
A dynamic technique for enhancing the security

and privacy of web applications

Ariel Futoransky, Ezequiel Gutesman and Ariel Waissbein1

Corelabs, Core Security Technologies. Humboldt 1967, Cdad. de Buenos Aires 1414, Argentina.

Abstract
Web application security and privacy became a central concern

among the security community. The problems that are faced once an
application is compromised necessarily demands special attention. The
emerging programming languages, which allow unexperienced users to
quickly develop applications, still fail to introduce mechanisms for pre-
venting the aforementioned attacks. We introduce a technique for en-
hancing the security and privacy for a web-based solution, by aug-
menting its execution environment to include tracking information,
that permits to efficiently identify and thwart several attack scenarios.
The technique has been implemented to protect PHP, and could be
extended to protect other web-development languages (such as Java,
ASP.NET, Python, Perl and Ruby.) Typical exploitation methods as
database-injection attacks, shell injection attacks, cross-site scripting
attacks and directory-traversal attacks are prevented. Moreover, this
technique prevents untrusted users from obtaining private data stored
within the web application’s network; thus, putting off the theft of sen-
sitive data, as credit card information, as well as averting information
leakage.

1 Introduction

During the last years, attack vectors have shifted from binary vulnerabilities
to injection vulnerabilities in web applications. This is due to the fact that
there has been a proliferation of vulnerable web applications and common
components, and the fact that web programming languages fail to include
the necessary prevention mechanisms.

Consequently, web developers need to carefully write their code embed-
ding ad hoc prevention commands in order to counter even the most com-
mon (well-known) attacks ([SS02]). This turns to be a laborious practice

1

that is prone to errors, and should be replaced by more robust develop-
ment practices. Nowadays, new application security solutions have surfaced
that promise to replace this work, handling enormous lists of attacks (e.g.,
[Ter05], [Imp05], [Air05]). Typically, these solutions imitate IDS techniques
(i.e., act as proxies between users and web-based solution possibly combin-
ing signature-based recognition with statistical methods to stop attacks),
achieving an insufficient level of security. Further, these solutions compile
a suite of techniques aiming to avert a high-percentage of attacks. These
techniques may reduce the risk, but will not avert some very dangerous at-
tacks. Therefore, thorough security audits1are still required to discover and
eradicate dangerous vulnerabilities from the code.

In the literature, dynamic solutions still require some additional consid-
erations by the developer. For example, [BK04] addresses only database-
injection attacks, it requires the developer to modify the code for the web-
based solution and add unnecessary procedures. As a result this techniques
produce a considerable slowdown, they are only probabilistically secure, and
the modified scripts are more complex and then more difficult to audit. Par-
allel monitoring [LBW05] (see also [DG71]) are more general procedures

In this paper we present a security and privacy protection technique
as applied to PHP. The method presented in this paper protects web-based
solutions from certain well-known attack techniques that aim to steal or tam-
per with databases, and other core applications, run arbitrary commands in
the web servers, damage other visitors, etcetera. It augments web develop-
ment languages with additional features that (automatically) prevent these
attacks. The method is deterministic, and one deploys this solution being
certain of which attacks it diverts and can assert what attacks it prevents
(i.e., what actions it averts) as it has a zero rate of false negatives and a
very low incidence of false positives.

The scope of this solution is enormous, as a major portion of dot-com
websites (∼70% of the market) is developed in compliant languages (PHP,
ASP, etcetera). According to statistical data borrowed from [Mit04]) (see
also [Imp05]), our solution will prevent vulnerabilities present in over 80%
of web applications found on the net. Further, it prevents the theft of
credit card databases and averts other threats deriving from access to private
information. We call this solution GRASP2.

1Source-code audits is one stage of the development process, where the source code of
the underlying program is checked for security mistakes.

2A copy of GRASP for PHP can be downloaded from
http://www.coresecurity.com/corelabs.

2

2 Web-based solution threats

We start this section describing the typical web-based solution architecture,
describing its players, and move on to give a high-level description of the
attacks and privacy. The user experienced in web-based attacks and privacy
threats can skip this section. For more information please refer to [JS06].

We will, hereafter, refer to web applications that are designed by web de-
velopers. Once deployed these web applications are accessed by users through
their browsers.

A web application runs in several-tier infrastructures. When accessed
by a user, a communication channel is created between the web application
and the user’s browser. A user sends navigation and data input (e.g., page
requests, cookies) and other environmental information over this connection
and is responded with web pages and cookies. Web pages are rendered by the
user’s browsers and cookies are stored in the users hard drive (depending on
browser configuration).

The typical infrastructure for a web application is constituted by a front-
end server, a middle-end server and a back end (a detailed description can
be found at [Fow03].)

• The front end runs the graphical interface for users, letting the user
access the web applications’ functionalities. It will receive the user’s
input —through page requests— and pass them directly to the middle
end. Once it receives answers (e.g., information) from the middle end,
it generates web pages and sends them to users.

