Attack Trends

Editors: David Ahmad, drma@mac.com

Ivan Arce, ivan.arce@coresecurity.com

Ghost in the Virtual Machine

The machine does not isolate man from the great problems of nature but plunges him more deeply into them.

irtual machines (VMs) and virtualization tech-
nologies aren’t new to the computing world—
they’ve been used for at least 40 years. Recently,

the availability of virtualization software for low-

cost computer equipment and the promise of both tangible

IVAN ARCE
Core Security
Technologies

68

reductions on total cost of ownership
and rapid return on investment on
virtualization projects have moved
many organizations to adopt it as a
key component of their IT strategy.

In this installment of Attack
Trends, I'll look at this technology
trend with an eye toward security
and analyze past and present ad-
vances in offensive security tools and
techniques.

The early days

The origins of VMs go back almost
as far as modern computing itself.
Born to optimize usage of expensive
computing resources and provide
users with a fully dedicated and inter-
active computer system, the early
1960s experiences in time-sharing
systems at MIT, IBM, Bolt Beranek
and Newman (now BBN Technolo-
gies), and the University of Califor-
nia, Berkeley, laid the foundations on
which VMs were developed.
Memory protection, segmenta-
tion and paging, virtual memory
and storage, the implementation of
microprocessors with multiple exe-
cution modes, and the needs arising
from multiple users multi-program-
ming on a single computing system
all hastened the development of
time-sharing systems, such as the
Compatible Time-Sharing System'
at MIT. In time, this system led to

PUBLISHED BY THE IEEE COMPUTER SOCIETY |

Multics (Multiplexed Information
and Computing Service) and even-
tually to modern-day Unix oper-
(OSs); the
foundational concepts from those

ating systems same
early systems (www.bitsavers.org/
pdf/mit/les/tr/MIT-LCS-TR-003.
pdf’) led to the creation of the IBM
System/360 family of computers in
the 1960s” and to the System/370 in
the early 1970s. Current VM con-
cepts derive from these pioneering
systems—in fact, the CP/CMS OS
developed at IBM (later reimple-
mented and renamed VM/370)
provided the
components found in today’s most
popular virtualization software. The
control program (CP), which con-

same functional

trolled allocation and isolation, and
managed the computing resources
for multiple VM, is functionally
equivalent to today’s VM monitors
(VMMs), the systems required to
implement a generic VM environ-
ment. The conversational monitor
system (CMS) is a full-fledged single-
user OS thatsupports personal use of
a dedicated (virtual) computer, the
equivalent of a “guest” OS in a
modern VM environment.
Communications between users
on different VMs were first accom-
plished in VM/370 by using an un-
derlying directory structure that
the CP managed but were later as-

1540-7993/07/$25.00 © 2007 IEEE |

—Antoine de Saint-Exupery

similated into the design goals of a
dedicated OS, the remote spool-
ing and communications system
(RSCS), which was capable of
running ona VM.

In 1981, at the dawn of the PC era,
R_J. Creasy provided an insightful ac-
count of the origins of VM/370 in
IBM’s_Journal of Research and Develop-
ment* and its potential future applica-
tion for personal computing. Today,
the z/VM operating system that runs
on zSeries of IBM mainframe is a di-
rect descendant of VM/370.

VM architectures

Successtul implementation of virtu-
alization technologies in CP/CMS
and other OSs in the *70s prompted
researchers to formalize the require-
ments that computer system archi-
tectures must meet to support VMs.

In 1974, Gerald Popek and
Robert P. Goldberg® presented re-
quirements in terms of three simple
properties that outline the essential
properties of a VMM:

* Efficiency. The VMM shouldn’t
impose noticeable performance
degradation when executing pro-
grams in the virtual environment.
Popek and Goldberg further trans-
lated this to mean that the real
processor must directly execute a
substantial (dominant) subset of
the virtual processor’s instruction
set without VMM mediation.
This rules out emulators, higher-
level language interpreters, and
other hybrid solutions from the
realms of a “true” VM system.

Resource control. A VMM must be
able to manage the

b
system’s
resources, allocating resources to
virtualized programs and then reac-

IEEE SECURITY & PRIVACY

quiring control of them as needed.
Virtualized programs shouldn’t be
able to interfere with each other’s
resources without the VMM’s in-
tervention and must not be able
to alter the allocation and man-
agement of resources that the
VMM uses.

