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OS Identification

 OS Identification = OS Detection = OS Fingerprinting

 Crucial step of the penetration testing process

– actively send test packets and study host response

 First generation: analysis of differences between TCP/IP stack 

implementations

 Next generation: analysis of application layer data (DCE RPC endpoints) 

– to refine detection of Windows versions / editions / service packs
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Limitations of OS Fingerprinting tools

 Some variation of “best fit” algorithm is used to analyze the information

– will not work in non standard situations

– inability to extract key elements

 Our proposal:

– focus on the technique used to analyze the data

– we have developed tools using neural networks

– successfully integrated into commercial software
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Windows DCE-RPC service 

 By sending an RPC query to a host’s port 135

you can determine which services or programs are registered

 Response includes:

– UUID = universal unique identifier for each program

– Annotated name

– Protocol that each program uses

– Network address that the program is bound to

– Program’s endpoint
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Endpoints for a Windows 2000 Professional edition service pack 0

 uuid="5A7B91F8-FF00-11D0-A9B2-00C04FB6E6FC"

annotation="Messenger Service"

– protocol="ncalrpc" endpoint="ntsvcs"       id="msgsvc.1" 

– protocol="ncacn_np"     endpoint="\PIPE\ntsvcs" id="msgsvc.2" 

– protocol="ncacn_np"     endpoint="\PIPE\scerpc" id="msgsvc.3" 

– protocol="ncadg_ip_udp"                         id="msgsvc.4" 

 uuid="1FF70682-0A51-30E8-076D-740BE8CEE98B"

– protocol="ncalrpc"      endpoint="LRPC"         id="mstask.1" 

– protocol="ncacn_ip_tcp"                         id="mstask.2" 

 uuid="378E52B0-C0A9-11CF-822D-00AA0051E40F"

– protocol="ncalrpc"      endpoint="LRPC"         id="mstask.3" 

– protocol="ncacn_ip_tcp"                         id="mstask.4" 
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Neural networks come into play…

 It’s possible to distinguish Windows versions, editions and service packs 

based on the combination of endpoints provided by DCE-RPC service

 Idea: model the function which maps endpoints combinations to OS 

versions with a multilayer perceptron neural network

 Several questions arise:

– what kind of neural network do we use?

– how are the neurons organized?

– how do we map endpoints combinations to neural network inputs?

– how do we train the network?
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Multilayer Perceptron Neural Network

413 neurons

42 neurons

25 neurons
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3 layers topology

 Input layer : 413 neurons

– one neuron for each UUID

– one neuron for each endpoint corresponding to the UUID

– handle with flexibility the appearance of an unknown endpoint

 Hidden neuron layer : 42 neurons

– each neuron represents combinations of inputs

 Output layer : 25 neurons

– one neuron for each Windows version

– one neuron for each Windows version and edition

» Windows 2000 professional edition

– one neuron for each Windows version and service pack

» Windows 2000 service pack 2

– errors in one dimension do not affect the other



Analyzing OS Fingerprints using Neural Networks and Statistical Machinery – Javier Burroni, Carlos Sarraute – Core Security Technologies

What is a perceptron?

 x1 … xn are the inputs of the neuron

 wi,j,0 … wi,j,n are the weights

 f is a non linear activation function

– we use hyperbolic tangent tanh

 vi,j is the output of the neuron

Training of the network = finding the weights for each neuron
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Back propagation

 Training by back-propagation:

 for the output layer

– given an expected output  y1 … ym

– calculate an estimation of the error

 this is propagated to the previous layers as:
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New weights

 The new weights, at time  t+1, are:

 where:

learning rate momentum
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Supervised training

 We have a dataset with inputs and expected outputs

 One generation: recalculate weights for each input / output pair

 Complete training = 10350 generations

– it takes 14 hours to train network (python code)

 For each generation of the training process, inputs are reordered randomly 

(so the order does not affect training)
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Sample result of the Impact module

Neural Network Output (close to 1 is better):

Windows NT4: 4.87480503763e-005

Editions:

Enterprise Server: 0.00972694324639

Server: -0.00963500026763

Service Packs:

6: 0.00559659167371

6a: -0.00846224120952

Windows 2000: 0.996048928128

Editions:

Server: 0.977780526016

Professional: 0.00868998746624

Advanced Server: -0.00564873813703

Service Packs:

4: -0.00505441088081

2: -0.00285674134367

3: -0.0093665583402

0: -0.00320117552666

1: 0.921351036343
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Sample result (cont.)

