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Abstract: Multimedia content is uploaded, tagged and recommended by userkatifarative systems such a&suTube
andFlickr. These systems can be represented as tagged-graphs, wheseowedspond to users and tagged-
links to recommendations. In this paper we analyze the online computatioseofrankings associated to
a set of tags, called facet A simple approach to faceted ranking is to apply an algorithm that calculates
a measure of node centrality, say, PageRank, to a subgraph astwedttehe given facet. This solution,
however, is not feasible fasnline computation. We propose an alternative solution: (i) first, a ranking for
each tag is computeafflineon the basis of tag-related subgraphs; (ii) then, a faceted order isageth@nline
by merging rankings corresponding to all the tags in the facet. Baseahpinieal observations, we show that
step (i) is scalable. We also present efficient algorithms for step (ii),iwdmie evaluated by comparing their
results to those produced by the direct calculation of node centrality loasthe facet-dependent graph.

1 INTRODUCTION M = {(A, songl{blues) V ={(A, song2)
(B, song2{blues,jaz¥) (B, song4)
(C, song3{blues) (B, songb)
In collaborative tagging systems, users assign key- (C, song4jazz}) (A, song3)
words ortagsto their uploaded content or bookmarks, (D, song5{blues}) (A, song4)
in order to improve future navigation, filtering or (D, song6{rock}) } (C, song6)
searching (Marlow et al., 2006). These systems gen- ,
erate a categorization of content commonly known as A Duesiazz blues

afolksonomy
Two well-known collaborative tagging systems

for multimedia content ar&ouTube! and Flickr 2, blues jazz
. . R uesjazz rock

which are analyzed in this paper. These systems

can be represented as tagged-graphs such as the one

shown in Figure 1. In this example, there are four c

usersA, B, CandD. M is the set of contents and as-

sociated tags. For example, u@has uploaded one Figure 1: Example of construction of a tagg_ed-graph from

multimedia contentsong2 to which it has associated 2 Set of contentsl and a set of recommendatiovis

the tag-sefblues,jazz. V is the set of recommenda-

tions; e.g., useA recommendsong2of userB, which

is represented in the graph as an arrow fraro B which we call afacet Some applications dhaceted

with tagsblues,jazz (i.e., tag-associated) rankings are: (i) searching for
Users can be ranked in relation to a set of tags, content through navigation of the best users with re-

spect to a facet; (ii) measuring reputation of users by

Lhttp:/iwww.youtube.com/ listing their best rankings for different tags or tag-sets.
2http:/Avww.flickr.com/ Both applications lead to detection of field experts and



web personalization. all-tags-queries) because this is the most used logi-

The order or ranking can be determined by a cen- cal combination in information retrieval (Christopher,
trality measure, such as PageRank (Page et al., 19982008).
Langville and Meyer, 2003), applied to a recommen- ~ The remaining of the paper is organized as fol-
dation graph. Given a facet, a straightforward solu- lows. We discuss prior works and their limitations
tion is to compute the centrality measure based on anin Sect. 2. In Sect. 3 we explore two real examples
appropriate facet-dependent subgraph of the recom-of tagged-graphs. In particular, we analyze several
mendation graph. Howevegnline computation of  important characteristics of these graphs, such as the
the centrality measure is unfeasible because its highscale-free behavior of the node indegree and assorta-
time complexity, even for small facets with two or tiveness of the embedded recommendation graph (see
three tags. Moreover, the offline computation of the Sect. 3.1). Several rank-merging algorithms are in-
centrality measure for each facet is also unfeasible be-troduced in Sect. 4 and their scalability is analyzed in
cause the number of possible facets is exponential inSect. 4.1. We discuss experimental results in Sect. 5
the number of tags. Therefore, alternative solutions and we conclude with some final remarks and possi-
must be looked for. A simple solution is to use a ble directions of future work in Sect. 6.
general ranking computed offline, which is then fil-
tered online for each facet-related query. The use of
a single ranking of web pages or users within folk- d2 RELATED WORK
sonomies has the disadvantage that the best ranke
ones are those having the highest centrality in a global
ranking which is facet-independent. In the informa-
tion retrieval case, this implies that the returned re-
sults are ordered in a way which does not take into
account the focus on the searched topic. This prob-
lem is calledtopic drift (Richardson and Domingos,
2002).

