Building Computer Network Attacks

Ariel Futoransky, Luciano Notarfrancesco,
Gerardo Richarte and Carlos Sarraute

CoreLABS, CORE SECURITY TECHNOLOGIES

March 31st, 2003

Abstract

In this work we start walking the path to a new perspective for
viewing cyberwarfare scenarios, by introducing conceptual tools (a for-
mal model) to evaluate the costs of an attack, to describe the theater
of operations, targets, missions, actions, plans and assets involved
in cyberwarfare attacks. We also describe two applications of this
model: autonomous planning leading to automated penetration tests,
and attack simulations, allowing a system administrator to evaluate
the vulnerabilities of his network.

Keywords: Attack models, attack graphs, autonomous agents,
autonomous planning, automated penetration test, attack simulation,
network vulnerability evaluation.

1 Introduction

In this work we set the basis of a framework for modeling and building
computer network attacks. The main purpose of this framework is to provide
a tool for automating the risk assessment process, in particular penetration
tests, providing a further step in the direction of a tool like Core Impact
[Co02].

This work has also a theoretical value: “we understand what we can
build.” Our framework, considered as a functional model of the attacking
process, will provide the community with a deeper and more detailed model
of the attacks and intrusions of computer networks.



Finally, it can be used by a system administrator to simulate attacks
against his network, evaluate the vulnerabilities of the network and determine
which countermeasures will make it safe.

After reviewing related work, we describe in the second section the compo-
nents of our model - probabilistic assets, quantified goals, agents and actions -
and their relations. In the third section we describe the principal applications
of this model: automated planning of attacks and attack simulations.

Related work
Description of security incidents

In [HL98], Howard and Longstaff describe an incident taxonomy, which was
the result of a project to establish a “common language” in the field of
computer security. In [L.J97], Lindqvist and Jonsson also work on the classi-
fication of intrusions. We try to use the high-level terms proposed by Howard
and Longstaff, in particular, the attributes: vulnerability, action, target, re-
sult and objective.

One common flaw of these classifications is that they exclusively adopt
the point of view of the system owners or the intrusion detection sensors.
But an attack is always composed of several steps, some of which may be
invisible to the sensors. We will add to the attributes considered in [HLIS|
and [LJ97], some attributes which are relevant only to the attacker (or risk
assessment team). Thus a first result of our framework will be a widening of
the concepts used to describe security intrusions.

Attack models

In [Sc99] and [Sc00], Bruce Schneier proposes to describe attacks against
a system using “attack trees”, where each node requires the execution of
children nodes, and the root node represents the goal of the attack. There
are two types of nodes: OR nodes and AND nodes.

In [TLKO1] the authors propose an attack specification language, which
extends the attack trees model. Each node has preconditions (system envi-
ronment properties which facilitate the execution of the attack node), sub-
goals (these are the children nodes), and postconditions (changes in systems
and environments). [MELO1] is also based on the attack trees model. The



model is extended by attack patterns and attack profiles. These authors’ ob-
jective is to provide a means for documenting intrusions. Their models are
purely descriptive and doesn’t allow us to construct or predict new attacks.

Attack graphs

In [SPGI8] and [JSW02] the authors propose to use attack graphs to deter-
mine the security of networked systems. There are two main differences with
our model. Firstly, the system they propose is an analysis system, which re-
quires as input a great amount of information: a database of common attacks
broken in atomic steps, specific network configuration and topology informa-
tion, and an attacker profile. Our model is a system for building attacks,
starting with possibly zero information about the network, and gathering
this information as the attack takes place. Secondly, the attack graph we
construct for planning purposes differs from the attack graph of [SPG98] and
[JSW02]. In particular, it has a smaller size, which allow us to effectively
find a plan for real world instances of the problem. Additionaly we intro-
duce several new dimensions to the graph, like quantified goals, probabilistic
assets and a complex cost function.

