
Syscall Proxying Simulating Remote Execution

Syscall Proxying Simulating Remote Execution

Maximiliano Cáceres maximiliano.caceres@corest.com

Caesars Palace, Las Vegas, NV, USA · July 31st, 2002

Syscall Proxying Simulating Remote Execution

Agenda
 General ConceptsAgenda

 Syscall Proxying

 A first implementation

 Optimizing for size

 The real world: applications

Syscall Proxying Simulating Remote Execution

General Concepts

Syscall Proxying Simulating Remote Execution

A Process

Interacts with

Resources

Process

Operating

System

A file in disk The screen
A networking

card

Syscall Proxying Simulating Remote Execution

Syscalls
 System calls (aka “syscalls”)

 Operating system services

 Lowest layer of communication between a user mode

process and the kernel

Syscall Proxying Simulating Remote Execution

 The UNIX Way

 Homogeneous

mechanism for calling

any syscall by number

 Arguments passed

through the stack or

registers

 Minimum number of

system services

 Direct mapping between

syscall and libc wrapper

The System

Services Layer
 The Windows Way

 Native API

undocumented and

unsupported

 High number of system

level services (about

1000)

 Win32 API calls

implement a lot of

functionality around

these services

Syscall Proxying Simulating Remote Execution

Our Windows

“Syscalls”
 Keep things simple

 ANY function in ANY dynamic library available to a

user mode process

Syscall Proxying Simulating Remote Execution

Syscall Proxying

Syscall Proxying Simulating Remote Execution

The Process

“Context”
 A process uses resources to accomplish a goal

 These resources define a “context” on which

the process runs

 The specific resource instances

 The kind of access to these resources

Syscall Proxying Simulating Remote Execution

A process

reading data

from a file

Syscall Proxying Simulating Remote Execution

 Syscall stub / client

 Nexus between process

and system services

 Converts syscall

argument to a common

format (marshaling)

 Sends requests to the

syscall server

 Marshals return values

Two Layers
 Syscall server

 Handles requests from

the syscall client

 Converts arguments in

request to native

convention

 Calls the specified

syscall

 Sends back a response

to the client

Syscall Proxying Simulating Remote Execution

A process

reading data

from a file,

using these

two layers

Syscall Proxying Simulating Remote Execution

Separating

Client from

Server

Reader Process
Remote system

services

Syscall stub Syscall server

Network layer Network link Network layer

Syscall Proxying Simulating Remote Execution

Syscall

Proxying in

Action

Syscall Proxying Simulating Remote Execution

 Separating client from server

 The process accesses remote resources (a file)

 The process uses the privileges of the remote server

 The process doesn’t now anything about remote

execution

 No modifications on the original program

 Same inner logic

Changing

Context

Syscall Proxying Simulating Remote Execution

A first implementation

Syscall Proxying Simulating Remote Execution

Implementing

Syscall

Proxying

 The RPC Model

 Client / server

 Remote calls are handled by both a client stub and a

server stub

 Perfect match!

Syscall Proxying Simulating Remote Execution

The RPC Model

Syscall Proxying Simulating Remote Execution

Benefits and

Shortcomings

of the RPC

Model

 Benefits

 Interoperability between different platforms

 Almost any procedure call can be converted to RPC

 Shortcomings

 Both client and server symmetrically duplicate data

conversion to a common data interchange format

Syscall Proxying Simulating Remote Execution

Optimizing for size

Syscall Proxying Simulating Remote Execution

The UNIX

Syscall

Mechanism

 Homogeneous way of passing arguments

 Integers

 Pointers to integers

 Pointers to buffers

 Pointers to structs

 Simple calling mechanism

 Software interrupt

 Trap

 Far call

Syscall Proxying Simulating Remote Execution

Fat Client,

Thin Server
 Client code directly converts from the client

system’s calling convention to the server’s (no

intermediate common format)

 The server takes advantage of the generic

mechanism for calling syscalls

 The client is completely dependent on the

server’s platform

Syscall Proxying Simulating Remote Execution

Marshaling

Arguments
 Client code creates a request representing the

stack state in the server just before invoking

the syscall

 Integers are trivially packed

 Pointers to buffers or structures are relocated inside

the same request buffer using the server’s stack

pointer

Syscall Proxying Simulating Remote Execution

Marshaling

arguments for

open()

Syscall Proxying Simulating Remote Execution

Linux syscalls
 Invoking a syscall in Linux

 Load EAX with syscall number

 Load arguments in EBX, ECX, EDX, ESI and EDI

(syscalls with more than 5 arguments push the rest

on the stack)

 Call software interrupt 0x80 (int $0x80)

 Return value in EAX

Syscall Proxying Simulating Remote Execution

Debugging

open()

Breakpoint 1, 0x08050f60 in __libc_open ()