Windows 2003: 0.00302898647853

Editions:

Web Edition: 0.00128127138728

Enterprise Edition: 0.00771786077082

Standard Edition: -0.0077145024893

Service Packs:

0: 0.000853988551952

Windows XP: 0.00605168045887

Editions:

Professional: 0.00115635710749

Home: 0.000408057333416

Service Packs:

2: -0.00160404945542

0: 0.00216065240615

1: 0.000759109188052

Setting OS to Windows 2000 Server sp1

Setting architecture: i386
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Result comparison

 Results of our laboratory:

Old DCE-RPC module DCE-RPC with neural 

networks

Perfect matches 6 7

Partial matches 8 14

Mismatches 7 0

No match 2 2
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Nmap tests

 Nmap is a network exploration tool and security scanner

 includes OS detection based on the response of a host to 9 tests

Test send packet to port with flags enabled

T1 TCP open TCP SYN, ECN-Echo

T2 TCP open TCP no flags

T3 TCP open TCP URG, PSH, SYN, FIN

T4 TCP open TCP ACK

T5 TCP closed TCP SYN

T6 TCP closed TCP ACK

T7 TCP closed TCP URG, PSH, FIN

PU UDP closed UDP

TSeq TCP * 6 open TCP SYN
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Nmap signature database

 Our method is based on the Nmap signature database

 A signature is a set of rules describing how a specific version / edition of an 
OS responds to the tests. Example:

# Linux 2.6.0-test5 x86

Fingerprint Linux 2.6.0-test5 x86

Class Linux | Linux | 2.6.X | general purpose

TSeq(Class=RI%gcd=<6%SI=<2D3CFA0&>73C6B%IPID=Z%TS=1000HZ)

T1(DF=Y%W=16A0%ACK=S++%Flags=AS%Ops=MNNTNW)

T2(Resp=Y%DF=Y%W=0%ACK=S%Flags=AR%Ops=)

T3(Resp=Y%DF=Y%W=16A0%ACK=S++%Flags=AS%Ops=MNNTNW)

T4(DF=Y%W=0%ACK=O%Flags=R%Ops=)

T5(DF=Y%W=0%ACK=S++%Flags=AR%Ops=)

T6(DF=Y%W=0%ACK=O%Flags=R%Ops=)

T7(DF=Y%W=0%ACK=S++%Flags=AR%Ops=)

PU(DF=N%TOS=C0%IPLEN=164%RIPTL=148%RID=E%RIPCK=E%UCK=E%UL
EN=134%DAT=E)



Analyzing OS Fingerprints using Neural Networks and Statistical Machinery – Javier Burroni, Carlos Sarraute – Core Security Technologies

Wealth and weakness of Nmap

 Nmap database contains 1684 signatures

 Nmap works by comparing a host response to each signature in the 

database:

– a score is assigned to each signature

– score = number of matching rules / number of considered rules

– “best fit” based on Hamming distance

 Problem: improbable operating systems 

– generate less responses to the tests

– and get a better score!

– e.g. a Windows 2000 version detected as Atari 2600 or HPUX …
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 The space of host responses has 560 dimensions

 Colors represents different OS families 

Symbolic representation of the OS space
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 OS detection is a step of the penetration test process

– we only want to detect Windows, Linux, Solaris, OpenBSD, FreeBSD, 

NetBSD

Picture after filtering irrelevant OS
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Picture after separating the OS families
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 The analysis to distinguish different versions is done after we know the 

family 

– for example, we know that the host is running OpenBSD and want to 

know the version

Distinguish versions within each OS family
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Hierarchical Network Structure

 Analyze the responses with different neural networks

 Each analysis is conditionned by the results of the previous analysis

relevant

not relevant

Windows

Linux

Solaris

OpenBSD

FreeBSD

NetBSD

DCE-RPC endpoint

kernel version

version

version

version

version
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So we have 5 neural networks…

 One neural network to decide if the OS is relevant / not relevant

 One neural network to decide the OS family:

– Windows, Linux, Solaris, OpenBSD, FreeBSD, NetBSD

 One neural network to decide Linux version

 One neural network to decide Solaris version

 One neural network to decide OpenBSD version

 Each neural network requires special topology design and training!