Theory and implementation concepts used in
this work for PageRank centrality are based on
the comprehensive survey in (Langville and Meyer,
2003). Basic topic-sensitive PageRank analysis was
attempted biasing the general PageRank equation to
special subsets of web pages in (Al-Saffar and Heile-
man, 2007), and using a predefined set of categories

In this paper we propose a solution to the prob- j, javeliwala, 2002). Although encouraging results
lem of topic drift in faceted rankings which is based were obtained in both works, they suffer from the

on PageRank as centrality measure. Our approachyimitation of a fixed number of topics biasing the
fO”O.WS a two-step p_rocedure: (i) a ranking for each rankings. In other variations of personalized PageR-
tag is computed offline on the basis of a tag-related ank, the ranking was augmented with weights based
S“bgfaphi (ii)_a faceted order js generated on!ine bY on usage (Eirinaki and Vazirgiannis, 2005) and on
merging rankings corresponding to all tags in the ,ccesstime length and frequency by previous users
facet. (Guo et al., 2007). However, these approaches built
The fundamental assumption is that step (i) in this 3 unique PageRank which was neither user dependent
procedure can be computed with an acceptable over-pnor query dependent.
head which depends on the size of the dataset. This (Hotho et al., 2006) adapted PageRank to work
hypothesis is validated by two empirical observations. on g tripartite graph of users, tags and resources cor-
On one hand, in the studied tagged-graphslakr responding to a folksonomy. They also developed
and YouTube most of _the tags are associated to very 3 form of topic-biasing on the modified PageRank,
small subgraphs, while only a small number of tags pyt the generation of a faceted ranking implied a new

have large associated subgraphs (see Sect. 3). On thgomputation of the adapted algorithm on the graph for
other hand, the mean number of tags per edge is finiteech new facet.

and small as explained in Sect. 4.1. Recent advances on collaborative tagging systems
The problem then becomes to findgaodandeffi- include the extraction of more structured metadata

cientalgorithm to merge several rankings in step (i), from these systems (Al-Khalifa et al., 2007) and the

and we devote Sect. 4 to that task. Tigeodness” introduction of groups of tagged resources with their

of a merging algorithm is measured by comparing its appropriate tagging by users that carries new valuable

results to those produced by the naive approach ofinformation about the structure of Web content (Abel

applying the PageRank algorithm on facet-dependentet al., 2008).

graphs (see Sect. 5). Théficiencyof an algorithm is There is a broad literature on the automatic dis-

evaluated by means of its time complexity. covery of topics of interest, e.g., (Li et al., 2008). In
We concentrate our effort on facets that corre- this paper, however, we focus on user-selected facets

spond to thelogical conjunctionof tags (natch- (topics).



There has also been some work done on facetedgestedtagging systemFlickr must be considered a

ranking of web pages. For example, the approach of
(DeLong et al., 2006) involves the construction of a
larger multigraph using the hyperlink graph with each

blind tagging system.
In our first example the content is multimedia in
the form of favorite videos recommended by users.

node corresponding to a pair webpage-concept andwe collected information from the servicduTube

each edge to a hyperlink associated with a concept.
Although (DeLong et al., 2006) obtain good ranking
results for single-keyword facets, they do not support
multi-keyword queries.

Query-dependent PageRank calculation was intro-
duced in (Richardson and Domingos, 2002) to extract
a weighted probability per keyword for each web-

page. These probabilities are summed up to gener-

using the public API crawling 185,414 edges and
50,949 nodes in Breadth-First Search (BFS) order
starting from the popular usgel5m that had videos
among in the top twenty rated ones during April 2008.
We only considered nodes with indegree greater than
one, because they are the relevant nodes to PageR-
ank. ¢From this information, we constructed a full
tagged-grapl®. We have also constructed subgraphs

ate a query-dependent result. They also show thatby preserving only those edges that contain a given

this faceted ranking has, for thousands of keywords,
computation and storage requirements that are only
approximately 100-200 times greater than that of a
single query-independent PageRank. As we show
in Sect. 4.1, theffline phase of our facet-dependent
ranking algorithms has similar time complexity.

Scalability issues were tackled by (Jeh and
Widom, 2002) criticizing offline computation of mul-
tiple PageRank vectors for each possible query and
preferring another more efficient dynamic program-
ming algorithm for online calculation of the faceted
rankings based on offline computation of basis vec-
tors. They found that their algorithm scales well with
the size of the biasing page set.

As in (Jeh and Widom, 2002) we also avoid com-
puting offline the rankings corresponding to all pos-
sible facets and our solution requires only the offline
computation of a ranking per tag. A faceted ranking is
generated online by adequately merging the rankings
of the corresponding tags. Sect. 4 deals with different
approaches to the merging step.

