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General Concepts
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A Process  

Interacts with 

Resources 

Process

Operating 

System

A file in disk The screen
A networking 

card
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Syscalls
 System calls (aka “syscalls”)

 Operating system services

 Lowest layer of communication between a user mode 

process and the kernel
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 The UNIX Way

 Homogeneous 

mechanism for calling 

any syscall by number

 Arguments passed 

through the stack or 

registers

 Minimum number of 

system services 

 Direct mapping between 

syscall and libc wrapper

The System 

Services Layer
 The Windows Way

 Native API

undocumented and 

unsupported

 High number of system 

level services (about 

1000)

 Win32 API calls 

implement a lot of 

functionality around 

these services
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Our Windows 

“Syscalls”
 Keep things simple

 ANY function in ANY dynamic library available to a 

user mode process
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Syscall Proxying
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The Process 

“Context”
 A process uses resources to accomplish a goal

 These resources define a “context” on which 

the process runs

 The specific resource instances

 The kind of access to these resources 
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A process 

reading data 

from a file
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 Syscall stub / client

 Nexus between process 

and system services

 Converts syscall 

argument to a common 

format (marshaling)

 Sends requests to the 

syscall server

 Marshals return values

Two Layers
 Syscall server

 Handles requests from 

the syscall client

 Converts arguments in 

request to native 

convention

 Calls the specified 

syscall

 Sends back a response 

to the client



Syscall Proxying  Simulating Remote Execution

A process 

reading data 

from a file, 

using these 

two layers
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Separating 

Client from 

Server

Reader Process
Remote system 

services

Syscall stub Syscall server

Network layer Network link Network layer
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Syscall 

Proxying in 

Action
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 Separating client from server

 The process accesses remote resources (a file)

 The process uses the privileges of the remote server

 The process doesn’t now anything about remote 

execution

 No modifications on the original program

 Same inner logic

Changing 

Context
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A first implementation



Syscall Proxying  Simulating Remote Execution

Implementing 

Syscall 

Proxying

 The RPC Model

 Client / server

 Remote calls are handled by both a client stub and a 

server stub

 Perfect match!
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The RPC Model
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Benefits and 

Shortcomings 

of the RPC 

Model

 Benefits

 Interoperability between different platforms

 Almost any procedure call can be converted to RPC

 Shortcomings

 Both client and server symmetrically duplicate data 

conversion to a common data interchange format
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Optimizing for size
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The UNIX 

Syscall 

Mechanism

 Homogeneous way of passing arguments

 Integers

 Pointers to integers

 Pointers to buffers

 Pointers to structs

 Simple calling mechanism

 Software interrupt

 Trap

 Far call
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Fat Client,

Thin Server
 Client code directly converts from the client 

system’s calling convention to the server’s (no 

intermediate common format)

 The server takes advantage of the generic 

mechanism for calling syscalls

 The client is completely dependent on the 

server’s platform
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Marshaling 

Arguments
 Client code creates a request representing the 

stack state in the server just before invoking 

the syscall

 Integers are trivially packed

 Pointers to buffers or structures are relocated inside 

the same request buffer using the server’s stack 

pointer
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Marshaling 

arguments for 

open()
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Linux syscalls
 Invoking a syscall in Linux

 Load EAX with syscall number

 Load arguments in EBX, ECX, EDX, ESI and EDI 

(syscalls with more than 5 arguments push the rest 

on the stack)

 Call software interrupt 0x80 (int $0x80)

 Return value in EAX
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Debugging 

open()

Breakpoint 1, 0x08050f60 in __libc_open ()

(gdb) x/20i $eip

<__libc_open>: push %ebx

0x8050f61 <__libc_open+1>: mov 0x10(%esp,1),%edx

0x8050f65 <__libc_open+5>: mov 0xc(%esp,1),%ecx

0x8050f69 <__libc_open+9>: mov 0x8(%esp,1),%ebx

0x8050f6d <__libc_open+13>: mov $0x5,%eax

0x8050f72 <__libc_open+18>: int $0x80

0x8050f74 <__libc_open+20>: pop %ebx

0x8050f75 <__libc_open+21>: cmp $0xfffff001,%eax

0x8050f7a <__libc_open+26>: jae 0x8056f50 

<__syscall_error>

0x8050f80 <__libc_open+32>: ret
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A simple Linux 

server
 Pseudocode for a simple linux server

channel = set_up_communication()

channel.send(ESP)

while channel.has_data() do

request = channel.read()

copy request in stack

pop registers

int 0x80

push eax

channel.send(stack)
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A simple 

syscall server 

in Linux (1)

 Read request straight into the stack

read_request:

mov fd, %ebx

mov buflen, %edx

movl $3,%eax        # __NR_read

mov %esp,%ecx     # buff

int $0x80



Syscall Proxying  Simulating Remote Execution

A simple 

syscall server 

in Linux (2)

 Invoke the desired syscall

do_request:

pop     %eax

pop     %ebx

pop     %ecx

pop     %edx

pop     %esi

pop     %edi

int     $0x80

 The request previously stored in ESP is the stack 

needed by the syscall PLUS buffers
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A simple 

syscall server 

in Linux (3)

 Coding a simple syscall server for Linux can be 

done

 It takes about a hundred bytes long (without 

optimizing)
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What about 

Windows?
 Windows “syscalls”

 “… any function in any dynamic library available to a 

user mode process.”

 Common mechanism
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The Windows 

Syscall Server 

(1)

 Windows server

 Call any function in its process address space 

(already loaded)

 In particular

 Call LoadLibrary to load a new DLL

 Call GetProcAddress to obtain the address of a 

specific function



Syscall Proxying  Simulating Remote Execution

The Windows 

Syscall Server 

(2)

 Pseudocode for a sample Windows server

channel = set_up_communication()

channel.send(ESP)

channel.send(address of LoadLibrary)

channel.send(address of GetProcAddress)

while channel.has_data() do

request = channel.read()

copy request in stack

pop ebx

call [ebx]

push eax

channel.send(stack)
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The Real World: applications
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Exploiting 

Code Injection 

Vulnerabilities

 Allow an attacker to execute arbitrary code in 

the target system

 Buffer overflows

 User supplied format strings

 Attack method

 Injection: attack specific

 Payload: what to execute once control is gained

 Shell code: code that spawns a shell
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The Privilege 

Escalation 

Phase

 Successful attack against a host.

 Use the compromised host as vantage point 

(“pivoting”)

 Attacker profile switch: from external to internal

 Exploit webs of trust

 Possibly more privileged position in the target 

system’s network

 To be able to “pivot”, the auditor needs his 

tools available at the vantage point
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Redefining the 

word 

“shellcode”

 Supply “thin” syscall server as attack payload

 Benefits

 Transparent pivoting

 “Local” privilege escalation

 No shell? Who cares!
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Conclusions
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Conclusions
 Powerful technique when staging attacks 

against code injection vulnerabilities

 Turns the compromised host into a new attack 

vantage point

 Useful when shell code customization is needed

 Framework for developing new penetration 

testing tools

 Raises the value of the tools
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Questions?Questions?
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Thank You!Thank You!

 Maximiliano Cáceres   maximiliano.caceres@corest.com
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