Equivalence. A VMM should pro-
vide a virtual environment that’s

essentially identical to the real one
for which existing programs are
designed. This translates to a vir-
tual hardware abstraction layer
that’s undistinguishable from the
real hardware. A virtualized pro-
gram running in the presence of a
VMM shouldn’t perform differ-
ently than when it’s run directly on
real hardware without a VMM,
with two notable exceptions: when
it’s acceptable to have differences
caused by timing or if there’s a lack
of available resources due to the
VMM allocation policy.

To analyze the suitability of the
instruction set architecture (ISA) a
given system implements, Popek
and Goldberg characterized instruc-
tions according to how they affect
system state:

* Privileged. These instructions can
only execute when the processor is
in one specific “mode” of opera-
tion (the authors defined two
necessary modes: supervisor and
user). Privileged instructions gen-
erate a “trap” (or recoverable fault)
when they don’t execute in the re-
quired processor mode.

Sensitive. These instructions at-
tempt to change the allocation of
the overall system’s resources
(control sensitive instructions) or
whose behavior or results depend
on the configuration of allocated
processor’s
current mode (behavior-sensitive

resources in the
instructions).
Using this model, which explicitly

excluded I/0O instructions and de-
vices, the authors defined in their

first theorem the requirement that
an ISA must meet to be virtualizable:

Theorem 1: For any conventional
third-generation computer, a VMM
may be constructed if the set of sen-
sitive instructions is a subset of the
set of privileged instruction.

Computers (or rather, ISAs)
that meet this requirement are
deemed virtualizable. At the time,
only a handful of systems could
comply with the requirement; the
authors identified a specific system,
the PDP-11, as unsuitable for virtu-
alization due to its use of memory-
mapped I/O devices and I/O
instructions.

The trend toward virtualization
decayed, and during the 1980s and
’90s, when PCs became affordable
and UNIX systems dominated in
multi-user/multi-programming
computer environments, VMs be-
came more of a research curiosity. As
a result, Popek and Goldberg’s for-
malization work and its relevance to
information security would remain
unexplored for decades.

In the mid "90s and the early start

www.computer.org/security/ |

Attack Trends

of this century, a new wave of virtu-
alization ideas gained steam, driven
both by the complexity and mount-
ing operational costs of managing
the large number of computers need-
ed for massive parallel processing,
and to meet the computing
requirements of modern, Internet-
borne business organizations. IT-
centric organizations that calculated
the total cost of ownership identified
power consumption, asset manage-
ment and inventory control, and
physical space requirements as fac-
tors more relevant to the resulting
bottom line than the cost per pro-
cessing or storage unit. Thus, server
consolidation projects through vir-
tualization technology have become
increasingly attractive.

Additionally, the demand for
software development environments
to support multiplatform interoper-
ability and portability also high-
lighted the advantages of applying
virtualization concepts to high-level
programming languages, such as Sun
Microsystems’ Java and Microsoft’s
Common Language Runtime (CLR)
forthe INET framework. The virtu-
alization craze is back and we should

IEEE SECURITY & PRIVACY

69

70

Attack Trends

analyze its potential impact on infor-
mation security.

The Truman Show

The idea of using VMs to mitigate and
contain information security threats
isn’t new. MIT professors Stuart Mad-
nick and John J. Donovan identified
the potential use of VM for security
purposes as part of research conducted
for Project MAC in 1973.° In it, they
characterized system security failures
as a subset of reliability failures and
provided a mostly theoretical proba-
bilistic analysis comparing non-virtual
and VM environments.

However, their analysis didn’t
model purposely malicious pro-
grams (or malicious VM) or profile
potential attackers. Although a bit
naive for today’s threat landscape,
their work is possibly the first analyt-
ical approach to security using
VMs—it outlined VM advantages
and suggested redundancy and inde-
pendent hardware crosschecks to ad-
dress weaknesses.

The possibility of achieving ef-
fective isolation between users (and
their programs) using VMs seems
promising to the security field, but
the exceptions in Popek and Gold-
berg’s third requirement hint at the
potential of covert channels based
on timing. Xerox PARC’ Butler
Lampson pointed this out in a note
that appeared in Communications of
the ACM in 1973” and MITRE’
Steven Lipner followed up at the
ACM Symposium on Operating
Systems Principles in 1975.% In his
note, Lipner proposed addressing
the issue of covert channels due to
measurable timing differences
between virtualized and non-
virtualized environments by im-
plementing the notion of a
“virtual time,” which would iso-
late each VM’ perception of the
“real time” of the underlying
hardware or of other VMs.
Nonetheless, Lipner’s conclusions
were discouraging:

“Closing the covert channels

seems at a minimum very dif-
ficult, and may very well be
impossible in a system where
physical resources are shared.
Ad hoc measures can proba-
bly be of value here.”