3 TAGGED-GRAPHS

In this section, we present two examples of collab-
orative tagging system&,ouTubeand Flickr, where

content is tagged and recommendations are made. Al-

though these systems actually rank content, to our
knowledge, no use of graph-based faceted ranking is
made.

The taxonomy of tagging systems in (Marlow
et al., 2006) allows us to classif§ouTubeandFlickr
in the following ways: regarding the tagging rights,
both areself-taggingsystems; with respect to the ag-
gregation model, they asetsystems; concerning the
object-type, they are calledon-textualsystems; in

what respects to the source of material, they are clas-

sified asuser-contributed finally, regarding tagging
support, whileYouTubecan be classified as sug-

tag (e.g.,.G(musig and G(funny) corresponding to
the tagsmusicand funny, respectively), any tag in

a set (e.g.,G(musicv funny) or all tags in a set
(e.g.,G(musicA funny)). Table 1 presents the num-
ber of nodes and edges of each of these graphs. We
must note that mandatory categorical tags such as
Entertainment Sportsor Music always capitalized,
were removed in order to include only tags inserted
by users.

Table 1: Sizes oYouTub& graph and some of its subgraphs

Graph | nodes| edges
G 50,949 | 185,414
G(musicv funny) 4,990 | 13,662
G(musig 2,650| 5,046
G(funny) 2,803 6,289
G(musicA funny) 169 188

In our second example the content are pho-
tographs and the recommendations are in the form of
favorite photod. We collected information from the
serviceFlickr by means of the public API, crawling
225,650 edges and 30,974 nodes in BFS order start-
ing from the popular usgunku-newcleuand includ-
ing only nodes with indegree grater than one. The full
tagged-graplG and the sample subgraptgbluev
flower), G(blue), G(flower) andG(blueA flower)
were constructed. The number of nodes and edges of
these graphs are shown in Table 2.

3.1 Graph analysis

We have verified that node indegree, in b¥tduTube
and Flickr graphs, is characterized by a power-law
distribution: P(k) ~ k=Y, with 2 < y < 3. Experience
with Internet related graphs shows that the power-law

30nly the first fifty favorites photos of each user were
retrieved.



Table 2: Sizes oFlickr’s graph and some of its subgraphs

inter section, which turn out to too costly for online
queries. Indeed, their computation requires the ex-

Graph | nodes| edges traction of a subgraph which might be very large in a
G 30,974 225,650 large graph and the calculation of the corresponding
g%g:ue)\/ flower) 2/71‘112 12,512 PageRank vector. However, they serve as a basis of
ue 7 ‘ : o :
G( flowen 5771 6.370 comparison for more efficient algorithms.
G(bluen flower) 280 327
Edge-intersection. Given a set of tags, a ranking is
calculated by computing the centrality measure of the
" subgraph corresponding to the recommendation edges

which includeall the tags of a certain facet. The
main idea is to find those edges having all tags and
then compute PageRank only on this subgraph which
yields therelevant nodes

*-
blue AND flower &
blue OR flower ---#---

indegree of in-neighbors

Node-intersection. Consider the example given in
Fig. 1 under the querpluesa rock. According to

the edge-inter section algorithm, there is no node in
the graph satisfying the query. However, it is reason-
able to return nod® as a response to such search.
In order to take into account this case, we devised
another algorithm calledode-intersection. In this
case, the union of all edge recommendations per tag
is used when computing the PageRank, but only those
distribution of the indegree does not change signifi- nodesinvolved in recommendations fall tags are
cantly as the graph grows and, hence, the probabil- kept (hencenode-intersection This is another pos-

ity of finding a node with an arbitrary degree even- sible way to obtain a subgraph having only a specific
tually becomes non-zero (Pastor-Satorras and Vespig-facet-related information.

nani, 2004).

Since recommendation lists are made by individ-
ual users, node outdegree does not show the sam
kind of scale-free behavior that node indegree. On the
contrary, each user recommends only 20 to 30 other
users on average. Moreover, since node outdegree isSingle-ranking. A simple online faceted ranking
mostly controlled byhumanusers, we do not expect consists of a monolithic ranking of the full graph,
its average to change significantly as the graph grows.without any consideration of tags, which is then fil-

In YouTubés graph there is no clear correlation of tered to exclude those nodes that are not related to all
indegree of in-neighbors with node indegree, but in tags in the facet.

