Why Attacking Systems

Is a Good Idea

hen Dan Farmer, then of Silicon Graphics and
Wietse Venema of Eindhoven University of Tech-
nology, decided to publicly release the network scan-
ning tool SATAN (Security Administrator Tool for

Analyzing Networks) way back in 1995, he was fired

Guest Editors’ Introduction

for refusing to abandon a project that
could be used to attack systems. Nine
years later, every system administrator
uses network scanning tools as a regu-
lar part of their job. The logic behind
improving your network’s security
posture by breaking into it is no longer
questioned. (You can find Farmer and
Venema’s classic paper, “Improving
the Security of Your Site by Breaking
Into It,” at http://nsi.org/Library/
Compsec/farmer.txt.) In an ironic
twist of fate, administrators who don’t
use tools like Satan on a regular basis
now run the risk of being fired.

Yet when University of Calgary
professor John Aycock announced a
course on malware in Fall 2003, many
indignant security vendors (including
Trend Micro and Sophos) lined up to
criticize him. The vendors claim that
teaching students to understand and
create malicious code 1s a mistake—
that no good could come of such a
course. On the flip side, the justifica-
tion for such a course lies in the idea
that the motivations and mechanisms
of malicious code must be understood
in order to be properly combated.

So who’ right? Should we talk
about attacking systems? Should we
teach people how real attacks work?
Is ethical hacking an oxymoron?
Those are the sorts of questions that

PUBLISHED BY THE IEEE COMPUTER SOCIETY

motivate this special issue of IEEE
Security & Privacy.

A popular opinion?
The security and privacy research
community appears to be mostly
united on the issue of discussing at-
tacks in the open—the majority
opinion is that the only way to prop-
erly defend a system against attack is
to understand what attacks look like
as deeply and realistically as possible.
Unless we discuss attacks explic-
itly—publishing articles and books
about attacks, giving presentations
about system vulnerabilities, and so
on—we will be practicing security
by obscurity, or, worse yet, security
by merely crossing our fingers.

The fact 1s, system security is dif-
ficult to get right. Short of building
provably secure systems (which
some dream of, but is nonetheless an
activity that seems not to be done
with any regularity), a critical part of
security design and implementation
is subjecting a system to rigorous
analysis, including attack-based pen-
etration testing. Strangely, this means
that designers must understand what
makes attackers tick so as not to fall
prey to this kind of testing.

It’s important to emphasize that
none of the information we discuss in

u 1540-7993/04/$20.00 © 2004 IEEE ||

this special issue 1is

news to the mali-

cious hacker com-

munity. Some secu-

rity experts might

worry that revealing

the techniques de-

scribed in articles

like these will en-

courage more people
to try them out—an echo

of the worry that got Dan Farmer
fired. Perhaps this is true, but cyber-
criminals and hooligans have always
had better lines of communication
and information-sharing than the
good guys. We believe that security
professionals must understand and di-
gest this kind of information so that
they grasp the magnitude of the prob-
lem and begin to address it properly.

Article diversity

The articles in this issue represent the
broad range of ideas that come to
mind when scientists and engineers
think about attacking systems. Some
approach the problem by describing
technically sophisticated attacks, at-
tack patterns, and toolkits. Others
fret about the politics of security and
attacks, worrying that outlawing cer-
tain kinds of software will backfire.
Some describe methodologies for

IEEE SECURITY & PRIVACY

IVAN ARCE
Core Security
Technologies

GARY
McGRraw
Cigital

17

Attacking Systems

Security problems (CERT)

30
B CERT alerts

25 7| m Buffer overflows

0
1988 1989 1990 1991 1992 1993 1994 19951996 1997 1998 1999

Figure 1. A study modeled after University of California, Berkeley
professor David Wagner, who published a seminal paper on buffer
overflow detection that included determining the prevalence of buffer
overflow attacks.® The graph shows the number of major CERT alerts
caused by the simple buffer overflow (accounting for approximately
45 percent of major security problems in this data set).

)

breaking systems (on purpose) in order to evaluate them.
Others describe in gory detail the kinds of tools the adver-
sary regularly wields. All of these approaches are useful.

Describing attacks

The first article in our special issue, Jonathan Pincus and
Brandon Baker’s “Beyond Stack Smashing: Recent Ad-
vances in Exploiting Buffer Overruns,” deals with attacks
thatleverage a software security bug so common that it has
become almost hackneyed—the bufter overflow. The
root of this problem is one of memory management and
control flow, often involving structures that make up the
stack of a classic operating system. Although many popu-
lar works have examined the buffer overflow, most treat-
ments focus on simple stack-smashing attacks.'™ Pincus
and Baker go beyond this and demonstrate the depth and
breadth of the problem.