Setting aside possible confine-
ment problems due to covert chan-
nels and the limitations imposed by
the constraint of sharing finite
physical resources, the question of
whether a secure VMM can be built
using low-cost modern hardware
still seems highly relevant.

John Scott Robin, a researcher
with the US Air Force, and Cynthia
Irvine, at the US Navy’s Naval Post-
graduate School, sought to find an
answer to this question in 2000.
Their research studied the feasibility
of implementing a secure VMM
using the Intel Pentium processor
and resulted in the identification of
17 instructions (out of the 250 ana-
lyzed) that are sensitive but not priv-
ileged, and therefore make the Intel
Pentium family of processors fail the
criteria for virtualizable ISAs that
Popek and Goldberg set 36 years
earlier (see www.nps.navy.mil/cs/
facultypages/faculty/irvine/Publi-
cations/Publications2000/VMM_
Usenix00.pdf).

Although the Intel Pentium fam-
ily (IA-32) isn'’t “truly” virtualizable,
various techniques are available to
build virtual environments reason-
ably close to the ideal of what a VM
system should be. Obviously, VMM
software running on current Intel
Pentium processors must handle the
problem of an ISA that has sensitive
but unprivileged instructions and
the diverse universe of I/O devices
and device drivers of modern com-
puters and OSs.

The security-conscious reader
might already be asking whether the
architectural foundations and the im-
plementation of these virtualization
technologies are good enough to
withstand a determined attacker or if
their weaknesses could turn into se-
curity incidents. Let’s examine this

IEEE SECURITY & PRIVACY B JULY/AUGUST 2007

more closely by way of a modern al-
legory. The movie The Truman Show
(www.imdb.com/title/tt0120
382/) provides a suitable setting. In i,
Truman Burbank, the protagonist,
discovers that his life is actually a TV
show and that the entire universe
known to him is simply a carefully
prepared studio set. After realizing
this, he embarks on a voyage to break
out from the virtual world and into
the “real world” outside the TV set.
In the last issue of IEEE S&P,
Matthew Carpenter, Tom Liston,
and Ed Skoudis provided an account
of the current techniques used to
detect the presence of a VM envi-
ronment and the possible counter-
measures to keep a hypothetical
threat source (here, “Truman”) un-
knowingly happy within the con-
fines of his VM environment
(“Hiding Virtualization from At-
tackers and Malware,” vol. 5, no. 3,
pp. 62-65). They showed the most
common techniques for VM detec-
tion among the offensive computing
crowd. Not surprisingly, these were
directly related either to the Intel
Pentium processor’s failure to pro-
vide an instruction set that supports
true virtualization (by exploiting
unprivileged sensitive instructions)
or to implementation problems
when handling I/0O instructions and
devices—something Popek and
Goldberg identified as a troublesome
area more than three decades ago.

Haxor The Matrix/

To complement the analysis from
Carpenter, Liston, and Skoudis, we
need to assess the possibilities that an
attacker would succeed with any of
these threats:

* subvert the VMM to escape the
VM environment and gain control
of the computer’ resources;

* subvert the VMM to directly or
indirectly alter other VMs running
concurrently; or

* confine a non-virtualized OS to a
VM using virtualization technol-
ogy, thus gaining and maintaining

control of the computers re-
sources and remaining undetected
to the formerly “real” OS.

A handtul of recently disclosed
vulnerabilities can give us some in-
sight, but the origins of offensive
anti-VM analysis date back to the
1970s when a team at IBM at-
tempted penetration of a VM/370
system.” The group reported success:
they seemingly completely pene-
trated the system by exploiting a se-
ries of implementation flaws mostly
concentrated in the handling of I/O
facilities, which led to the realization
of the first two threats on the list.

In hindsight, the methodology
the group developed for the exer-
cise, their practical approach to the
problem, and their clever selection
of attacks seem remarkably accurate.
The root causes that allowed suc-
cessful penetration might not be sur-
prising given the current threat
landscape and computing environ-
ments, but they continue to be valid
more than 30 years later. In fact, at
this year’s CanSecWest Applied Se-
curity Conference in Vancouver,
Canada, Travis Ormandy, a security
researcher at Google, unveiled seri-
ous implementation flaws that can
lead to the security compromise of
all the most popular software pack-
ages that provide virtualization capa-
bilities today (http://taviso.decsystem.
org/virtsec.pdf).