Flickr's graph there is a slight assortativeness (New-

man, 2002), indicating a biased preference of nodes\yinners-intersection  In this case, as well as in the
with high indegree for nodes with high indegree (see next two algorithms, theffline phaseonsists of run-
Figure 2). ning PageRank on each tag-related subgraph (such as
G(musig) and storing only the best-ranked users.
The choice of an adequate numbveis application-
dependent. For this paper, we have arbitrarily chosen
w = 128. We shall show that reasonably good results
are obtained even for this small valuewf Given a
conjunction-of-tags facet, a new graph is constructed
by considering only thev “winners” corresponding

0.1

0.1 1 10 100 1000
vertex indegree

Figure 2: Binned correlation of indegree of in-neighbors
with indegree

In the following paragraphs, we describe several
efficient algorithms for the online computation of
‘?acet—dependent rankings.

4 FACETED RANKING

Given a setM of tagged content, a s&t of fa-
vorite recommendations and a tag-set or fagethe
faceted ranking probleroonsists on finding the rank-

Ing of USErs according tq facét The naive solution 4We have observed that as the graph grows the relative
is to find a graph associated to the facet and apply frequency of tags usage converges. Similar behavior was
the PageRank algorithm to it. This approach leads to observed for particular resources by other authors (Golder
two algorithms, calleddge-inter section and node- and Huberman, 2006).



to each tag and the edges connecting them. A facet-the number of edges of the graph. Sipcebability-
related ranking is then calculated by means of the product, rank-sum andwinner s-inter section algo-
PageRank algorithm applied to this reduced graph. rithms require the offline computation of PageRank
for each tag-related subgraph, it is clear that, if the
Probability-product. Let us recall that PageRank ~2verage number of tags per edge is constant or grows
is based on the idea of a random web-surfer and nodes/€ry slowly as the graph grows, then tidline phase
are ranked according to the estimated stationary prob-©f these algorithms is scalable, i.e., linear on the num-
ability of such a surfer being at each node at any given Per of edges of the complete tagged-graph. Fig. 3
time. This basic concept together with the product Shows that the distribution of tags per edge falls
rule for the joint probability of independent events 9uickly, having a mean of .96 tags per edge for
motivated theprobability-product algorithm. This  the YouTubetagged-graph and 137 for the Flickr
algorithm pre-computes ranking for each tag-related @9ged-graph. These aret heavy-tailed distribu-
subgraph. A ranking associated with a conjunction- tions and, since tags are manually added to each up-

of-tags facet is then calculatezhline by multiply- ~ l0aded content, we do not expect the average num-
ing, on a node-by-node basis, the probabilities cor- ber of tags per recommendation to increase signifi-
responding to each tag in the facet. cantly as the graph grows. In other words, Fig. 3 val-

idates the hypothesis on which the scalability of the
offline phaseof the probability-product, rank-sum

Rank-sum.  Consider a recommendation gragh andwinner s-inter section algorithms is based.

larger than that in Fig. 1 and the quesiuesh jazz
Assume that the PageRank of the top three nodes in
the rankings corresponding the subgra@{blues
andG(jazz are as given in Table 3. Ignoring other 10000
nodes, the ranking given by tipeobability-product
rule isA, B andC. However, it may be argued that
nodeB shows a better equilibrium of PageRank val-
ues than nodd. Intuitively, one may feel inclined

100000

" YouTube —+—
Flickr ----»-—-

1000 £

100

# edges

to rank B over S given the values in the table. In 0r

order to follow this intuition, we devised theank- WL

sum algorithm which is also intended to avadidpic

drift within a queried facet, that is, any tag prevailing o1 o e 000
over the others. Given a conjunction-of-tags facet, the #tags

rank-sum algorithm adds-up the ranking position of
nodes in each tag-related subgraph. The correspond-
ing facet-related ranking is calculated by ordering the
resulting sums (see Table 3). The time complexity of thedge-inter section al-
gorithm can be estimated by decomposing it into three

Table 3:Probability-product vs. rank-sum in an example ~ phases. The first step is to find the graph associated
to a facet withk tags, which take® (k- Etag), Where

Figure 3: The distribution of number of tags per edge.

Node [ G(blues | G(jazz | Prob.-pr.]| Rank-sum Etag is the number of edges of the largest tag-related
A 0.75 0.04 0.03 4 subgraph. The second step is to apply the PageR-
B 0.1 0.1 0.01 3 ank algorithm to the resulting graph, takiogE+acet)

c 0.01 0.05 0.005 S time, whereEfacet is the number of edges of the

The first two columns show the probability of each node ac- graph and, clearlyEracet < K- Etag. Finally, the list
cording to PageRank on the corresponding tag-related sub-Of Nfacet NOdes of the graph must be ordered, taking
graph. O(Nsacetlog(Nracet)). We have found thallsacet is, in

general, much smaller thdfy cet (See Tables 1-2).