As Figure 1 illustrates, simple buffer overflows involving
stack smashing (a category of buffer overflow targeting a
machine’ execution stack mostly by rewriting return ad-
dress fields) were very prevalent before 2000. Since then,
more sophisticated bufter-overflow attacks have been
dreamt up and applied in the wild. Unless system designers
and defenders discuss these attacks in a deeply technical way,
we run the risk of creating overly simple defenses that don’t
work. A canary-based dynamic defense mechanism such as
Crispin Cowan’s original Stackguard (which attempts to
detect stack smashing by monitoring the return address just
as canaries were used to protect coal miners against methane
gas hundreds of years ago) might work against simple buffer
overflow attacks,* but can be defeated with impunity by ad-
vanced approaches involving trampolining. The simple idea
behind trampolining is to avoid detection by jumping over
the canary/detector in multiple hops. Only by describing

18 IEEE SECURITY & PRIVACY B JULY/AUGUST 2004

more sophisticated attacks in detail can we understand how
well our defenses work (or don't, as the case may be). Pincus
and Baker do us a great service by describing new families of
bufter-overflow exploit.

Pondering policy

In Carolyn Meinel’s more-political-than-technical article
“Cybercrime Treaty Could Chill Research,” she shares
her view of current international policy and its impact on
computer security. The very real threat of terrorism and
its broad impact on society impels us to look atliberty in a
new light. Is it true that if we outlaw guns only outlaws
will have guns? Have we been trading off too much indi-
vidual freedom for too little security? Where is the right
balance when it comes to computer security?

Though Meinels article reads more like an op-ed
piece than a technical article, we think it’s critical to con-
sider carefully these issues. All security practitioners have
a solemn duty to understand the social implications of
their work and act accordingly. If we don’t get involved in
these issues, who will?

Advocating red teams

One common approach to system security in the practi-
cal commercial world is known as red teaming. The basic
idea 1s to run attack exercises against a target system to
better understand security posture and procedures. As
Greg White and Art Conklin describe in “The Appro-
priate Use of Force-on-Force Cyberexercises,” this ap-
proach is so common as to be trivial to the warfighter. We
all have something to learn here.

There are many important issues to think about when
assessing the value of red teams. First and most important
is the idea of imposing a disciplined approach informed
by knowledge and clear tactics. All too often, red teaming
devolves into a feel-good exercise in which simple secu-
rity problems are discovered (the so-called low-hanging
fruit) and fixed; improved security is then declared even
though only the most rudimentary testing has taken
place. This kind of red teaming (almost undeserving of
the name) is not helpful.

By analogy, consider the simple black-box testing tools
application security vendors now promulgate, packaging
up rudimentary sets of black-box security tests to run
againsta target program. These tests do provide some mod-
icum of value, as they can demonstrate very clearly when a
software security situation is a total disaster. What they can’t
do is provide any reasonable understanding of risk. Even if
your system passes all the tests, it might still be broken.
These kinds of canned tests are, in effect, badness-ometers
(as opposed to security-meters) with the upper measure
being “unknown.” Red teaming must do more than this.

Red team exercises should be grounded in risk analysis
and can be designed to raise the bar slowly and methodi-
cally over time, improving a target’s security posture as they

unfold. All security testing should be designed to do this,
and White and Conklin describe a reasonable approach.

Understanding the attacker’s toolkit
Ironically, most of the people defending computer sys-
tems today are not programmers, but most of the people
attacking our systems are. This is not good. Software
practitioners must become more involved in computer
security so that our collective approach is less reactive and
more proactive—so we build things properly from the
beginning. A good way to get started thinking about soft-
ware security and software analysis is to think carefully
about an attacker’ toolkit.® At the apex of the common
set of tools—including decompilers, disassemblers, fault-
injection engines, kernel debuggers, payload collections,
coverage tools, and flow analysis tools—is the rootkit.

The typical end to most software attacks involves the in-
stallation of a rootkit, which provides a way for attackers to
return at will to machines that they now “own.” Thus,
rootkits, like the ones that Sandra Ring and Eric Cole discuss
in “Taking a Lesson from Stealthy Rootkits,” are extremely
powerful. Ultimately, attackers can use them to control
every aspect of a machine once the rootkit installs itself deep
in the heart of a system. Of course, this idea is not exactly
new. Ken Thompson of Bell Labs brilliantly exemplified the
impact of rootkits and similar malicious code on software in
his Turing Award-winning paper some 20 years ago.”