2 Model architecture

Our model of computer attacks is based on the concepts of assets, goals,
agents and actions. The actions are conceptual units: they are the building
blocks of the attacks. In our description, an attack involves a group of agents,
executing sequences of actions, obtaining assets (which can be information
about the network or actual modifications of the real network) in order to
reach a set of goals. A functional prototype of this framework was written
in Squeak Smalltalk, and we occasionally use the Smalltalk vocabulary by
speaking of classes, instances, variables and methods.

2.1 Assets

An asset can represent anything that an attacker may need to obtain during

the course of an attack. More precisely, it represents the knowledge that an

agent has of a real object or property of the network. Examples of assets are:
* AgentAsset (agent, capabilities, host)



BannerAsset (banner, host, port)
OperatingSystemAsset (os, host)
IPConnectivityAsset (source, target)
TCPConnectivityAsset (source, target, port)

* ¥ x X

An AgentAsset represents an agent with a collection of capabilities run-
ning on a host. A BannerAsset represents the banner that an agent obtains
when trying to connect to a certain port on a host. An OperatingSystemAs-
set represents the knowledge that an agent has about the operating system
of a host. A TCPConnectivityAsset represents the fact that an agent is able
to establish a TCP connection between a source host and a certain port of
a target host.

There is an implicit question associated with each asset. For example, an
OperatingSystemAsset with os=nil and host=192.168.13.1 is associated
with the question “What is the operating system of the machine whose IP is
192.168.13.1 ?”. This gives us a natural relation between assets of the same
class : an asset al completes another asset a2 if al has some extra information
which answers the question implicitly associated with a2. In our example, if
two OperatingSystemAssets al and a2 have the same host=192.168.13.1,
a2 has os=nil and al host os=1linux, al completes a2.

The assets we consider are probabilistic. This allow us to represent prop-
erties which we guess are true with a certain probability or negative prop-
erties (which we know to be false). For example, an action which deter-
mines the os of a host using banners (OSDetectByBannerGrabber) may give
as result an OperatingSystemAsset os=linux with probability=0.8 and
a second one with os=openbsd and probability=0.2. Another example,
an ApplicationAsset host=192.168.13.1 and application=#Apache with
probability=0 means that our agent has determined that this host is not
running Apache.

We associate to each asset a certain level of trust in the information it
represents. When an action returns an asset, we may trust this information,
but then trust diminishes with time. This decrease is not linear - how to
calculate it is an interesting open question.

The environment knowledge

The environment knowledge is a collection of information about the computer
network being attacked or hosting an agent. Naturally, this information is
represented by assets. By abuse of language, we may speak of the environ-



ment instead of the environment knowledge. In the beginning, the environ-
ment contains only an AgentAsset : the localAgent which will initiate the
attack.

The environment will play an important role during the planning phase
and during the execution phase of an attack, since it continuously feedbacks
the behavior of the agent. Note also that each agent has its own enwviron-
ment knowledge and that exchanging assets will be an important part of the
communications between agents.

2.2 Goals

A goal represents a question or a request of the type: “complete this asset”
(every goal has an associated asset). A goal is quantified (has an ordered col-
lection of quantifiers). A goal also knows all the actions which may complete
his asset. This list is filled out during the attack graph construction phase.

Quantifiers

We consider three types of quantifiers: Any, Alland AllPossible. An example
will clarify their meaning: consider that PortAsset has attributes (host,
port, status). The following goals will mean:

asset = PortAsset (host=192.168.13.1, status=#open),
quantifiers = (Any #port from:1 to:1024):

find an open port in host 192.168.13.1 between ports 1 and 1024. To fulfill
this goal, an action like PortScan will begin examining the ports of host
192.168.13.1 until it finds an open port (completes the PortAsset and returns
a success signal) - or reaches port 1024 (and returns a failure signal).

asset = PortAsset (host=192.168.13.1, status=#open),
quantifiers = (All #port from:#(21,22,23,80)):

find whether all the ports #(21,22,23,80) are open in host 192.168.13.1. This
time, PortScan will examine the four mentioned ports and return success only
if the four of them are open (and in that case completes four PortAssets).

asset = AgentAsset (capabilities=#(TCP,UDP,FileSystem)),
quantifiers = (AllPossible #host from:192.168.1.0/24):

install agents in all the hosts that you can in netblock 192.168.1.0/24. An
action able to fulfill this goal will be a subclass of Exploit (for example
ApacheChunkedEncodingExploit). To fulfill this goal, the Exploit action will



try to exploit a vulnerability in all the machines it reaches in that netblock.
It returns an AgentAsset for each compromised host, and returns success if
at least one machine is compromised.