– OpenBSD version network is trained with a dataset containing only 

OpenBSD host responses
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Neural Network inputs

 Assign a set of inputs neurons for each test

 Details for tests T1 … T7:

 one neuron for ACK flag

– one neuron for each response: S, S++, O

 one neuron for DF flag

– one neuron for response: yes/no

 one neuron for Flags field

– one neuron for each flag: ECE, URG, ACK, PSH, RST, SYN, FIN

 10 groups of 6 neurons for Options field

– we activate one neuron in each group according to the option

EOL, MAXSEG, NOP, TIMESTAMP, WINDOW, ECHOED

 one neuron for W field (window size)
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Example of neural network inputs

 For flags or options: input is 1 or -1 (present or absent)

 Others have numerical input

– the W field (window size)

– the GCD (greatest common divisor of initial sequence numbers)

 Example of Linux 2.6.0 response:

T3(Resp=Y%DF=Y%W=16A0%ACK=S++%Flags=AS%Ops=MNNTNW)

 maps to:

ACK S S++ O DF Yes Flags E U A P R S F …

1 -1 1 -1 1 1 1 -1 -1 1 -1 -1 1 -1 …
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Neural network topology

 Input layer of 560 dimensions

– lots of redundancy

– gives flexibility when faced to unknown responses

– but raises performance issues!

– dimension reduction is necessary…

 3 layers neural network, for example the first neural network (relevant / not 
relevant filter) has:

input layer : 96 neurons

hidden layer : 20 neurons

output layer : 1 neuron
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Dataset generation

 To train the neural network we need 

– inputs (host responses)

– with corresponding outputs (host OS)

 Signature database contains 1684 rules

– a population of 15000 machines needed to train the network!

– we don’t have access to such population…

– scanning the Internet is not an option!

 Generate inputs by Monte Carlo simulation

– for each rule, generate inputs matching that rule

– number of inputs depends on empirical distribution of OS

» based on statistical surveys

– when the rule specifies options or range of values

» chose a value following uniform distribution
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Inputs as random variables

 We have been generous with the input

– 560 dimensions, with redundancy

– inputs dataset is very big

– the training convergence is slow…

 Consider each input dimension as a random variable Xi

– input dimensions have different orders of magnitude

» flags take 1/-1 values

» the ISN (initial sequence number) is an integer

– normalize the random variables:

expected value

standard deviation
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 We compute the correlation matrix R:

 After normalization this is simply:

 The correlation is a dimensionless measure of statistical dependence

– closer to 1 or -1 indicates higher dependence

– linear dependent columns of R indicate dependent variables

– we keep one and eliminate the others

– constants have zero variance and are also eliminated

Correlation matrix

expected value
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Example of OpenBSD fingerprints

Fingerprint OpenBSD 3.6 (i386)

Class OpenBSD | OpenBSD | 3.X | general purpose

T1(DF=N%W=4000%ACK=S++%Flags=AS%Ops=MNWNNT)

T2(Resp=N)

T3(Resp=N)

T4(DF=N%W=0%ACK=O%Flags=R%Ops=)

T5(DF=N%W=0%ACK=S++%Flags=AR%Ops=)

Fingerprint OpenBSD 2.2 - 2.3

Class OpenBSD | OpenBSD | 2.X | general purpose

T1(DF=N%W=402E%ACK=S++%Flags=AS%Ops=MNWNNT)

T2(Resp=N)

T3(Resp=Y%DF=N%W=402E%ACK=S++%Flags=AS%Ops=MNWNNT)

T4(DF=N%W=4000%ACK=O%Flags=R%Ops=)

T5(DF=N%W=0%ACK=S++%Flags=AR%Ops=)
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Relevant fields to distinguish OpenBSD versions

Field nameOriginal indexNew index

T7:SEQ_S45213

T6:SEQ_S37712

T4:W_FIELD29911

T4:SEQ_S22710

T3:W_FIELD2249

T3:TCP_OPT_2_TIMESTAMP1798

T3:TCP_OPT_1_EOL1707

T3:ACK_FIELD1506

T2:W_FIELD1495

T2:ACK_FIELD754

T1:W_FIELD743

T1:TCP_OPT_2_TIMESTAMP292

T1:TCP_OPT_2_EOL261

T1:TCP_OPT_1_EOL200
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Relevant fields to distinguish OpenBSD versions (cont.)

