
Attack Trends
Editors: Iván Arce, ivan.arce@corest.com

Elias Levy, aleph1@securityfocus.com

the next big one to surface. With the
overwhelming amount of bug re-
ports and security threats made public
every day, it is daunting and difficult
to identify trends and have a reason-
able expectation of adopting a proac-
tive information security strategy that
deals with possible future threats.

The Attack Trends department
attempts to examine security bugs
and exploitation programs and tech-
niques that might be useful to under-
stand the current state of information
security threats and their future; this
analysis could help us improve our
security intelligence.

For this premier issue of IEEE Se-
curity & Privacy magazine, we present
an analysis of the Slapper worm, an
automated attack tool that compro-
mised thousands of servers and prop-
agated across network and geograph-
ical boundaries on its own accord in
September 2002 (see http://online.
securityfocus.com/archive/1/291748/
2002-09-07/2002-09-13/2). It has a
rich mix of features for both a histor-
ical and a strictly technical analysis
and can help us identify some expec-
tations for future information secu-
rity threats.

Opening a
can of worms
On 2 November 1988, the Internet

suffered a major attack. It was on the
verge of collapse for several hours
and in a critical state until 8 Novem-
ber 1988, when officials at the Na-
tional Computer Security Center in
Ft. Meade, Maryland assumed that
the incident was over. The re-
searchers determined that the culprit
was a computer program.1

A few days after the attack’s in-
ception, while still suffering from
network communication problems
and overloaded computer systems,
several computer scientists and secu-
rity experts decompiled and ana-
lyzed the attacking program.

Three weeks later, Eugene Spaf-
ford published a detailed analysis of
the program,2 and the term worm was
first used to describe the program’s
behavior:

“A worm is a program that can
run by itself and can propagate a
fully working version of itself to
other machines. It is derived from
the word tapeworm, a parasitic
organism that lives inside a host
and saps its resources to maintain
itself.”2

The program, named the RTM
worm after Robert T. Morris, its au-
thor, entered the annals of informa-
tion security as the first worm. The

RTM worm propagated by exploit-
ing vulnerabilities that let it compro-
mise remote Unix systems. After
gaining access to a new system, it
compiled and ran a new instance of it-
self on that system and then attempted
to infect of all neighboring systems.

Although the RTM worm com-
promised less than 5 percent of the
reported 60,000 computers inter-
connected through the Internet at
the time, it caused serious availability
problems owing to the excessive net-
work traffic it generated and the lack
of needed controls to reduce its
propagation rate. Within hours of its
inception at Cornell University, the
RTM worm became an Internet-
wide problem that sent network ad-
ministrators and security officers into
a frenzy for days. (In comparison, the
Code Red worm, which appeared on
19 September 2001, infected approx-
imately 350,000 computers in 24
hours. See www.caida.org/analysis/
security/code-red.)

Since then, several other worms
have appeared in a much more pop-
ulated Internet, all of which share
the original RTM worm’s basic ex-
ploit-and-propagate characteristics
and vary in the sophistication of
their exploitation techniques and
propagation capabilities.

The appearance of the Ramen
worm1 in late 2000 showed that
worms were once again a tangible
treat. Early in 2001, the infamous
Code Red2 and Nimda3 worms
spread rapidly across the Internet
with a number of infected systems
and propagation rate never seen
before.

On 13 September 2002, a new
worm, known as the Slapper, sur-
faced in the wild in Romania (see

IVAN ARCE
Core Security
Technologies

ELIAS LEVY
Symantec
Corporation

During the past decade, security bugs’ impact on a society de-

pendent on a seamless and secure flow of information has be-

come painfully evident. We’ve all learned the implications of

security bugs and breaches the hard way, in a defensive and

after-the-fact manner that prompts us to plug holes quickly and then wait for

An Analysis
of the Slapper Worm

82 PUBLISHED BY THE IEEE COMPUTER SOCIETY � 1540-7993/03/$17.00 © 2003 IEEE � IEEE SECURITY & PRIVACY

Attack Trends

http://online.securityfocus.com/
archive/1/291748/2002-09-07/
2002-09-13/2). Like its predeces-
sors, this new threat could propagate
without human assistance, contained
exploit code for a known vulnerabil-
ity in a widely used Web server pro-
gram, targeted a specific operating
system, and installed and ran copies
of itself on infected systems.