In general, the quantifiers are an ordered collection. Of course, the order is
important: for example, a goal with asset = PortAsset (status=#open)
and quantifiers (A1l #host from:192.168.1.0/24), (Any #port from:1
t0:1024) will mean: for every host in this netblock, find an open port.
Whereas with quantifiers (Any #port from:1 to:1024), All #host from:
192.168.1.0/24) it will mean: find a port which is open in all the machines
in this netblock.

2.3 Attackers and agents

We can think of the actions as being the verbs in a sequence of sentences
describing the attack. The agents will then be the subject of those verbs.
Of course, an attack is always initiated by human attackers, but during the
course of the attack, actions will typically be executed by autonomous agents.

Human attackers

There are different types of attackers. They can be classified grosso modo
as : script kiddies, who attack more or less randomly using standard tools
downloaded from the Internet; hackers, who attack computers for challenge,
status or research; security auditors (pen testers), who evaluate the security
of a network; government agencies, who possess the highest skill level and
resources to perform an attack.

The way we model these different types of attackers is through the attack
parameters: stealthiness, non traceability, expected running time, expected
success; and a skill level given by the collection of actions available to the
attacker. A script kiddie will not worry about stealthiness or non traceability.
His attacks will have low expected success and require low skill level. On
the other hand, a government agency will use maximal stealthiness, non
traceability and skill level, with a high expected success. A security auditor
will not worry about non traceability but may require stealthiness to carry
on the penetration test.

There is a number of actions who will require a human agent to execute



them, for example social engineering.! But it is important to include them in
our model - for the sake of completeness, but also because they are necessary
if we want to do simulations using our framework.

Software agents

In general the execution of an action will require the execution of machine
code and therefore involves a software agent A executing this code. The
command of executing this action might come from the agent itself, from
another software agent or from a human attacker: we will not distinguish
between these cases and say that the action was executed by the agent A.
A software agent can take several forms: script, toolkit or other kinds of
programs. Let us point out the autonomous agents who are able to take
decisions and continue the attack without human intervention.

Communications between agents

This framework supports the interactions between agents, which collaborate
to accomplish the objective. The agents establish communication channels
between them to exchange knowledge, gained information and missions to
be executed. For example, each agent has a collection of actions. Agents can
learn new actions and exchange actions between them through the commu-
nication channels.

The communications between human attackers can take place through
unlimited types of channels (direct interaction, telephone, email, chat, irc,
written mail). We will not enter into details here. Examples of communica-
tion channels between software agents are POP3 and SMTP, HTTP/HTTPS,
DNS, and covert channels like Loki.

Agent mission

We contemplate different types of organizations between the agents. One
scenario is given by a “root agent” who plans the attack and then gives the
other agents orders (of executing actions), eventually creating new agents if

!'Notice that social engineering could also be performed by an autonomous agent. An
example of this would be a virus who relies on a suggestive title to be opened by the
receiver.



necessary, and asks the agents for feedback about action results in order to
decide further steps.

Another scenario is when the root agent delegates responsibilities to the
other agents, giving them higher level missions. To fulfill the mission, the
agent will have to do his own planning and communicate with other agents.
This scenario is likely to arise when stealthiness is a priority: communications
are very expensive and it becomes necessary to rely on the agents to execute
their missions without giving feedback (or the smallest amount of feedback,
or delayed feedback because of intermittent communication channels).

2.4 Attack actions

These are the basic steps which form an attack. Examples of actions are:
ApacheChunkedEncodingExploit, WuFTPglobbingExploit (subclasses of Ex-
ploit), BannerGraber, OSDetectByBanner, OSFingerprint, NetworkDiscov-
ery, IPConnect, TCPConnect. In this section we review the principal at-
tributes of an action.