In 2006, researchers from Mi-
crosoft and the University of Michi-
gan demonstrated that the threat of
malware that use virtualization tech-
nology to defeat detection and an-
alysis is a reality'”
of the third threat on our list is also

and that realization

possible. In the same year, security
researchers Joanna Rutkoswka and
Dino Dai Zovi showed similar tech-
niques with malware that uses the
technology to support hardware vir-
tualization in the new families of
processors from AMD and Intel re-
spectively (https://www.blackhat.
com/presentations/bh-usa-06/BH
-US-06-Rutkowska.pdfand https://

More information on virtual machines

comprehensive view of virtual machines (VMs) and taxonomy of VM architectures can be
found in the preface to Jim Smith and Ravi Nair’s Virtual Machines: Versatile Platforms for

Attack Trends

Systems and Processes, available online at www.cs.uiuc.edu/homes/kingst/spring2007/cs598stk/

papers/smith01.pdf. Additionally, a comprehensive survey of virtualization technologies cur-
rently in use is available at www.kernelthread.com/publications/virtualization/.

www.blackhat.com/presentations/
bh-usa-06/BH-US-06-Zovi.pdf).
Their work demonstrates that the
realization of the third threat in our
list is possible as well.

P ast and present experiences
point to a seemingly invariant
conclusion: virtualization continues
to be a promising technology to ad-
dress information security needs, but
it will also continue to fall short of
delivering on the ideal of a robust,
trustworthy, and mythically flawless
computing environment.

As the trend toward virtualization
accelerates and the technology
becomes available to larger user
communities at lower costs, the in-
formation security community will
benefit from the additional hands-on
experience to improve security tools
and techniques. But malicious at-
tackers certainly won't be spectators
in the advancements of those secu-
rity toolkits. Assecurity practitioners,
it’s paramount that we adopt a practi-
cal and realistic approach to the new
wave of virtualization, that we assess
the risks with precision, and help
align expectations accordingly. O

References

1. EJ. Corbaté et al., The Compatible
Time-Sharing System, A Program-
mer’s Guide, MIT Press, 1963.

2. RJ. Adair et al, “A Virtual
Machine System for the 360/40,”
IBM Corporation, Cambridge Scientific
Center Report 320-2007, May 1966.

3. E.C. Hendricks and T.C. Hart-
mann, “Evolution of a Virtual
Machine Subsystem,” IBM Systens
J., vol. 18, no. 1, 1979, pp. 111-142.

www.computer.org/security/ B |[EEE SECURITY & PRIVACY

4. R J. Creasy, “The Origin of the
VM/370 Time-Sharing System,”
IBM J. Research and Development,
vol. 25 no. 5, 1981, pp. 483—490.

5. GJ. Popek and R.P. Goldberg,
“Formal Requirements for Virtu-
alizable Third-Generation Archi-
tectures,” Comm. ACM, vol. 17,
no. 7, 1974, pp. 412—421.

6. S.E. Madnick and].J. Donovan,
“Application and Analysis of the
Virtual Machine Approach to
Information System Security and
Isolation,” Proc. Workshop on Virtual
Computer Systems, ACM Press,
1973, pp. 210-224.

7. B.W. Lampson, “A Note on the
Confinement Problem,” Comm.
ACM, vol. 16 no. 10, 1973, pp.
613-615.

8. S.B. Lipner, “A Comment on the
Confinement Problem,” Proc. 5th
ACM Symp. Operating Systems Prin-
ciples (SOSP 75), ACM Press, 1975,
pp. 192-196.

9. C.R. Attanasio, P.W. Markstein,
and R J. Phillips, “Penetrating an
Operating System: A Study of
VM/370 Integrity,” IBM Systems
J.,vol. 15 no. 1, 1976, pp. 102-116.

10. S.T. King et al. “SubVirt: Imple-
menting Malware with Virtual
Machines,” Proc. 2006 IEEE Symp.
Security and Privacy, 2006, IEEE CS
Press, pp. 314-327.

Ivan Arce is chief technology officer and
cofounder of Core Security Technologies,
an information security company based
in Boston. Previously, he worked as vice
president of research and development for
a computer telephony integration com-
pany and as information security consul-
tant and software developer for various
government agencies and financial and
telecommunications companies. Contact
him at ivan.arce@coresecurity.com.

71

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0049004500450045002000580070006c006f0072006500200073007000650063007300200066006f0072002000440069007300740069006c006c0065007200200036002e0020004d0056>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

