k, j) we deduce that
M is a block–Toeplitz matrix, withD blocks.

Lemma 4.3 enables us to solve (2) using the theory of
matrices of fixed displacement rank (cf. [20], [22]). From
[22, Chapter 5] it follows that a basis of the null space of
a block–Toeplitz(2Dδ × Dδ)–matrix with D blocks can be
probabilistically computed withO

(
D2M(Dδ)

)
operations in

K. From such a basis we easily obtainmS within the same
asymptotic complexity. In conclusion, we have:

Proposition 4.4:The polynomialmS ∈ K[S, T ] can be
computed withO

(
(L + nω+1 + D2)M(Dδ)

)
operations inK.

B. Computation of a geometric solution ofC
In this section we extend the algorithm of the previous

section to an algorithm computing a geometric solution of the
curveC defined in (1). LetΛ := (Λ1, . . . ,Λn) be a vector of
new indeterminates and letπΛ : An × C → An × A1 be the
projection map defined byπΛ(λ, s, x) := (λ, s). SinceπS is a
finite morphism, we deduce thatπΛ is a finite morphism. Fur-
thermore, the minimal polynomialmΛ(Λ, S, T ) ∈ K[Λ, S, T ]
of the linear formUΛ := Λ1X1 + · · · + ΛnXn in the ring
extensionK[Λ, S] ↪→ K[An × C] induced byπΛ satisfies
degT mΛ ≤ D, degS mΛ ≤ δ and degΛ mΛ ≤ δ (see e.g.
[7, Proposition 6.1]). We have thatmΛ is a separable element
of K[Λ, S][T ] and∂mΛ/∂T is not a zero divisor ofK[An×C]
(see e.g. [7, Proposition 6.1]).

Let ξ1, . . . , ξn be the coordinate functions ofK[C] defined
by X1, . . . , Xn and letÛΛ :=

∑n
k=1 Λk ξk. Taking the partial

derivative with respect to the variableΛk at both sides of the
identity mΛ(Λ, S, ÛΛ) = 0 of K[An × C] for 1 ≤ k ≤ n, we
see that the following identity holds inK[An × C]:

(∂mV /∂T )(Λ, S, ÛΛ) ξk + (∂mΛ/∂Λk)(Λ, S, ÛΛ) = 0. (5)

Observe that∂mΛ/∂Λk(Λ, S, T ) satisfiesdegS ∂mΛ/∂Λk ≤
δ anddegT ∂mΛ/∂Λk ≤ D. Substitutingλk for Λk in (5) we
obtain the parametrizations

(∂mS/∂T )(S, T )Xk − vk(S, T ) (1 ≤ k ≤ n) (6)

we are looking for. In order to computev1, . . . , vn, we observe
that the Taylor expansion ofmΛ(Λ, S, T ) in powers ofΛ −
λ := (Λ1−λ1, . . . ,Λn−λn) of order one has the expression:

mΛ = mS +
n∑

k=1

(∂mS

∂T
Xk − vk

)
(Λk − λk) mod(Λ− λ)2.

We shall compute this (truncated) Taylor expansion applying
the algorithm underlying Proposition 4.4 to the generic linear
form UΛ. Each arithmetic operation in this algorithm now
becomes an arithmetic operation between two polynomials of
K[Λ], truncated at order(Λ−λ)2. Since adding or multiplying
two polynomials ofK[Λ] truncated at order(Λ−λ)2 requires
O(n) arithmetic operations inK, we obtain:

Proposition 4.5:A geometric solution ofC can be com-
puted withO

(
(L + nω+1 + D2)nM(Dδ)

)
operations inK.

C. Computation of the pointx(0)

In this section we describe the computation of the point
x(0) ∈ Fn

q for which F (x(0)) = y(0) holds, given aK–
definable geometric solution of the curveC defined in (1).

Set π−1
S (0) =: {0} × C0. Our hypotheses imply that

x(0) is the only Fq–rational point of C0. Since U sep-
arates the points ofπ−1

S (0), from a geometric solution
of C we easily obtain a geometric solution ofC0. In-
deed, substituting 0 forS in mS , v1, . . . , vn, we ob-
tain polynomialsmS(0, T ), v1(0, T ), . . . , vn(0, T ) ∈ K[T ]



which represent a complete description ofC0, eventually
including multiplicities. Such multiplicities are represented
by multiple factors of mS(0, T ), which are also factors
of v1(0, T ), . . . , vn(0, T ) (see e.g. [23,§6.5]). Therefore,
they may be removed in the following way: first we
compute a(T ) := gcd