Action goal

An action has a goal (naturally an instance of the Goal class previously
described) and when executed successfully the action completes the asset
associated with its goal.

Usually,? an action is directed against a target, where the target is a
computer or a network. But as we have seen in the Goals section, there are
different types of goals like gathering information or establishing connectivity
between two agents or hosts, where the notion of target is not so clear. Thus
the concept of goal is more general and allow us to speak about intermediate
steps of an attack.

It is also common to speak about the result of an action (for example
to increase access, obtain information, corrupt information, gain use of re-
sources, denial of service), focussing on non authorized results. Our concept
of goal also includes this idea. Note that when an action completes the
goal asset, we are taking into account only the expected result of the action.
Undesired results and other side effects fall into the category of noise,

Also, thinking about goals opens the door to a whole new set of tools

2For example see [TFLO1]



and ideas, giving a new dimension to the available actions for planning and
developing attacks. An important example is the idea of Persons as targets.
Currently the weakest link in the security of an organization, for different
reasons, is the workstation [ALO3]. When attacking servers, the adversary
is the system administrator or even the security professional in charge of
it, but when attacking workstations, the adversary is the end user, who
probably doesn’t fully understand the implications of his actions, raising the
possibilities of finding a vulnerability or configuration problem, and it’s most
likely to stay undiscovered after the intrusion.

Before assigning a goal to an action, the action remains abstract (de-
scribed by the methods of its class). Given a goal, we can instantiate the
action, but because of the quantifiers this instantiation is only gradual. Dur-
ing the planning phase, actions are only partially instantiated and use the
common information of the goal asset (for example if the goal is to find All-
Possible open ports in a netblock, we only use the fact that we have to find
open ports). The initialize Requirements method is called, which creates the
list of requirements or subgoals of the action, needed to carry on the con-
struction of the attack graph. During the execution phase, when quantifiers
are recursively iterated, the action is fully instantiated and receives a con-
crete asset to fill out (for example, to determine if a specific port of a specific
host is open). The setup Requirements method is called, which communicates
this information to the subgoals of the action.

Action requirements

The requirements are instances of the Goal class, and will be the goals of
other attack actions, which must have been successfully executed before the
considered action can be run. The requirements are the equivalent of children
nodes in [S00] and subgoals in [TLKO1] and [MELO1]. An abstract action
must know what kind of assets it may satisfy and which goals it requires
before running. These relations will be used to construct the attack graph.

The run method or the action itself

During the execution phase, when the action goal is fully instantiated, the run
method is called. This is of course the most important method of an action,
which contains the concrete code executed by the agent. Before executing
its own code, the action will call the runAction method of its requirements.



One interesting point to mention here, is that the action can be executed
in a real network or in a simulated network (with simulated hosts and network
topology). The difference between working in those two settings will be
reflected only in the run method of the actions. This makes our framework
easy to adapt for both real and simulated attacks.

Environment knowledge

The action makes use of the knowledge that his owner agent has of the en-
vironment. This environment knowledge is a collection of information about
the computer network being attacked or hosting the agent. When the run
method is called, the first thing that the action does is to examine the envi-
ronment, looking for an asset which completes the goal asset. If this is the
case, the information of the existing asset is used to fulfill the goal, and the
action returns a success signal, resulting in zero cost (in terms of time, noise,
success probability and stealthiness).

Note that two interesting graphs can be extracted from the environment
knowledge: the network topology graph and the agent distribution graph,
whose nodes are the agents involved in the attack and whose edges are the
communication channels between agents.

Environment conditions

The environment conditions refer to system configuration or environment
properties which may be necessary or may facilitate the execution of the
action. We distinguish the environment conditions from the requirements,
because the requirements express relations between actions (which must be
taken into account when planning a sequence of actions) whereas the envi-
ronment conditions refer to the “state of the world” (as far as the agent is
aware of it) before the execution of the module, and do not imply previ-
ous actions. For example, an exploit of a buffer overflow that runs only on
specific versions of an operating system, will have as requirement: “obtain
information about operating system version” and as environment condition
“OS=RedHat Linux; version between 6.1 and 6.9”. These conditions are not
necessary, as the action can be run anyway, but will dramatically increase its
probability of success.?