But the Slapper worm also re-
vealed a new degree of sophistica-
tion in worm technology: using
networked instances of its program
in a peer-to-peer topology. Until
Slapper appeared, all earlier worms
captured in the wild (that is, found
on compromised hosts) had primi-
tive means of communicating be-
tween nodes (infected hosts running
the worm program) and intended to
do little else than quick propagation
and direct damage. Slapper nodes
represent an evolutionary step to-
ward worms that deploy multipur-
pose agents, which until this point
had only been discussed in acade-
mic circles.3

What is Slapper?
We can prove that the Slapper is a
variation of the Apache Scalper
worm by comparing the source code
at http://dammit.lt/apache-worm/
apache-worm.c (see the “Slapper’s
predecessor” sidebar) . Modifica-
tions introduced in the Slapper
worm improved the robustness and
efficiency of its predecessor’s simplis-
tic P2P networking capabilities.
Slapper’s author also removed certain
features from the original—either
because they were redundant or to
reduce the perception that it was a
tool developed to cause direct harm
to networks.

Among the features the author
removed from the Slapper were ca-
pabilities to update itself from a re-
motely specified Web server (per-
haps to prevent someone else from
replacing this version with a new
one), to attack and infect a host spec-
ified with a controlling program, and
to send spam. Interestingly, the abil-

ity to execute distributed denial-of-
service attacks on a controlling user’s
behalf was kept intact. Slapper’s au-
thor attempted to make communi-
cations with a remote controlling
program as stealthy and untraceable
as possible by removing several com-
mands to query status and obtain
feedback from Slapper nodes.

Improvements to Slapper’s P2P
protocol include support for reliable
message delivery to nodes, node syn-
chronization, and message routing
and broadcasting using a technique
the author calls segmentation. Using
these new networking capabilities
for communication with the remote
controlling program made the source
not untraceable, but at least harder to
pinpoint.

As mentioned earlier, the Slapper
worm replaced Apache Scalper’s
original attack code with exploit
code for the OpenSSL vulnerability,
which was targeted against a combi-
nation of at least six different Linux
distributions and nine different
minor versions of the Apache Web
server program.4 This made the tar-
get space for infection considerably
bigger than its predecessor. Slapper
would attempt to remotely compro-
mise systems by randomly selecting a
network to scan and doing a sequen-
tial sweep of all IP addresses in the
network while looking for vulnera-
ble Web servers.

Slapper’s most interesting and in-
novative features relate to its imple-
mentation of a P2P network and the

JANUARY/FEBRUARY 2003 � http://computer.org/security/ 83

Slapper’s predecessor

On 28 June 2002, the Apache Scalper worm was discovered in the wild,
spreading through Internet Web servers running the Apache Web server

daemon on FreeBSD operating systems. It used exploit code previously published on
security mailing lists to gain access to Apache Web servers susceptible to a recently
published security bug, the “Apache-chunked-encoding” vulnerability.

After successfully compromising a vulnerable system, the worm installed and ran
itself, turning the compromised system into a node of a peer-to-peer network that
connected back to the compromise originator (the parent node) and made a vast
array of features available to a hypothetical client program (supposedly under the
worm creator’s control). The Apache Scalper worm propagated using a simple
network scanning mechanism to identify vulnerable hosts.

Features included in the original Apache Scalper worm software included the
ability to:

• Launch denial-of-service attack using user datagram protocol (UDP), TCP, and DNS
flooding techniques

• Harvest email accounts from the compromised systems’ files
• Send multiple email messages (spam)
• Run arbitrary commands on the compromised system
• Attempt to exploit and infect a client’s system
• Upgrade the node worm program

Additionally, worm nodes could communicate using a simple P2P networking
protocol. Internode communications and communication between nodes and the
controlling client were carried over UDP.

The Apache Scalper worm did not have much of an impact on the Internet,
perhaps because of the limited installed base of target systems (FreeBSD with
unpatched Apache Web servers) or because of its simplistic and inefficient P2P
protocol.

Attack Trends

possible implications of this technol-
ogy in future worms. Let’s take a
closer look.

