
Syscall Proxying Simulating Remote Execution

Syscall Proxying Simulating Remote Execution

Maximiliano Cáceres maximiliano.caceres@corest.com

Caesars Palace, Las Vegas, NV, USA · July 31st, 2002

Syscall Proxying Simulating Remote Execution

Agenda
 General ConceptsAgenda

 Syscall Proxying

 A first implementation

 Optimizing for size

 The real world: applications

Syscall Proxying Simulating Remote Execution

General Concepts

Syscall Proxying Simulating Remote Execution

A Process

Interacts with

Resources

Process

Operating

System

A file in disk The screen
A networking

card

Syscall Proxying Simulating Remote Execution

Syscalls
 System calls (aka “syscalls”)

 Operating system services

 Lowest layer of communication between a user mode

process and the kernel

Syscall Proxying Simulating Remote Execution

 The UNIX Way

 Homogeneous

mechanism for calling

any syscall by number

 Arguments passed

through the stack or

registers

 Minimum number of

system services

 Direct mapping between

syscall and libc wrapper

The System

Services Layer
 The Windows Way

 Native API

undocumented and

unsupported

 High number of system

level services (about

1000)

 Win32 API calls

implement a lot of

functionality around

these services

Syscall Proxying Simulating Remote Execution

Our Windows

“Syscalls”
 Keep things simple

 ANY function in ANY dynamic library available to a

user mode process

Syscall Proxying Simulating Remote Execution

Syscall Proxying

Syscall Proxying Simulating Remote Execution

The Process

“Context”
 A process uses resources to accomplish a goal

 These resources define a “context” on which

the process runs

 The specific resource instances

 The kind of access to these resources

Syscall Proxying Simulating Remote Execution

A process

reading data

from a file

Syscall Proxying Simulating Remote Execution

 Syscall stub / client

 Nexus between process

and system services

 Converts syscall

argument to a common

format (marshaling)

 Sends requests to the

syscall server

 Marshals return values

Two Layers
 Syscall server

 Handles requests from

the syscall client

 Converts arguments in

request to native

convention

 Calls the specified

syscall

 Sends back a response

to the client

Syscall Proxying Simulating Remote Execution

A process

reading data

from a file,

using these

two layers

Syscall Proxying Simulating Remote Execution

Separating

Client from

Server

Reader Process
Remote system

services

Syscall stub Syscall server

Network layer Network link Network layer

Syscall Proxying Simulating Remote Execution

Syscall

Proxying in

Action

Syscall Proxying Simulating Remote Execution

 Separating client from server

 The process accesses remote resources (a file)

 The process uses the privileges of the remote server

 The process doesn’t now anything about remote

execution

 No modifications on the original program

 Same inner logic

Changing

Context

Syscall Proxying Simulating Remote Execution

A first implementation

Syscall Proxying Simulating Remote Execution

Implementing

Syscall

Proxying

 The RPC Model

 Client / server

 Remote calls are handled by both a client stub and a

server stub

 Perfect match!

Syscall Proxying Simulating Remote Execution

The RPC Model

Syscall Proxying Simulating Remote Execution

Benefits and

Shortcomings

of the RPC

Model

 Benefits

 Interoperability between different platforms

 Almost any procedure call can be converted to RPC

 Shortcomings

 Both client and server symmetrically duplicate data

conversion to a common data interchange format

Syscall Proxying Simulating Remote Execution

Optimizing for size

Syscall Proxying Simulating Remote Execution

The UNIX

Syscall

Mechanism

 Homogeneous way of passing arguments

 Integers

 Pointers to integers

 Pointers to buffers

 Pointers to structs

 Simple calling mechanism

 Software interrupt

 Trap

 Far call

Syscall Proxying Simulating Remote Execution

Fat Client,

Thin Server
 Client code directly converts from the client

system’s calling convention to the server’s (no

intermediate common format)

 The server takes advantage of the generic

mechanism for calling syscalls

 The client is completely dependent on the

server’s platform

Syscall Proxying Simulating Remote Execution

Marshaling

Arguments
 Client code creates a request representing the

stack state in the server just before invoking

the syscall

 Integers are trivially packed

 Pointers to buffers or structures are relocated inside

the same request buffer using the server’s stack

pointer

Syscall Proxying Simulating Remote Execution

Marshaling

arguments for

open()

Syscall Proxying Simulating Remote Execution

Linux syscalls
 Invoking a syscall in Linux

 Load EAX with syscall number

 Load arguments in EBX, ECX, EDX, ESI and EDI

(syscalls with more than 5 arguments push the rest

on the stack)

 Call software interrupt 0x80 (int $0x80)

 Return value in EAX

Syscall Proxying Simulating Remote Execution

Debugging

open()

Breakpoint 1, 0x08050f60 in __libc_open ()