3Note that the system administrator could have changed the version number of the
OS, instead of upgrading it, so the exploit could run although the environment conditions
indicate it will fail. In this situation, executing the exploit or not will depend on other

10



Noise produced and stealthiness

The execution of the action will produce noise. This noise can be network
traffic, log lines in IDS, etc. Given a list as complete as possible of network
sensors, we have to quantify the noise produced respect to each of this sensors.
The knowledge of the network configuration and which sensors are likely to
be active, will allow us to calculate a global estimate of the noise produced
by the action. Refining this estimation is an interesting open question.

With respect to every network sensor, the noise produced can be classified
into three categories: unremovable noise, noise that can be cleaned in case
the action is successful (or another subsequent action is successful), noise
that can be cleaned even in case of failure. So we can also estimate the noise
remaining after cleanup. Of course, the stealthiness of an action will refer to
the low level of noise produced.

Exploited vulnerability

The module, if aiming to obtain an unauthorized result, will exploit a vul-
nerability. The information about the exploited vulnerability is not needed
by the attacking agent, but is useful for the classification and analysis of
detected intrusions. This vulnerability can be:

* software vulnerability: a design flaw or an implementation flaw (buffer
overflow, format string, race condition)

* network configuration vulnerability

* trust relationship: this refers to higher level, non autonomous at-
tack modules: hacking a software provider, getting an insider in a software
provider, inserting backdoors in an open-source project.

Running time and probability of success

The expected running time and probability of success depend on the nature
of the action, but also on the environment conditions, so their values must
be updated every time the agent receives new information about the envi-
ronment. These values are necessary to take decisions and choose a path
in the graph of possible actions. Because of the uncertainties on the execu-
tion environment, we consider three values for the running time: minimum,
average and maximum running time. Together with the stealthiness and

global parameters: noise level, expected success, execution time.

11



zero-dayness, these values constitute the cost of the action and are used to
evaluate sequences of actions.

2.5 Building an attack

An attack involves a group of agents, executing series of actions in order to
fulfill a goal (or a set of goals). Notice that this goal can change during the
course of the attack.

The target is the logical or physical entity which is the blank of the attack.
Usually, the target is a computer or a computer network or some information
hosted in a computer. The target can also change during the course of the
attack. It is also possible that an attack has no specific target at all (for
example, a script kiddie running a specific exploit against all the computers
he reaches, until it succeeds).

The complete graph of all combinations of actions determines which goals
we (as attackers) can reach. Considering the complete graph of possible
actions, to build an attack will consist in finding a path to reach the objective
(this implies in particular to find a path through the physical networks to
reach the target).

Attack parameters

In fact, we will try to find the best path to reach the objective, and to eval-
uate this we must take into account the attack parameters: non traceability,
tolerated noise, expected success, execution time, zero-dayness. These pa-
rameters have initial values for the whole attack, but they can vary from
agent to agent, for example an agent might create other agents with a differ-
ent profile.

Non traceability refers to the ability to dissimulate the origin of the at-
tack. We could also call it “deniability”. To achieve non traceability, special
modules must be executed, who will insert intermediate agents (we call them
“pivots” or stepping stones) between the originating agent and the agents
executing the objective or partial objectives.

Tolerated noise is the level of noise that we allow our agents to make.
It can vary from agent to agent, for example an agent executing a DNS
spoofing module would benefit from other agents simultaneously executing a
DNS flooding (and generating a high level of noise).

12



Ezxpected success determines the priority which will be given to success-
fully executing the actions, over the other parameters. If set to the maximal
value, the agent will try to execute the projected action, even though the
noise generated might be higher than the tolerated noise level.

Ezecution time: each agent will be given a limit of time to execute each
action. This is necessary to plan the attack, as it usually consists of a series
of dependent steps.

