
Syscall Proxying  Simulating Remote Execution

Syscall Proxying Simulating Remote Execution

Maximiliano Cáceres maximiliano.caceres@corest.com

Caesars Palace, Las Vegas, NV, USA    · July 31st, 2002



Syscall Proxying  Simulating Remote Execution

Agenda
 General ConceptsAgenda

 Syscall Proxying

 A first implementation

 Optimizing for size

 The real world: applications



Syscall Proxying  Simulating Remote Execution

General Concepts
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A Process  

Interacts with 

Resources 

Process

Operating 

System

A file in disk The screen
A networking 

card
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Syscalls
 System calls (aka “syscalls”)

 Operating system services

 Lowest layer of communication between a user mode 

process and the kernel
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 The UNIX Way

 Homogeneous 

mechanism for calling 

any syscall by number

 Arguments passed 

through the stack or 

registers

 Minimum number of 

system services 

 Direct mapping between 

syscall and libc wrapper

The System 

Services Layer
 The Windows Way

 Native API

undocumented and 

unsupported

 High number of system 

level services (about 

1000)

 Win32 API calls 

implement a lot of 

functionality around 

these services
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Our Windows 

“Syscalls”
 Keep things simple

 ANY function in ANY dynamic library available to a 

user mode process
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Syscall Proxying
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The Process 

“Context”
 A process uses resources to accomplish a goal

 These resources define a “context” on which 

the process runs

 The specific resource instances

 The kind of access to these resources 



Syscall Proxying  Simulating Remote Execution

A process 

reading data 

from a file
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 Syscall stub / client

 Nexus between process 

and system services

 Converts syscall 

argument to a common 

format (marshaling)

 Sends requests to the 

syscall server

 Marshals return values

Two Layers
 Syscall server

 Handles requests from 

the syscall client

 Converts arguments in 

request to native 

convention

 Calls the specified 

syscall

 Sends back a response 

to the client
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A process 

reading data 

from a file, 

using these 

two layers
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Separating 

Client from 

Server

Reader Process
Remote system 

services

Syscall stub Syscall server

Network layer Network link Network layer
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Syscall 

Proxying in 

Action
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 Separating client from server

 The process accesses remote resources (a file)

 The process uses the privileges of the remote server

 The process doesn’t now anything about remote 

execution

 No modifications on the original program

 Same inner logic

Changing 

Context
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A first implementation
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Implementing 

Syscall 

Proxying

 The RPC Model

 Client / server

 Remote calls are handled by both a client stub and a 

server stub

 Perfect match!
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The RPC Model
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Benefits and 

Shortcomings 

of the RPC 

Model

 Benefits

 Interoperability between different platforms

 Almost any procedure call can be converted to RPC

 Shortcomings

 Both client and server symmetrically duplicate data 

conversion to a common data interchange format
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Optimizing for size
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The UNIX 

Syscall 

Mechanism

 Homogeneous way of passing arguments

 Integers

 Pointers to integers

 Pointers to buffers

 Pointers to structs

 Simple calling mechanism

 Software interrupt

 Trap

 Far call
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Fat Client,

Thin Server
 Client code directly converts from the client 

system’s calling convention to the server’s (no 

intermediate common format)

 The server takes advantage of the generic 

mechanism for calling syscalls

 The client is completely dependent on the 

server’s platform
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Marshaling 

Arguments
 Client code creates a request representing the 

stack state in the server just before invoking 

the syscall

 Integers are trivially packed

 Pointers to buffers or structures are relocated inside 

the same request buffer using the server’s stack 

pointer



Syscall Proxying  Simulating Remote Execution

Marshaling 

arguments for 

open()
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Linux syscalls
 Invoking a syscall in Linux

 Load EAX with syscall number

 Load arguments in EBX, ECX, EDX, ESI and EDI 

(syscalls with more than 5 arguments push the rest 

on the stack)

 Call software interrupt 0x80 (int $0x80)

 Return value in EAX
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Debugging 

open()

Breakpoint 1, 0x08050f60 in __libc_open ()

(gdb) x/20i $eip

<__libc_open>: push %ebx

0x8050f61 <__libc_open+1>: mov 0x10(%esp,1),%edx

0x8050f65 <__libc_open+5>: mov 0xc(%esp,1),%ecx

0x8050f69 <__libc_open+9>: mov 0x8(%esp,1),%ebx

0x8050f6d <__libc_open+13>: mov $0x5,%eax

0x8050f72 <__libc_open+18>: int $0x80

0x8050f74 <__libc_open+20>: pop %ebx

0x8050f75 <__libc_open+21>: cmp $0xfffff001,%eax

0x8050f7a <__libc_open+26>: jae 0x8056f50 

<__syscall_error>

0x8050f80 <__libc_open+32>: ret
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A simple Linux 

server
 Pseudocode for a simple linux server

channel = set_up_communication()

channel.send(ESP)

while channel.has_data() do

request = channel.read()

copy request in stack

pop registers

int 0x80

push eax

channel.send(stack)
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A simple 

syscall server 

in Linux (1)

 Read request straight into the stack

read_request:

mov fd, %ebx

mov buflen, %edx

movl $3,%eax        # __NR_read

mov %esp,%ecx     # buff

int $0x80
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A simple 

syscall server 

in Linux (2)

 Invoke the desired syscall

do_request:

pop     %eax

pop     %ebx

pop     %ecx

pop     %edx

pop     %esi

pop     %edi

int     $0x80

 The request previously stored in ESP is the stack 

needed by the syscall PLUS buffers
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A simple 

syscall server 

in Linux (3)

 Coding a simple syscall server for Linux can be 

done

 It takes about a hundred bytes long (without 

optimizing)
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What about 

Windows?
 Windows “syscalls”

 “… any function in any dynamic library available to a 

user mode process.”

 Common mechanism
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The Windows 

Syscall Server 

(1)

 Windows server

 Call any function in its process address space 

(already loaded)

 In particular

 Call LoadLibrary to load a new DLL

 Call GetProcAddress to obtain the address of a 

specific function



Syscall Proxying  Simulating Remote Execution

The Windows 

Syscall Server 

(2)

 Pseudocode for a sample Windows server

channel = set_up_communication()

channel.send(ESP)

channel.send(address of LoadLibrary)

channel.send(address of GetProcAddress)

while channel.has_data() do

request = channel.read()

copy request in stack

pop ebx

call [ebx]

push eax

channel.send(stack)
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The Real World: applications
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Exploiting 

Code Injection 

Vulnerabilities

 Allow an attacker to execute arbitrary code in 

the target system

 Buffer overflows

 User supplied format strings

 Attack method

 Injection: attack specific

 Payload: what to execute once control is gained

 Shell code: code that spawns a shell
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The Privilege 

Escalation 

Phase

 Successful attack against a host.

 Use the compromised host as vantage point 

(“pivoting”)

 Attacker profile switch: from external to internal

 Exploit webs of trust

 Possibly more privileged position in the target 

system’s network

 To be able to “pivot”, the auditor needs his 

tools available at the vantage point
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Redefining the 

word 

“shellcode”

 Supply “thin” syscall server as attack payload

 Benefits

 Transparent pivoting

 “Local” privilege escalation

 No shell? Who cares!
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Conclusions
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Conclusions
 Powerful technique when staging attacks 

against code injection vulnerabilities

 Turns the compromised host into a new attack 

vantage point

 Useful when shell code customization is needed

 Framework for developing new penetration 

testing tools

 Raises the value of the tools
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Questions?Questions?



Syscall Proxying  Simulating Remote Execution

Thank You!Thank You!

 Maximiliano Cáceres   maximiliano.caceres@corest.com
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