Field nameOriginal indexNew index

PU:UCK_RID_RIPCK_ZERO55827

PU:UCK_RID_RIPCK_EQ55526

TSeq:TS_SEQ_UNSUPPORTED54625

TSeq:TS_SEQ_2HZ54324

TSeq:SI_FIELD54023

TSeq:IPID_SEQ_RD53722

TSeq:IPID_SEQ_RPI53621

TSeq:IPID_SEQ_BROKEN_INCR53520

TSeq:IPID_FIELD53319

TSeq:GCD_FIELD53218

TSeq:SEQ_TR52917

TSeq:SEQ_RI52816

TSeq:SEQ_TD52615

TSeq:CLASS_FIELD52514
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Principal Component Analysis (PCA)

 Further reduction involves Principal Component Analysis (PCA)

 Idea: compute a new basis (coordinates system) of the input space

– the greatest variance of any projection of the dataset in a subspace of     

k dimensions

– comes by projecting to the first  k basis vectors

 PCA algorithm:

– compute eigenvectors and eigenvalues of  R 

– sort by decreasing eigenvalue

– keep first  k vectors to project the data

– parameter  k chosen to keep 98% of total variance
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Idea of Principal Component Analysis

 Keep the dimensions which have higher variance

– higher eigenvalues of the Correlation Matrix 
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Resulting neural network topology

 After performing these reductions we obtain the following neural network 

topologies (original input size was 560 in all cases)

Analysis Input layer

(after correlation 

matrix reduction)

Input layer 

(after PCA)

Hidden layer Output layer

Relevance 204 96 20 1

Operating 

System

145 66 20 6

Linux 100 41 18 8

Solaris 55 26 7 5

OpenBSD 34 23 4 3
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Adaptive learning rate

 Strategy to speed up training convergence

 Calculate the quadratic error estimation

( yi are the expected outputs,  vi are the actual outputs):

 Between generations (after processing all dataset input/output pairs)

– if error is smaller then increase learning rate

– if error is bigger then decrease learning rate

 Idea: move faster if we are in the correct direction
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Error evolution (fixed learning rate)

error

number of generations
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Error evolution (adaptive learning rate)

error

number of generations
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Subset training

 Another strategy to speed up training convergence

 Train the network with several smaller datasets (subsets)

 To estimate the error, we calculate a goodness of fit G

– if the output is 0/1:

G = 1 – ( Pr[false positive] + Pr[false negative] )

– other outputs:

G = 1 – number of errors / number of outputs

 Adaptive learning rate:

– if goodness of fit G is higher, then increase the initial learning rate
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Sample result (host running Solaris 8)

 Relevant / not relevant analysis

0.99999999999999789 relevant

 Operating System analysis
-0.99999999999999434 Linux 
0.99999999921394744 Solaris
-0.99999999999998057 OpenBSD

-0.99999964651426454 FreeBSD 
-1.0000000000000000 NetBSD

-1.0000000000000000 Windows

 Solaris version analysis

0.98172780325074482 Solaris 8
-0.99281382458335776 Solaris 9 
-0.99357586906143880 Solaris 7 
-0.99988378968003799 Solaris 2.X 
-0.99999999977837983 Solaris 2.5.X 
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Ideas for future work 1

 Analyze the key elements of the Nmap tests

– given by the analysis of the final weights

– given by Correlation matrix reduction

– given by Principal Component Analysis

 Optimize Nmap to generate less traffic

 Add noise and firewall filtering

– detect firewall presence

– identify different firewalls

– make more robust tests
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Ideas for future work 2

 This analysis could be applied to other detection methods:

 xprobe2 – Ofir Arkin, Fyodor & Meder Kydyraliev 

– detection by ICMP, SMB, SNMP

 p0f (Passive OS Identification) – Michal Zalewski

 OS detect by SUN RPC / Portmapper

– Sun / Linux / other System V versions

 MUA (Outlook / Thunderbird / etc) detection using Mail Headers
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Thank you!

 For more information about this project:

http://www.coresecurity.com/corelabs/projects/

 Contact us if you have questions, comments or if you want to look at the 

source code of the tools we wrote for this research:

Javier.Burroni at coresecurity com

Carlos.Sarraute at coresecurity com