Zero-dayness: specifies whether the agent is allowed to use zero-day ex-
ploits (a valuable resource that should be used only for critical missions).

Evaluating paths

A path is a sequence of actions (in a specific order and without branchings).
To be able to choose between different paths, we have to evaluate the paths in
terms of the attack parameters: the probability of success, the noise probably
produced, the running time and the traceability.

For the probability of success, we consider the success of each action as
independent of the previous ones, and that all the actions in the paths are
necessary, so the probability of success of the path is the product of the
probabilities of success of each action.

For the running time of the path, we consider the three time estimations
(minimum, average, maximum) that we have for each module and sum them
to obtain the path’s minimal, average and maximal running time.

The stealthiness of the path, that we define as the probability of not being
discovered, diminishes with each executed action. As with the probability of
success, we consider them independent and compute the stealthiness of the
path as the product of the stealthiness of the actions.

The traceability is harder to estimate. It depends basically in the number
of hops (or pivots or stepping stones) introduced, and this is how we compute
it, although each can contribute in a different amount to the global “non
traceability” of the path of actions.

13



3 Applications

3.1 Planning
The complete graph of possible actions

Our first approach to the planning problem is to contemplate the complete
graph of possible actions. In this graph, each node represents a “state of
the world”, which is the combined knowledge that the agents have of the
environment (network topology, operating systems, running services, agents
distribution, etc). Each edge represents an action (the execution of a module
by an agent). This action will result in modifying the state of the world
(which can be changes in the real world, or changes in the knowledge the
agents have about the world).

This model allows us the express complex relationships between actions,
and always takes into account the order in which they are executed. In this
sense, it is close to reality. But autonomous planning is untractable: it is
only possible for very small instances of the problem.

Probabilistic planning

Another approach is to describe the model as a STRIPS-like planning domain
[FK71] where the actions have probabilistic outcomes. This is the setting of
Markov Decision Processes (MDP). To do this, we represent our modules
as probabilistic operators and the results and noise produced by a module
as add-effects and delete-effects of the operator. These effects depend on a
probability distribution. The requirements and environment conditions of
the module are translated as preconditions of the operator.

One difficulty is that the planning operators do not create or destroy
objects, so we must begin planning when we already know the topology of
the computer network being attacked. The description of the network will
then be the initial conditions.

Having described the planning of the attack as a Markov Decision Pro-
cess, we can use existing tools for solving such MDPs. For example, the
probabilistic planner PGraphPlan presented in [BLI8], based on the deter-
ministic planner GraphPlan [BF95]. Although this planner is quite efficient,
it only solves the planning problem when the plan requires a small amount
of steps.

14



Our approach

We construct the attack graph by alternating layers of goals and layers of
actions: we connect each goal in a layer to the actions which may satisfy
it, and connect each action in a layer to the subgoals that it requires. Note
that we don’t need to build explicitly this graph, in fact we prefer to leave it
implicitly defined by the relations between actions and requirements.

As we have already stated, we consider two different phases: during the
attack graph construction, the quantifiers are not expanded, and the collec-
tion of elements referred by the quantifiers are treated as a single element
(in this sense, we say that the elements are homogeneous). This use of quan-
tifiers is a great help in avoiding the combinatorial explosion of states, a
fundamental problem for the planning systems. This is also a way to take
into account the uncertainty that we have respect to the real world: a col-
lection of elements (hosts, ports, applications) that we cannot distinguish
because of lack of information, are in the beginning treated as the same ele-
ment, thus facilitating the planning, and are distinguished only after enough
information is gathered.

During the execution phase, when the run method is called, the action
recursively iterates over the quantifiers, thus delaying the expansion until it
is absolutely necessary.

Another thing that we delay is the computation of the costs of the actions.
In effect, the cost is greatly influenced by the environment knowledge, and
this knowledge is modified by every actions which gets executed. It is only
when the runAction method of a goal is called, that the goal computes the
costs of the actions which may satisfy it, and chooses the action with the lower
cost. This way, the same attack graph will result in different executions if
we run it several times without modifications: for example after running an
ApacheChunkedEncodingExploit in a first execution, the exploit may add
a negative asset (with probability zero) to the environment stating that the
target host is not running Apache. In the following execution, the probability
of success of this exploit will be almost zero and another exploit will be
executed.