The peer-to-peer protocol
The Slapper worm’s P2P commu-
nications protocol was designed to
be used by a hypothetical client to
send commands to and receive re-
sponses from an infected host (a
node). In this way, the client can
perform several different actions
while hiding its network location
and making communications more
difficult to monitor.

The P2P protocol is imple-
mented using UDP (at port number
2002) as the transport mechanism.
Although UDP is an unreliable
transport, the worm’s P2P protocol
includes a reliability layer on top of
UDP. This layer uses acknowledg-
ments and retransmission to build
some level of reliability for messages
sent in the P2P network from one
hop, or node in the worm’s P2P net-
work, to the next one.

The worm’s P2P protocol stack
was written to render it architecture-
dependent. Its code does not use
host-to-network byte ordering rou-
tines, and packet layout is defined by
C structures—a form of data repre-
sentation in the C programming lan-
guage—that does not use size-spe-
cific data types. Because the worm
was designed to attack Linux systems
running under the I32 architecture,
data sent over the network is in little
endian byte order, while a char is 8-
bits or an octect wide, a short is 16-
bits or two octects wide, an int is
32-bits or four octects wide, and an
unsigned long is 32-bits or four
octects wide.

Because the author makes no
provision for C structure alignment
by adding dummy members, the

packets have areas that are not acces-
sible via the C structures. For exam-
ple, the llheader structure, when
sent over the wire, will include a
three-octect unused area.

struct llheader {

char type;

unsigned long checksum;

unsigned long id;

};

While this structure’s members use
only 9 bytes of memory, the struc-
ture’s alignment makes it 12 bytes
long when it is sent over the wire.

Reliability layer
The reliability layer adds a header
between the UDP layer and higher
layers. This header consists of a
signed char as a single octect
that represents whether the packet
contains a message or a message ac-
knowledgement (0 for a message, 1
for a message acknowledgement),
an unsigned long as four octects
in the infected system’s byte order
representing a checksum over the
packet’s payload, and an unsigned
long as four octects in the infected
system’s byte order representing a
message ID.

The following is the C structure
that defines a packet header

struct llheader {

char type;

/* 0 = message, 1 =

mes- sage

acknowledgement */

unsigned long checksum;

unsigned long id;

/* message id */

};

When a node sends a message, it
keeps a copy in its message queue.

The information associated with the
messages in the queue includes the
message ID (id), the time they were
first sent (time), the time of their last
transmission (ltime), their destina-
tion IP addresses (destination),
their destination UDP port number
(port), and the number of nodes to
send the message to (trys).

In C, the message queue structure
looks like

struct mqueue {

char *packet;

unsigned long len;

unsigned long id;

unsigned long time;

unsigned long ltime;

unsigned long

destination;

unsigned short port;

unsigned char trys;

struct mqueue *next;

} *queues=NULL;

When sending a new message, the
node assigns it a new message ID,
which it generates randomly. The
node keeps track of the last 128 mes-
sage IDs it has assigned to outgoing
messages and that it has seen in in-
coming messages. When picking a
new message ID for outgoing mes-
sages, it will select one that differs
from any of the message IDs on this
list. An incoming message is ignored
if its message ID is on the list of last-
seen 128 message IDs. This provides
a basic level of protection against re-
ceiving and acting on the same mes-
sage more than once.

The number of nodes to send the
message to is only used when the
message is to be sent to random
nodes in the P2P network, in which
case the destination IP address field
goes unused and is set to zero, and the
UDP port number is the default P2P
network port number (UDP/2002).
If it sends the message to a specific IP
address and to a specific UDP port,
the number of nodes to send the
message to is set to one.

When the node receives an ac-
knowledgement, it searches the mes-

84 JANUARY/FEBRUARY 2003 � http://computer.org/security/

A command can be forced to bounce

around the P2P network before it reaches

its destination mode.

Attack Trends

sage queue for a matching message
ID, and reduces the number of nodes
to send the message to by one. If the
number of nodes to send the message
to reaches zero, the node deletes the
message from the queue.

At a frequency of every three
seconds (the period could be
longer), the node goes through the
messages in the message queue. If it
finds a message that has been in
there longer than a certain amount
of time, it reduces the number of
nodes to send the message to by
two. Because the worm never sets
the number of nodes to send the
message at greater than two, it re-
sults in the message being removed
from the queue.