For the node-intersection algorithm, the time

4.1 Scalability Analysis complexity is the same that in the former case, but

Efacet andNsacet are usually larger because the asso-
As noticed in (Langville and Meyer, 2003), the num- ciated facet-dependent graph includes more edges.
ber of iterations of PageRank is fixed when the toler- In the case ofingle-ranking, theonlinecomputa-
ated error and other parameters are fixed. As each it-tion takesO(k- Neag) time, whereNiag is the maximum
eration consists of a sparse adjacency matrix multipli- number nodes of a tag-related subgraph. Indeed, as-
cation, the time complexity of PageRank is linear on suming that there is an ordered list of nodes related to



each tag, its (ordered) intersection can be computedsimilarity results ofOSimwere averaged for log-log

in time that grows linearly with the sum of the lengths ranges. Observe that darker tones correspond to val-

of the lists. ues closerto 1, i.e., more similar results. White spaces
The winners-intersection, probability-product correspond to cases for which there are no data, e.g.,

andrank-sum algorithms have the same time com- whenever thg coordinate is greater than intersection

plexity, O(k), because they only consider the top-  size.

ranked users of each tag in the facet and, hence, their

complexity depends only on the number of tags (i.e,  Table 4:YouTube Comparison of ranking algorithms

the number of operations for each tag is fixed by the o _ _
Average similarity to edge-inter section

constantv).
Algorithm OSIMKSim
top 8 top 16 top 32
Single-ranking | 0.080.48 0.100.50 0.130.51
5 EXPERIMENTAL RESULTS Winners-inters.| 0.060.48 0.040.49 0.040.50
Prob.-product | 0.72|0.71 0.80/0.78 0.86/0.83
. . . Rank-sum 0.73/0.72 0.81/0.79 0.86/0.84
In this section, we compare the behavior of the
algorithms presented in Sect. 4. As a basis of com- Average similarity to node-inter section
parison we use two algorlthms whose online compu- Algorithm OSImMKSIm
tation is unfeasible, but which are reasonably good top 8 top 16 top 32
standardsedge-inter section andnode-inter section. Single-ranking | 0.310.53 0.340.55 0.3%0.56
In order to quantify the “distance” between the  Winners-inters.| 0.100.49 0.080.50 0.080.51
results given by two different algorithms, we use  Prob.-product | 0.42/0.59 052|066 0.67/0.74
two ranking similarity measure€Sim(Haveliwala, Rank-sum 041]058 050064 0.67]0.72

2002) andKkSim (Kendall, 1938; Haveliwala, 2002).
The first measureDSimR;, Ry) indicates the degree
of overlap between the tapelements of ranking®;

. Table 5:Flickr: Comparison of ranking algorithms
andRy, i.e., the number of common nodes. The sec- P gag

ond measurel,(Sirr(Rl, Rz) is a variant of Kendall's Average similarity to edge-inter section
distance that considers the relative orderings, i.e., =Ajgorithm OSImKSim

counts how many inversions are in a fixed top set. In top 8 top 16 top 32
both cases, values closer to 0 mean that the results are™ Single-ranking | 0.070.48 0.090.49 0.1]0.50
not similar and closer to 1 mean the opposite. Winners-inters.| 0.300.53 0.230.53 0.110.51

We have run our algorithms on all facets of  Prob-product | 057]0.63 0.64/066 0.72/0.71
tag pairs extracted from the 100 most used fags —Rank-sum 0571063 064|067 072/0.72
in each of the graphsyouTubeand Flickr. For
each tag pair, the proposed merging algorithms

Aver age similarity to node-inter section

(single-ranking, probability-product, rank-sum Algorithm top 8 Ost'gqé)Klsém top 32
and winners-intersection) were compared to the Single-ranking | 0.170.50 0.2]0.561 0.270.53
reference algorithmse@ige-intersection and node- Winners-inters.| 0.190.50 0.190.52 0.180.53
inter section) using OSimand KSimto measure the Prob.-product | 0.32/0.55 0.42/0.59 0.56|0.67
rankings’ similarity. Rank-sum 0.31/0.53 0.41|0.58 0.56|0.66