(gdb) x/20i $eip

<__libc_open>: push %ebx

0x8050f61 <__libc_open+1>: mov 0x10(%esp,1),%edx

0x8050f65 <__libc_open+5>: mov 0xc(%esp,1),%ecx

0x8050f69 <__libc_open+9>: mov 0x8(%esp,1),%ebx

0x8050f6d <__libc_open+13>: mov $0x5,%eax

0x8050f72 <__libc_open+18>: int $0x80

0x8050f74 <__libc_open+20>: pop %ebx

0x8050f75 <__libc_open+21>: cmp $0xfffff001,%eax

0x8050f7a <__libc_open+26>: jae 0x8056f50

<__syscall_error>

0x8050f80 <__libc_open+32>: ret

Syscall Proxying Simulating Remote Execution

A simple Linux

server
 Pseudocode for a simple linux server

channel = set_up_communication()

channel.send(ESP)

while channel.has_data() do

request = channel.read()

copy request in stack

pop registers

int 0x80

push eax

channel.send(stack)

Syscall Proxying Simulating Remote Execution

A simple

syscall server

in Linux (1)

 Read request straight into the stack

read_request:

mov fd, %ebx

mov buflen, %edx

movl $3,%eax # __NR_read

mov %esp,%ecx # buff

int $0x80

Syscall Proxying Simulating Remote Execution

A simple

syscall server

in Linux (2)

 Invoke the desired syscall

do_request:

pop %eax

pop %ebx

pop %ecx

pop %edx

pop %esi

pop %edi

int $0x80

 The request previously stored in ESP is the stack

needed by the syscall PLUS buffers

Syscall Proxying Simulating Remote Execution

A simple

syscall server

in Linux (3)

 Coding a simple syscall server for Linux can be

done

 It takes about a hundred bytes long (without

optimizing)

Syscall Proxying Simulating Remote Execution

What about

Windows?
 Windows “syscalls”

 “… any function in any dynamic library available to a

user mode process.”

 Common mechanism

Syscall Proxying Simulating Remote Execution

The Windows

Syscall Server

(1)

 Windows server

 Call any function in its process address space

(already loaded)

 In particular

 Call LoadLibrary to load a new DLL

 Call GetProcAddress to obtain the address of a

specific function

Syscall Proxying Simulating Remote Execution

The Windows

Syscall Server

(2)

 Pseudocode for a sample Windows server

channel = set_up_communication()

channel.send(ESP)

channel.send(address of LoadLibrary)

channel.send(address of GetProcAddress)

while channel.has_data() do

request = channel.read()

copy request in stack

pop ebx

call [ebx]

push eax

channel.send(stack)

Syscall Proxying Simulating Remote Execution

The Real World: applications

Syscall Proxying Simulating Remote Execution

Exploiting

Code Injection

Vulnerabilities

 Allow an attacker to execute arbitrary code in

the target system

 Buffer overflows

 User supplied format strings

 Attack method

 Injection: attack specific

 Payload: what to execute once control is gained

 Shell code: code that spawns a shell

Syscall Proxying Simulating Remote Execution

The Privilege

Escalation

Phase

 Successful attack against a host.

 Use the compromised host as vantage point

(“pivoting”)

 Attacker profile switch: from external to internal

 Exploit webs of trust

 Possibly more privileged position in the target

system’s network

 To be able to “pivot”, the auditor needs his

tools available at the vantage point

Syscall Proxying Simulating Remote Execution

Redefining the

word

“shellcode”

 Supply “thin” syscall server as attack payload

 Benefits

 Transparent pivoting

 “Local” privilege escalation

 No shell? Who cares!

Syscall Proxying Simulating Remote Execution

Conclusions

Syscall Proxying Simulating Remote Execution

Conclusions
 Powerful technique when staging attacks

against code injection vulnerabilities

 Turns the compromised host into a new attack

vantage point

 Useful when shell code customization is needed

 Framework for developing new penetration

testing tools

 Raises the value of the tools

Syscall Proxying Simulating Remote Execution

Questions?Questions?

Syscall Proxying Simulating Remote Execution

Thank You!Thank You!

 Maximiliano Cáceres maximiliano.caceres@corest.com

Syscall Proxying Simulating Remote ExecutionCORE SECURITY TECHNOLOGIES · Offices Worldwide

Rua do Rócio 288 | 7º andar

Vila Olímpia | São Paulo | SP

CEP 04552-000 | Brazil

Tel: (55 11) 3054-2535

Fax: (55 11) 3054-2534

info.brazil@corest.com

Florida 141 | 2º cuerpo | 7º piso

(C1005AAC) Buenos Aires

Tel/Fax: (54 11) 4878-CORE (2673)

info.argentina@corest.com

Headquarters

44 Wall Street | 12th Floor

New York, NY 10005 | USA

Ph: (212) 461-2345

Fax: (212) 461-2346

info.usa@corest.com

www.corest.com