The amount of time after which
to discard messages in the message
queue is a function of the number
of connections (numlinks) to
other P2P network nodes. The
function is

timeout = 36

+ (numlinks

/ 15) seconds.

For a node with 100 links, the time-
out would be 42 seconds. For a node
with 1,000 links, the timeout would
be 102 seconds.

If the message were in the mes-
sage queue less than the amount of
time necessary for it to be discarded
and if it were transmitted more than
a certain number of seconds ago,
then the message would be retrans-
mitted. The minimum period be-
tween transmissions is six seconds
for messages directed to a specific
address or three seconds for mes-
sages sent to random nodes in the
P2P network.

Command layer
The next layer up in the P2P proto-
col is the command layer. In this
layer, a node can be commanded by a
user running a controlling client pro-
gram can command a node to take
some action or respond to com-
mands. The command layer adds a

header that includes a command
type in the form of a signed char
represented as a single octect, a com-
mand ID in the form of a signed int
represented as two octects in host
byte order (little endian), the length
of the command payload in the form
of an unsigned long represented
as four octects, and a sequence num-
ber in the form of an unsigned
long represented by four octects.

In C, the routable layer header
looks like

struct header {

char tag;

/* command type

*/

int id;

/* command id

*/

unsigned long len;

/* payload

length */

unsigned long seq;

/* sequence num

ber */

};

The command ID is a channel iden-
tifier; that is, it identifies specific in-
stances of a command. For example,
when a client requests the creation
of a bounce (a network connection
redirection and laundering ser-
vice), any commands from the
client with data for the bounce must
use the same command ID as the
message that created the bounce.
Any data generated by the bounce
sent to the client via a command
uses the same command ID as the
message that created the bounce.
The sequence number has a pur-
pose similar to the message id in the
reliability layer. It identifies a com-
mand instance so that duplicates can
be ignored. Its name is misleading
given that it is assigned randomly
rather than in sequence.

Initialization
When a new node is started (that is,
when a computer is infected) it binds
and listens to the P2P network’s UDP

port number, 2002. The new node is
passed the IP address of its parent (the
infecting node) via the command
line. When starting up, the new node
will attempt to register with the P2P
network by sending its parent a join
network request command. The
parent responds with a your IP

address command, and a list of
known nodes. The parent also broad-
casts the new node’s existence to the
network via a route command.

If the new node has an empty list
of known nodes , which could indi-
cate a failure to communicate with
its parent and to infect new hosts, it
will again attempt to join the P2P
network by sending its parent a join
network request command ap-
proximately every 60 seconds.

If the new node has a nonempty
list of known nodes but has not yet re-
ceived a your IP address com-
mand, it will send a my IP address
request command to two random
hosts every 60 seconds.

If the new node fails to register
with the P2P network as described
earlier, then the P2P network will
split. Any new nodes infected by the
cut-off node (the node that did not
register to the parent’s P2P net-
work) will be isolated from the
original P2P network. In this way,
multiple independent P2P net-
works could be created.

Routing
The P2P network uses an interest-
ing mechanism to route messages
from a source node to a destination
node. When a node wants to route a
command through the P2P net-
work, it can encapsulate the com-
mand in a route command, in-
stead of sending it directly to the
target node. This command in-
cludes the destination node’s IP ad-
dress and a hop count, the mini-
mum number of intermediate
nodes between source and destina-
tion to pass the message through.

When a node receives a route
command, it checks whether the
destination node’s IP address is its

JANUARY/FEBRUARY 2003 � http://computer.org/security/ 85

Attack Trends

own, and if so, decapsulates the
command in the route command
and forwards it to itself for process-
ing. If the destination node’s IP ad-
dress is not its own, it checks
whether the number of hops has
reached zero or is greater than 16,
in which case it will forward the
route command to the destina-
tion node. Otherwise, it decreases
the hop count and forwards the
node to two random nodes in the
P2P network.

Using this mechanism, a com-
mand can be forced to bounce
around the P2P network before it
reaches its destination node. This af-
fords the attacker a level of
anonymity because a node that re-
ceives commands from the attacker’s
client software via the P2P network
can’t simply examine the packet’s
source IP address to determine the
attacker’s network location. This also
makes it difficult for any single node
to monitor the attacker’s activity be-
cause it selects a random path
through the P2P network each time,
and therefore the attacker’s network
traffic does not pass through a single
node at any time.