(gdb) x/20i $eip

<__libc_open>: push %ebx

0x8050f61 <__libc_open+1>: mov 0x10(%esp,1),%edx

0x8050f65 <__libc_open+5>: mov 0xc(%esp,1),%ecx

0x8050f69 <__libc_open+9>: mov 0x8(%esp,1),%ebx

0x8050f6d <__libc_open+13>: mov $0x5,%eax

0x8050f72 <__libc_open+18>: int $0x80

0x8050f74 <__libc_open+20>: pop %ebx

0x8050f75 <__libc_open+21>: cmp $0xfffff001,%eax

0x8050f7a <__libc_open+26>: jae 0x8056f50

<__syscall_error>

0x8050f80 <__libc_open+32>: ret

Syscall Proxying Simulating Remote Execution

A simple Linux

server
 Pseudocode for a simple linux server

channel = set_up_communication()

channel.send(ESP)

while channel.has_data() do

request = channel.read()

copy request in stack

pop registers

int 0x80

push eax

channel.send(stack)

Syscall Proxying Simulating Remote Execution

A simple

syscall server

in Linux (1)

 Read request straight into the stack

read_request:

mov fd, %ebx

mov buflen, %edx

movl $3,%eax # __NR_read

mov %esp,%ecx # buff

int $0x80

Syscall Proxying Simulating Remote Execution

A simple

syscall server

in Linux (2)

 Invoke the desired syscall

do_request:

pop %eax

pop %ebx

pop %ecx

pop %edx

pop %esi

pop %edi

int $0x80

 The request previously stored in ESP is the stack

needed by the syscall PLUS buffers

Syscall Proxying Simulating Remote Execution

A simple

syscall server

in Linux (3)

 Coding a simple syscall server for Linux can be

done

 It takes about a hundred bytes long (without

optimizing)

Syscall Proxying Simulating Remote Execution

What about

Windows?
 Windows “syscalls”

 “… any function in any dynamic library available to a

user mode process.”

 Common mechanism

Syscall Proxying Simulating Remote Execution

The Windows

Syscall Server

(1)

 Windows server

 Call any function in its process address space

(already loaded)

 In particular

 Call LoadLibrary to load a new DLL

 Call GetProcAddress to obtain the address of a

specific function

Syscall Proxying Simulating Remote Execution

The Windows

Syscall Server

(2)

 Pseudocode for a sample Windows server

channel = set_up_communication()

channel.send(ESP)

channel.send(address of LoadLibrary)

channel.send(address of GetProcAddress)

while channel.has_data() do

request = channel.read()

copy request in stack

pop ebx

call [ebx]

push eax

channel.send(stack)

Syscall Proxying Simulating Remote Execution

The Real World: applications

Syscall Proxying Simulating Remote Execution

Exploiting

Code Injection

Vulnerabilities

 Allow an attacker to execute arbitrary code in

the target system

 Buffer overflows

 User supplied format strings

 Attack method

 Injection: attack specific

 Payload: what to execute once control is gained

 Shell code: code that spawns a shell

Syscall Proxying Simulating Remote Execution

The Privilege

Escalation

Phase

 Successful attack against a host.

 Use the compromised host as vantage point

(“pivoting”)

 Attacker profile switch: from external to internal

 Exploit webs of trust

 Possibly more privileged position in the target

system’s network

 To be able to “pivot”, the auditor needs his

tools available at the vantage point

Syscall Proxying Simulating Remote Execution

Redefining the

word

“shellcode”

 Supply “thin” syscall server as attack payload

 Benefits

 Transparent pivoting

 “Local” privilege escalation

 No shell? Who cares!

Syscall Proxying Simulating Remote Execution

Conclusions

Syscall Proxying Simulating Remote Execution

Conclusions
 Powerful technique when staging attacks

against code injection vulnerabilities

 Turns the compromised host into a new attack

vantage point

 Useful when shell code customization is needed

 Framework for developing new penetration

testing tools

 Raises the value of the tools

Syscall Proxying Simulating Remote Execution

Questions?Questions?

Syscall Proxying Simulating Remote Execution

Thank You!Thank You!

 Maximiliano Cáceres maximiliano.caceres@corest.com

Syscall Proxying Simulating Remote ExecutionCORE SECURITY TECHNOLOGIES · Offices Worldwide

Rua do Rócio 288 | 7º andar

Vila Olímpia | São Paulo | SP

CEP 04552-000 | Brazil

Tel: (55 11) 3054-2535

Fax: (55 11) 3054-2534

info.brazil@corest.com

Florida 141 | 2º cuerpo | 7º piso

(C1005AAC) Buenos Aires

Tel/Fax: (54 11) 4878-CORE (2673)

info.argentina@corest.com

Headquarters

44 Wall Street | 12th Floor

New York, NY 10005 | USA

Ph: (212) 461-2345

Fax: (212) 461-2346

info.usa@corest.com

www.corest.com

