Motivation	The attack model	Planner/pentesting tool integration	Evaluation	Demo & Conclusion

Attack Planning in the Real World

Jorge Lucángeli Obes¹ Carlos Sarraute ^{1,2}

¹ CoreLabs - Core Security Technologies

² ITBA (Instituto Tecnológico de Buenos Aires)

SecArt'10 - July 12, 2010

Introduction

Our company: Core Security Technologies

- Boston (USA)
 - marketing and sales
- Buenos Aires (Argentina)
 - research and development

CoreLabs: the research team

Some areas of interest:

- Vulnerability research
 - Bugweek
 - Publication of advisories
- Cyber-attack planning and simulation
- Improving OS detection using neural networks

Evaluation

Demo & Conclusion

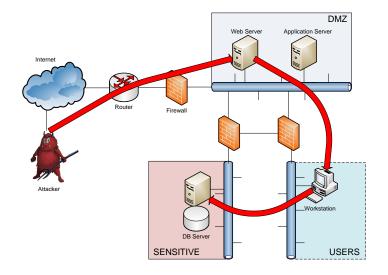
Penetration testing frameworks

Penetration testing

Actively verifying network defenses by conducting an intrusion in the same way an attacker would.

- Penetration testing tools have the ability to launch real exploits for vulnerabilities.
 - different from vulnerability scanners (Nessus, Retina, ...)
- Main tools available:
 - Core Impact (since 2001)
 - Immunity Canvas (since 2002)
 - Metasploit (since 2003)
 - open source, owned by Rapid7 since 2009

Motivation	The attack model	Planner/pentesting tool integration	Evaluation	Demo & Conclusion		
Need for automation						


- Control the increasing complexity of penetration testing tools.
 - shipping more exploits
 - covering new attack vectors (Client-Side, WiFi, WebApps, ...)
- Incorporate expert knowledge to the penetration testing framework.
- Construct attack plans that pivot.

Pivoting

Compromising an intermediate machine in order to gather information or to perform attacks from that machine.

 Motivation
 The attack model
 Planner/pentesting tool integration
 Evaluation
 Demo & Conclusion

Anatomy of a real-world attack

A model for cyber-attacks

Objective of the model

- Formal representation of an attack.
- Abstraction of the penetration testing practice.
- Accurate from the attacker's point of view.

The attacker's point of view

- The attacker's main liability is the absence of knowledge about the network she wants to intrude.
- The acquisition of knowledge is an integral part of the attack.

Evaluation

Demo & Conclusion

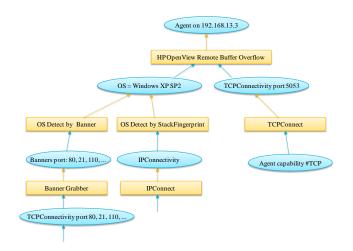
Components of the attack model

Goals

Objectives of the attack.

Assets

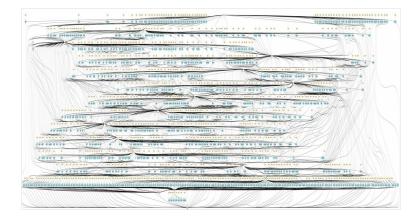
Anything an attacker may need during the attack.


Actions

Actions are the building blocks of the attacks. They allow the obtention of assets.

Agents

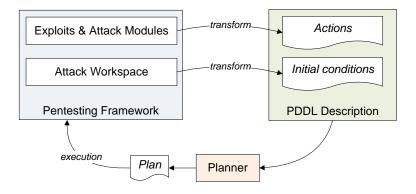
Agents, whether human or software, perform the actions of the attack.


Motivation	The attack model	Planner/pentesting tool integration	Evaluation	Demo & Conclusion	
Sample attack graph					

Evaluation

Demo & Conclusion

Sample attack graph (II)



From Noel and Jajodia: "Managing Attack Graph Complexity Through Visual Hierarchical Aggregation"

Evaluation

Demo & Conclusion

Architecture of our solution

Predicates for connectivity

- Assets are translated as predicates.
- Examples:
 - (connected_to_network ?s host ?n network)
 - (IP_connectivity ?s host ?t host)
 - (TCP_connectivity ?s host ?t host ?p port)
 - (UDP_connectivity ?s host ?t host ?p port)
- Maximum arity is 3.