Because this routing algorithm
forwards a copy of the route com-
mand to at least two nodes at each
hop, and when the number of hops
reaches zero each node with a copy
of the message will forward it to the
destination node, the destination
node receives 2H copies of the same
command, where H is the number
of hops. The default five hops the
worm uses results in 32 messages.
For the maximum 16 hops, the re-
sult is 65,536 messages. The desti-
nation node attempts to only
process the same command once by
keeping track of the last 128 se-
quence numbers it has sent or re-
ceived. The length of this queue,

128, seems small compared to the
large number of commands a node
is likely to see given this algorithm
and the size of the P2P network,
and is likely to result in duplicate
commands being processed. The
worm’s author named this tech-
nique segmentation.

Broadcasting
The worm uses broadcasting to an-
nounce when a new node joins the
network. It also synchronizes the
list of known nodes between nodes.
The routing mechanism described
earlier is used to broadcast messages
to the P2P network by setting the
destination node’s IP address to
zero in the route command.
When a node receives a route
command with the destination
node’s IP address set to zero with a
sequence number not in the re-
cently seen messages list, it decap-
sulates the command in the route
command and forwards it to itself
for processing. It then forwards the
route command to two nodes se-
lected at random.

Because of the random nature of
the selection of the next hop destina-
tion, this mechanism does not guar-
antee that a broadcast message will
reach all nodes in the P2P network.
Slapper’s author named this tech-
nique broadcast segmentation.

Return path
When a node replies to a command,
it sends the reply to the IP address
that sent the command. This might
not be the same as the source node’s
IP address because the command
could have been routed through the
P2P network. While the route
command mechanism routes mes-
sages to a destination node, the
route message does not contain
the source node’s IP address. How do

intermediate nodes in the P2P net-
work route a response command
back to the source node? By main-
taining a return path routing table
that kepts track of the command ID
and IP address of the sender of the last
128 messages received.

Client response commands share
the same command ID as the re-
quest commands to which they cor-
respond. When an intermediate
node receives one of these, it looks
up in the return path routing table,
(by the command’s ID) what the
next hop’s IP address is and then for-
wards it to it. In this way, the re-
sponse commands are forwarded to
the attacker’s client node via the
path taken by the last command
from the attacker’s client with the
same command ID.

Synchronization
The P2P network nodes constantly
maintain a list of known node in
the P2P network and go through
great effort to have this list syn-
chronized with each other, to en-
sure that each node knows exactly
the same about nodes in the P2P
network. When a new node joins
the network, a node that receives
the request from the new node
sends it a list of known nodes. Ad-
ditionally, approximately every 10
minutes, each node broadcasts an
empty or null route command to
the P2P network. This command
includes the number of P2P nodes
the node knows about.

When a node receives such a
route command, it checks whether
the number of P2P nodes in the
route command matches the num-
ber of P2P nodes it knows about. If
the numbers don’t match, and it has
been more than one minute since it
synchronized, it will synchronize
with the IP address from which it
received the route command.
This might not be the same as the IP
address of the node that originally
created the route command be-
cause it is broadcasted. In this way,
synchronization makes use of the

86 JANUARY/FEBRUARY 2003 � http://computer.org/security/

The attackers network traffic does not pass

through a single node at any time.

Attack Trends

P2P network protocol and the rout-
ing facility. The IP address is that of
the latest hop.

When a node synchronizes, it
checks whether the number of
nodes in the route command is
greater than the number of nodes it
knows about. If so, it sends a node
list request to the node from
which it received the route com-
mand (the latest hop). If not, it
sends its list of known nodes to the
node from which it received the
route command via one or more
node list commands. After this,
it sets the time of the last synchro-
nization to the current time. It also
sets the number of known nodes in
the route command to the num-
ber of P2P nodes it knows about.
Finally, it continues to broadcast the
message by forwarding it to two
random nodes.

Nodes are never removed from a
node’s list of known nodes. The list
will continue to grow even when in-
fected nodes are disinfected and no
longer participate in the P2P net-
work. This also means that hosts that
were infected once will continue to
receive packets from the P2P net-
work even after they are disinfected,
until most nodes in the P2P network
are shutdown.