An interesting issue is raised by the fact that an agent may create an-
other agent. For example given the goal of establishing a TCPConnectivity,
a TCPConnect action requires to install an agent in an intermediate host
in order to circumvent a firewall. To install this agent, an exploit requires
a TCPConnectivity, which in turn requires to install an agent in an inter-
mediate host, etc... we are faced with combinatorial explosion and infinite

15



loops. To solve this issue we have used an idea which resulted to be a com-
mon technique in Hierarchical Task Network (HTN) planning. As stated in
[SFJ00], virtually all planning systems that have been developed for practical
applications make use of HTN planning techniques. As long as the actions
do not require to create new agents, we use classical planning techniques.
But when an action such as TCPConnectCreatingHops requires installation
of new agents, we consider it as a high-level task. TCPConnectCreatingHops
will find the best path between our agents and a target host, eventually win-
ning new agents in intermediate machines. If we can compute the cost of the
connectivity between two hosts and the cost of “winning an agent in host
target from host source”, we can use a standard algorithm like the algorithm
of Dijkstra to find the best path in the network topology graph. To evaluate
the cost of winning an agent, we construct a subplan using an environment
containing only the source and target hosts. The cost of this subplan is com-
puted by appending to this hypothetic environment the real environment
together with an imaginary agent in host source (this is the way we can work
out hypotheses). This subplan will also be used during the execution phase,
each time that an agent must be won in the path found by the Dijkstra
algorithm.

3.2 Simulations and analysis of network security

As we have mentioned in the Actions section, our framework can be used
to build attacks against a simulated network. Of course, the quality of this
simulation will depend on how accurately we simulate the machines. Using
VMwares we obtain a slow and accurate simulation, for faster simulations a
tradeoff must be made between accuracy and speed.

The system administrator can simulate different types of attackers by
using different attack parameters and different collections of available actions,
and evaluate the response of his network to these attackers. For example,
he can start with an attacker with a minimal portfolio of actions, and add
gradually actions to the arsenal of his simulated attacker until there is a
successful attack which goes undetected by the IDS. This will give him an
indication of which attack actions he should defend his network from.

Also consider that the system administrator has a set of measures which
make certain attack actions less effective (in our framework, a measure may
reduce the probability of success of an attack action, or increase the noise it
produces, for example by adding a new IDS). He can then use the simulation
to see if his system becomes safe after all the measures are deployed, or to

16



find a minimal set of measures which make his system safe.

As opposed to VMwares, rudimentary simulations of machines allow us
to simulate a huge amount of machines. This can be used to investigate the
dissemination of worms (considered as autonomous agents with a minimalist
set of actions) in large networks. Future work needs to be done in this
direction.

4 Conclusions and future work

In this paper we start walking the path to a new perspective for viewing
cyberwarfare scenarios, by introducing different conceptual tools (a formal
model) to evaluate the costs of an attack, to describe the theater of op-
erations, targets, missions, actions, plans and assets involved in cybernetic
attacks.

Thinking about the way to express goals, led us to introduce three differ-
ent quantifiers (Any, All, AllPossible) and expand the notion of target of an
action. The quantifiers give us a compact representation of extensive collec-
tions of assets, which greatly reduces the combinatorial growth of the attack
graph during the planning phase.

Another important contribution concerns the costs of the actions. We
show that the cost is given by a tuple a values: not only the probability
of success, but also the stealthiness (which depends on the noise produced),
time consumed, non traceability and zero-dayness. The noise produced is
particularly relevant, and we haven’t seen it in other models. These dimen-
sions, considered as attack parameters, also allow us to model different types
of attackers.

The most important application of our model is automated planning.
Integrated in a tool like Core Impact, it leads the way to automated pene-
tration testing. Used against simulated networks, it is a tool for evaluating
the vulnerabilities of a network.