Predicates for Operating System information

- Many predicates for OS information.
 - We need detailed information to evaluate the reliability of exploits.
- Examples:
 - (has_OS ?h host ?os operating_system)
 - (has_OS_version ?h host ?osv OS_version)
 - (has_OS_edition ?h host ?ose OS_edition)
 - (has_OS_build ?h host ?osb OS_build)
 - (has_OS_servicepack ?h host ?ossp OS_servicepack)
 - (has_architecture ?h host ?a OS_architecture)

```
(:action TCP_connect
:parameters (?s - host ?t - host ?p - port)
```

```
:precondition (
   and (compromised ?s)
    (IP_connectivity ?s ?t)
    (TCP_listen_port ?t ?p))
```

```
:effect
 (TCP_connectivity ?s ?t ?p)
)
```

```
    Motivation
    The attack model
    Planner/pentesting tool integration
    Evaluation
    Demo & Conclusion

    Sample exploit
```

```
(:action EXPLOIT_MSRPC_Samba_Command_Injection_exploit
:parameters (?s - host ?t - host)
```

```
:precondition (and
  (compromised ?s)
  (and (has_OS ?t Linux)
      (has_OS_distro ?t Ubuntu)
      (has_OS_version ?t V_6_06)
      (has_architecture ?t I386))
  (or (TCP_connectivity ?s ?t port139)
      (TCP_connectivity ?s ?t port445))
)
```

```
:effect(and
  (increase (time) 31)
   (installed_agent ?t low_privileges)
))
```

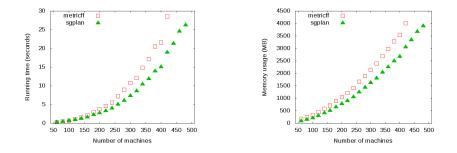
Generating test scenarios

Metrics

- Number of machines: up to 500
- Number of pivoting steps: up to 20
- Number of PDDL actions (exploits): up to 1800
- Number of individual predicates in the goal: up to 100

Planners

Metric-FF (with modifications)

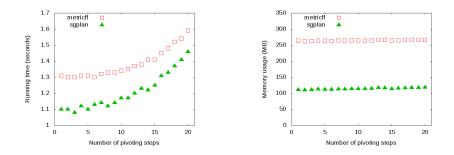

SGPlan

The domain files have up to 28,000 lines.

Evaluation

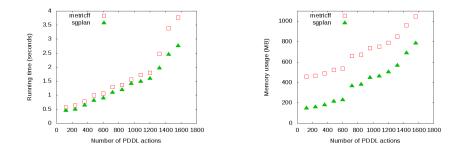
Demo & Conclusion

Increasing number of machines

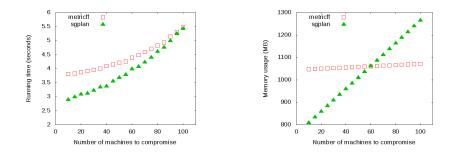


- Fixed values: 1600 actions, 1 pivoting step.
- 22 seconds, 3.2 GB of RAM to solve a 450-machine scenario with SGPlan.

Evaluation


Demo & Conclusion

Increasing number of pivoting steps


- Fixed values: 1600 actions, 120 machines.
- 1.45 seconds, 100 MB of RAM to solve a 20-step scenario with SGPlan.

Increasing number of actions

- Fixed values: 200 machines, 1 pivoting step.
- 2.75 seconds, 800 MB of RAM to solve a 1600-action scenario with SGPlan.

Increasing number of predicates in the goal

- Fixed values: 200 machines, 1 pivoting step for each compromised machine, 1600 actions.
- 5.5 seconds, 1075 MB of RAM to solve a 100-goal scenario with Metric-FF.

Motivation	The attack model	Planner/pentesting tool integration	Evaluation	Demo & Conclusion
Demo				

Demo

We have presented:

- An attack model accurate from the attacker's point of view.
- A translation of this model to PDDL.
- An implementation that uses this PDDL representation to integrate a planner to a penetration testing framework.
- An evaluation of our implementation that shows the feasability of planning and verifying attacks in real-life scenarios.

Evaluation

Demo & Conclusion

Contact information

Contact

- Jorge Lucángeli Obes: jota@coresecurity.com
- Carlos Sarraute: carlos@coresecurity.com

Email us if you would like a copy of the PDDL files.

More information

• http://corelabs.coresecurity.com