Tables 4-5 present a summary of the comparisons,
where we display averaged similarities for different
sizes of top-sets of ranked users. Figures 4 and 5 show . .
a more detailed summary of results for @8immet- ~ 2-1  Discussion
ric in the case of th&ouTubegraph. We do not in- ) )
clude gray-scale figures correspondingHlickr be- ~ As can be appreciated from Tables 4-5 and Figures 4-
cause they are very similar. Theaxis in the figures 5. thesingle-ranking algorithm gave the worst results
corresponds to the number of nodes resulting from IN Most cases. _ _ o
the basis of comparison algorithmxge-inter section The winners-intersection algorithm, which is
or node-inter section) and they-axis to the top num- ~ based on retaining only the 128 top-ranked users
bern of nodes used to compute the similarities. The for each tag, gives worse results tharobability-

product and rank-sum, even for smaller intersec-
5Some tags likeyou, video or youtubewhich give no tions. This fact is explained by the relevance of
information were removed from the experiment. a large number of recommendations of low-ranked



users when computing the PageRank in bottetige- ating structure from disorder: using folksonomies to

intersection and thenode-intersection cases. Also create semantic metadata.the 3rd WEBIST
note that thewinners-intersection approach gave Al-Saffar, S. and Heileman, G. (2007). Experimental
better results foFlickr than for YouTube A possi- Bounds on the Usefulness of Personalized and Topic-

ble cause is the assortativenes§ltifkr’s graph (see Sensitive PageRank. Proc. of the IEEE/WIC/ACM
International Conference on Web Intelligengages

Sect. 3.1). Indeed, since assortativeness implies that 671-675.
users with many recommendations are preferentially
recommended by users with also many recommenda-
tlons’. the relevance O.f IOW-rankeq users in the com- DelLong, C., Mane, S., and Srivastava, J. (2006). Concept-
putation of the (_:gntrallty measure is lower. Aware Ranking: Teaching an Old Graph New Moves.
The probability-product and rank-sum algo- icdmw 0:80-88.

rithms exhibit a similar behavior and clearly out- gqq.0-Matic (2008). http://egg-o-matic.itba.edu.ar/.
perform other ranking algorithms when considering Eirinaki, M. and Vazirgiannis, M. (2005).

Christopher (2008)Introduction to Information Retrieval
Cambridge University Press.

Usage-Based

the similarity to theedge-inter section and thenode- PageRank for Web Personalization. IBDM '05:

inter section standards. Proc. of the Fifth IEEE International Conference on
We should note that we have run experiments with Data Mining pages 130-137.

larger values ofv, the number of “winners” which are  Golder, S. and Huberman, B. A. (2006). Usage patterns of

stored for each tag, but the behavior of the algorithms collaborative tagging system3ournal of Information

Science32(2):198-208.

Guo, Y. Z., Ramamohanarao, K., and Park, L. A. F.
(2007). Personalized PageRank for Web Page Pre-
diction Based on Access Time-Length and Frequency.

6 SUMMARY In Proc. of the IEEE/WIC/ACM International Confer-

ence on Web Intelligencpages 687—690.

Haveliwala, T. H. (2002). Topic-sensitive PageRank. In
Proc. of the Eleventh International World Wide Web

was similar.

We have proposed different algorithms for merg-

ing tag-related rankings into complete faceted- Conference
rankings of users in collaborat.ive tagging §ystems. Hotho, A., &schke, R.. Schmitz, C.. and Stumme, G.
In particular, two of our algorithmsprobability- (2006).  Information Retrieval in Folksonomies:
product andrank-sum are feasible for online com- Search and Ranking. Proc. of the 3rd European Se-
putation and give results comparable to those of two mantic Web Conferenceolume 4011 of NCS pages
reasonable, though computationally costly, standards. ~ 411-426.

A prototypic application which uses theank- Jeh, G. and Widom_, J. (2002). Scaling pgrson_alized web
sum and the probability-product algorithms, is search. Technical report, Stanford University.

available online (Egg-O-Matic, 2008). Kendall, M. G. (1938). A New Measure of Rank Correla-

A matter of future research is the possibility of re- tion. Biometrika 30(1/2):81-93, .
ducing the the complexity of the proposed algorithms L@ngville, A. N. and Meyer, C. D. (2003). Survey: Deeper

by first clustering the tags into topics of interest as Inside PageRanknternet Mathematicsl (3). )
done by (Li et al., 2008). Li, X., Guo, L., and Zhao, Y. E. (2008). Tag-based social

interest discovery. pages 675-684. WWW.
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the best positions of a user even if the tags involved ticle, to read. InProc. of the seventeenth conference
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