In our approach to the planning issue, we chose not to rely entirely in
one classical representation (like STRIPS or MDP representations, or formal
models used in model checking) and then use standard tools for this repre-
sentation, because these only work for small instances of the problem. By
combining classical planning techniques with HTN techniques, and making
effective use of the quantifiers, we were able to handle bigger instances of the
problem in our Squeak implementation (not particularly optimized!)

17



Finally working on this model has opened a lot of questions and direc-
tions for future work: how to estimate the probability of success and noise
produced by an action, how to modify these values after an execution, how to
combine the different dimensions of the cost in order to obtain a total order
between costs, how to choose the agents who will execute the actions, when
to create a new agent on a specific host, how to decide the profiles (or person-
alities) of the agents, the use of planning techniques, and the applications of
the simulation scenario. It also led us to review current penetration testing
practices and opened new dimensions for planning attacks and creating new
tools.

References

[ALO3] Ivan Arce, Elias Levy, “The ‘weakest link’ revisited”, IEEE Computer
Security Journal, March 2003.

[BDMO1] John Bresina, Richard Dearden , Nicolas Meuleau et al, “Planning
Under Continuous Time and Resource Uncertainty: A Challenge for AI”,
Conference on Uncertainty in Artificial Intelligence, August 1-4 2002.

[BF95] Avrim L. Blum and Merrick L. Furst, “Fast planning through plan-
ning graph analysis”, Proc. IJCAI-95, Montreal, Canada, 1995.

[BLI8] Avrim L. Blum and John C. Langford, “Probabilistic planning in
the Graphlan Framework”, AIPS98 Workshop on Planning as Combinatorial
Search, pages 8-12, June 1998.

[Ca02] Max Céceres, “Syscall Proxying - Simulating remote execution”, Black
Hat USA 2002 Briefings and Training, July 29 to Augut 1, 2002.

[Co02] Core Security Technologies, Core Impact,
http://www.corest.com/products/coreimpact/index.php

[EHN94] Kutluhan Erol, James Hendler, Dana S. Nau, “HTN Planning:
Complexity and Expressivity”.

[JSS99] John James, Brian Sayrs, V. S. Subrahmanian, John Benton, “Un-
certainty Management: Keeping Battlespace Visualization Honest”, ATIRP
Conference, February 1999.

[JSW02] Somesh Jha, Oleg Sheyner, Jeannette Wing, “Minimization and
Reliability Analyses of Attack Graphs”, February 2002.

[HL98] John D. Howard, Thomas A. Longstaff, “A Common Language for

18



Computer Security Incidents”, Sandia Report, October 1998.

[LJ97] Ulf Lindqvist, Erland Jonsson, “How to Systematically Classify Com-
puter Security Intrusions”, Proceedings of the 1997 IEEE Symposium on
Security and Privacy, May 1997.

[MELO1] Andrew P. Moore, Robert J. Ellison, Richard C. Linger, “Attack
Modeling for Information Security and Survivability”, Software Engineering
Institute Technical Report, 2001.

[MGO0] P. Marrow, R. Ghanea-Hercock, “Mobile software agents — insect-
inspired computing”, BT Technol, Vol 18 No 4, October 2000.

[Sc99] Bruce Schneier, “Attack Trees: Modeling Security Threats”, Dr. Dobb’s
Journal, December 1999.

[Sc00] Bruce Schneier, “Secrets and Lies: Digital Security in a Networked
World”, Chap. 21 Attack Trees, Wiley Computer Publishing, 2000.

[SFJ00] David Smith, Jeremy Frank, Ari Jonsson, “Bridging the Gap Be-
tween Planning and Scheduling”, Knowledge Engineering Review, 15(1),
2000.

[SPGI8| Laura P. Swiler, Cynthia Phillips, Timothy Gaylor, “A Graph-Based
Network-Vulnerability Analysis System”, Sandia Report, January 1998.

[TLKO1] T. Tidwell, R. Larson, K. Fitch, J. Hale, “Modeling Internet At-
tacks”, Proceedings of the 2001 ITEEE Workshop of Information Assurance
and Security, June 2001.

19