(
mS(0, T ), (∂mS/∂T )(0, T )

)
, and

we clean the multiplicities ofmS(0, T ) by computing
m0 := mS(0, T )/a(T ). Then we obtain the parametrizations(
(∂mS/∂T )(0, T )/a(T )

)
Xk − vk(0, T )/a(T ) (1 ≤ k ≤ n)

which form a geometric solution of our input system. Finally,
taking into account thatm0 and (∂mS/∂T )(0, T )/a(T ) are
relatively prime in K[T ], we invert (∂mS/∂T )(0, T )/a(T )
modulom0 and obtain parametrizationsXk −wk(T ) for 1 ≤
k ≤ n which are better suited for our purposes. Computing
the dense representation ofmS(0, T ), v1(0, T ), . . . , vn(0, T )
requiresO(nDδ) arithmetic operations inK. The remaining
computations involve multiplications, gcd and modular inver-
sions of univariate polynomials of degree at mostD and thus
requireO

(
nM(D)

)
operations inK. Thus we obtain:

Proposition 4.6:Given a geometric solution ofC, we can
compute a geometric solutionm0(T ), X1−w1(T ), . . . , Xn−
wn(T ) of C0 with O(nδM(D)) operations inK.

Next, we compute theK–rational points ofC0. Let h :=
gcd(m0, T

#(K) − T ) ∈ K[T ]. The computation ofh requires
O

(
M(D) log #(K)

)
operations inK [19, Corollary 11.16].

The roots ofh are the valuesU(P ) of the K–rational points
P of C0. In particular,U(x(0)) ∈ K is a root ofh.

Sinceh factors into linear factors inK[T ], its factorization
can be probabilistically computed withO

(
M(D) log #(K)

)
operations inK [19, Theorem 14.9]. We evaluate the poly-
nomialswk at the rootsα of h and obtainx(0) as the only
Fq–rational point of the form

(
w1(α), . . . , wn(α)

)
.

Putting together these considerations and Propositions 4.5
and 4.6 we obtain our main result:

Theorem 4.7:The only Fq–rational solution of the input
systemF (X) = y(0) can be computed withO

(
(L + n1+ω +

D2)nM(Dδ)M(log qδ) + M(D)M2(log qδ)
)

bit operations.
SinceD ≤ δ holds, our complexity estimate may be roughly

described as polynomial in the complexityL of the evaluation
of F1, . . . , Fn, the quantitiesn and log q, and a geometric
invariant: the degreeδ of the graph of the mapF . In this sense,
we see that the practical convenience of our algorithm, and the
subsequent (in)security of cryptosystems based on polynomial
maps over a finite field, essentially relies on this geometric
invariant. In worst case we haveδ = deg F1 · · ·deg Fn,
which implies that our algorithm is exponential. Furthermore,
adapting the arguments of [14] it is possible to prove that
any universal algorithm solvingF (X) = y(0) has neces-
sarily complexity (deg F1 · · ·deg Fn)Ω(1), showing thus the
security of the corresponding cryptosystem with respect to
universal decoding algorithms. A universal algorithm is an
algorithm which does not distinguish input systems according
to geometric invariants and represents a model for the standard
algorithms based on rewriting techniques, such as Gröbner
basis algorithms.

Finally, we comment on the behavior of our algorithm under

the hypotheses of [8]. Recall that [8] requires the polynomial
mapF : An → An to be polynomially invertible, with inverse
G := (G1, . . . , Gn) of degree(nd)O(1). Then the authors
show thatG can be computed with(Lnd)O(1) operations.
Under these conditions, we have that the projection map
π : V → An has degree 1, i.e.,D = 1 holds. Furthermore, it is
easy to see that the minimal polynomialmS(S, T ) has degree
bounded bye := max1≤k≤n deg Gk, and the algorithms
underlying Proposition 4.5 and 4.6 have actually complexity
L(nd)O(1). This shows that our complexity result meets this
polynomial bound under the much stronger hypotheses of [8].

REFERENCES

[1] I. Shparlinski,Computational and algorithmic problems in finite fields,
Dordrecht Boston London: Kluwer Academic Publishers, 1992.

[2] M.-D. Huang and Y.-C. Wong, “Solvability of systems of polynomial
congruences modulo a large prime,”Comput. Complexity, vol. 8, no. 3,
pp. 227–257, 1999.

[3] M. Bardet, J.-C. Faug̀ere and B. Salvy, “Complexity of Gröbner basis
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