Rootkits can be run locally, or they might arrive via
some other vector, such as a worm or virus. Like other
types of malicious code, rootkits thrive on stealthiness.
They hide away from standard system observers, employ-
ing hooks, trampolines, and patches to get their work
done. They are all typically very small pieces of code and
are extremely tightly written.

Sophisticated rootkits run in such a way that other
programs that usually monitor machine behavior can’t
easily detect them. A rootkit usually provides access only
to people who know that it is running and available to ac-
cept commands. The original rootkits were Trojan’ed
files that had backdoors installed in them. These rootkits
replaced commonly accessed executable files such as ps
andnetstat. Because this technique involved changing
target executables’ size and makeup, original rootkits
could be detected in a straightforward manner using file-
integrity-checking software such as Tripwire.

Today’s rootkits are much more sophisticated. The
kernel rootkit, for one example, is very common. They
are installed as loadable modules or device drivers, and
they provide hardware-level access to the machine. Be-
cause these programs are fully trusted, they can hide from
any other software running on the machine. Kernel
rootkits can hide files and running processes to provide a
backdoorinto the target machine. Understanding the ul-
timate attacker’ tool provides an important motivator for
those of us trying to defend systems.

P erhaps a science of attack is beginning to emerge. Sev-
eral advanced books on attacking and breaking systems
were published in 2004.%% These books complement and
extend such basic classics as the popular Hacking Exposed.'
Engineers have long spent time learning from mistakes and
failures; security practitioners should embrace this ap-
proach and make it their own. Readers of this special issue
are getting a taste of what’s to come. Computer security is
becoming more sophisticated in every aspect—attacks in-
cluded. Understanding the nature of attacking systems and
how we can leverage attack concepts and techniques to
build more secure systems is a critical undertaking. O

References

1. Aleph1, “Smashing the Stack for Fun and Profit,” Phrack,
vol. 7, no. 49, 1996; www.phrack.org/phrack/60/
p60-0x06.txt.

2. M. Howard and D. LeBlanc, Writing Secure Code,
Microsoft Press, 2002.

3. J. Viega and G. McGraw, Building Secure Software: How to
Avoid Security Problems the Right Way, Addison-Wesley, 2001.

4. C. Cowan et al., “Stackguard: Automatic Adaptive Detec-
tion and Prevention of Buffer-Overflow Attacks,” Proc.
7th Usenix Security Symp., Usenix Assoc., 1998, pp. 63-77.

5. D. Wagner et al., “A First Step Towards Automated
Detection of Bufter Over-Run Vulnerabilities,” Proc. Year
2000 Network and Distributed System Security Symp.
(NDSS’00), Internet Society, 2000.

6. G. Hoglund and G. McGraw, Exploiting Software: How to
Break Code, Addison-Wesley, 2004.

7. K. Thompson, “Reflections on Trusting Trust; ACM
Turing Award Lecture,” Comm. ACM, vol. 27, no. 8,
1984, pp. 761-763.

8. J. Koziol et al., The Shellcoder’s Handbook: Discovering and
Exploiting Security Holes, John Wiley & Sons, 2004.

9. J. Whittaker and H. Thompson, How to Break Software
Security, Addison-Wesley, 2003.

10. S. McClure, J. Scambray, and G. Kurtz, Hacking Exposed:
Network Security Secrets and Solutions, Osborne, 1999.

Ivan Arce is chief technology officer and cofounder of Core Secu-
rity Technologies, an information security company based in
Boston. Previously, he worked as vice president of research and
development for a computer telephony integration company and
as information security consultant and software developer for
various government agencies and financial and telecommuni-
cations companies. Contact him at ivan.arce@coresecurity.com.

Gary McGraw is chief technology officer of Cigital. His real-world
experience is grounded in years of consulting with major corpo-
rations and software producers. He serves on the technical advi-
sory boards of Authentica, Counterpane, Fortify, and Indigo. He
also is coauthor of Exploiting Software (Addison-Wesley, 2004),
Building Secure Software (Addison-Wesley, 2001), Java Secu-
rity (John Wiley & Sons, 1996), and four other books. He has a
BA in philosophy from the University of Virginia and a dual PhD
in computer science and cognitive science from Indiana Univer-
sity. Contact him at gem@cigital.com.

www.computer.org/security/ B |[EEE SECURITY & PRIVACY

Attacking Systems

19