Currently, the number of sys-
tems compromised by Slap-

per, its effects, and its networking
capabilities are not clear. It is also
unknown if anyone has used nodes
on compromised systems to
launch a coordinated attack or ex-
ecute specific commands using a
remote controlling program.
News coverage from as early as 16
September 2002 reported the
number of compromised systems
ranging from 6,000 to 16,000 and,
as administrators patched their sys-
tems, a quickly decaying propaga-
tion rate. 5,6

Perhaps because the worm’s net
outcome doesn’t equal the devas-
tating effects of worms such as

Code Red and Nimda, the infor-
mation security community has
largely ignored Slapper’s sophisti-
cation and the glimpse it has pro-
vided into the possible evolution
of future worms. The subsequent
appearance of variations of Slapper
(Slapper.B, also known as Cinik
and Slapper.C, also known as Un-
lock) reinforces the assumption
that exploit code, viruses, and
worms are becoming increasingly
complex and sophisticated.5 They
will pose a serious challenge to
achieving effective information
security if we don’t adopt proac-
tive strategy and put substantial ef-
forts not only into fixing newly
discovered vulnerabilities quickly
but also in trying to prevent their
creation. If new threats are not se-
riously analyzed and their core
functionality deactivated—instead
of focusing on fixing holes that are
only symptoms of the current state
of our security posture—we will
face far more serious problems in
the future.

The conclusion of a recently
published paper with a retrospective
account of the security evaluation of
the Multics operating system almost
30 years ago states this clearly:

“In our opinion this is an un-
stable state of affairs. It is un-
thinkable that another thirty
years will go by without one of
two occurrences: either there
will be horrific cyber disasters
that will deprive society of
much of the value computers
can provide, or the available
technology will be delivered,
and hopefully enhanced, in
products that provide effective
security. We sincerely hope it
will be the latter.” 7

Although our conclusion might not
be as apocalyptic as this, if we don’t
learn from our past experiences and
adapt to new situations, we will be
purposely downgrading our security
intelligence.

References
1 E.H. Spafford, “The Internet Worm

Incident,” 1991; www.cerias.purdue.
edu/homes/spaf/techreps/933.pdf.

2. E.H. Spafford, “The Internet Worm
Program: An Analysis,” 1988; www.
cerias.purdue.edu/homes/spaf/tech
-reps/823.pdf.

3. J. Nazario et al., “The Future of Inter-
net Worms,” Crimelabs Research,
July 2001; www.crimelabs.net/docs/
worm.html.

4. Cert Vulnerability Note VU#
102795, “OpenSSL Servers Contain
a Buffer Overflow During the SSL2
Handshake Process;” www.kb.cert.
org/vuls/id/102795.

5. M. Broersma, “Slapper Worm Takes
on New Forms,” http://zdnet.com.
com/2100-1105-959385.html.

6. P. Roberts, “Security Experts Divided
on Slapper’s Threat,” www.infoworld.
com/articles/hn/xml/02/09/16/
020916hnslapthreat.xml?s=IDGNS.

7. P.A. Karger and R.R. Schell, “Thirty
Years Later: Lessons from the Multics
Security Evaluation,” IBM Research
Report RC 22534 (W0207-134),
July 2002; http://domino.watson.
ibm.com/library/cyberdig.nsf/papers/
FDEFBEBC9DD3E35485256C2C
004B0F0D/$File/RC22534Rev1
full.pdf.

Ivan Arce is chief technology officer and
cofounder of Core Security Technologies,
an information security company based
in Boston. Previously, he worked as vice
president of research and development
for a computer telephony integration
company and as information security
consultant and software developer for
various government agencies and finan-
cial and telecommunications companies.
Contact him at ivan.arce@corest.com.

Elias Levy is an architect with Symantec.
Previously, he was the chief technology
officer and cofounder of SecurityFocus
and the moderator of Bugtraq, a vulner-
ability disclosure mailing list. His research
interests include buffer overflows and net-
working protocol vulnerabilities. He is also
a frequent commentator on computer
security issues and participates as a tech-
nical advisor to a number of security
related companies. Contact him at
aleph1@securityfocus.com.

JANUARY/FEBRUARY 2003 � http://computer.org/security/ 87

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