• The middle end (OSI layer 6) handles the logical operations of the web
application. Once it receives commands passed by the front end, it will
translate these requests to the respective API language and contact
the API in the back end to retrieve this information. Finally, it will
provide this information to the front end.

• The back end is constituted of computer systems that run computer
programs providing the web application’s core functionalities (the APIs).
Say, for example, database engines, web mail servers, content-management
systems, and business applications3.

The front- and middle-end servers run the computer code developed in
one of the so-called web-development languages. The code is thus called a

3Alternatively, less novel web applications consist only of a pair front end/back end.
The front end for these web applications takes the role of both the front end and middle
end as described above, while the back end keeps its role.

3

web-script or simply a script. Scripts are compiled/run on-demand by in-
terpreters or virtual machines (VM for short). The main difference between
scripting languages (e.g., PHP, Ruby, Python, Perl, ASP 3.0) and those who
are executed by a virtual machine (e.g., Java, ASP.NET) is that scripting
languages are interpreted (not compiled, as C-coded applications), and VM-
based ones are compiled to an intermediate language. Another difference is
that (usually) scripting languages allow a faster development cycle and for a
novice developer it is easier to quickly develop a fully functional application
in a scripting language rather than in a VM-based one.

2.1 Attack types

We consider input validation exploitation methods whereby user-supplied
data is interpreted by user’s browsers or one of the web-application’s APIs
violating the established policies, i.e., either where this data affects the syn-
tactic structure intended for the front- and middle-end scripts that govern
the APIs (examples follow), or where data that contains arbitrary cross lan-
guage commands (e.g., SQL, HTML, Javascript, etcetera) gets forwarded
to other users. These exploit methods, which include database-injection
attacks, shell-code injection attacks, directory-traversal attacks, LDAP injec-
tion and cross-site scripting attacks, appeared years ago and continue to be
present in most of today’s web applications —as it is well documented (see,
e.g., [vWW07], [CER00], [Rai98]). Evidence shows that the situation is
worrying; often a “penetration test4” reveals that web-based solutions are
vulnerable to exploits from this class and evidence [vWW07] shows an in-
crease in the reported vulnerabilities.

It has been conjectured that the eradication, from today’s web-applica-
tions arena, of these vulnerabilities that enable these attacks would automat-
ically make most of these web-applications secure —according to statistical
data ([Mit04]). Hence, the importance of this vulnerability class.

2.1.1 Database-injection attacks

Users communicate with the web application by sending URL requests and
cookies. A database-injection attack is successful when one of these mes-
sages, containing arbitrary data, is parsed by front- and middle-end servers,
transformed into a database command, and gets forwarded to the database
engine where it gets executed. When the Database Management System’s

4A penetration test, a computer security audit where the auditor attempts to obtain
unauthorized access to the targeted network in order to assess its security.

4

(DBMS) query language is SQL, these attacks are called SQL-Injection at-
tacks.

For example, let us pretend that the imaginary website www.server.com
asks for its visitors to enter their name and password on the browser’s input
forms. Once this information is entered, the browser produces an URL of
the form

http://www.server.com/login?uid=name&pass=****
which is sent to the web-application, where it is parsed, formated as a SQL
command that checks if the user / password pair is valid, and then sent to
the SQL engine. However, assume that Mallory enters

Mallory’; [malicious code]--
at the name input tag and an arbitrary password (where [malicious code]
stands for an arbitrary database command). A vulnerability would arise
if the middle-end server would parse the name as Mallory’;[malicious
code] and query the database with this name. Since the semicolon breaks
the line in the SQL language, the SQL engine will execute the commands
select * from users where uid = ’Mallory’; [malicious code]--;’.
(Italized characters are provided by Mallory.) The attack is then perpe-
trated.

A secure web application would analyze the input for an attack (e.g., and
sanitize it) detecting, for example, the semi-colon or quote meta characters
as “illegal” and preventing the middle-end server from sending these user-
supplied meta characters to the SQL engine. However, different scenarios
require different analyses. Also, these checks are difficult to program. Typ-
ically, a web developer will reuse the same checking algorithms for several
situations and as a result the implemented checks might not be enough.

In order to exemplify this situation with a more complex example we can
consider GET/POST methods, which are used to send information from the
user’s browser (e.g., while filling a form) into the web application. When
this information arrives the VM/interpreter they are stored in two variables
called GET and POST. Any end-user could modify these values (since they
are originated in his browser), but if the web developer encodes for example,
converting all characters to URL-encoding (hexadecimal) or uses a particular
encoding to send GET/POST parameters (e.g., base64 with some secret key
string) the attack vector must be revisited. Once inside the application, the
encoded values would be eventually decoded in order to be used in a query.
The attacker must then consider this kind of usage, encoding the malicious
code in a certain way it bypasses developer’s checks so the attack can result
successfully.

5

2.1.2 Cross-site scripting attacks

“The essence of cross-site scripting is that an intruder causes a legitimate
web server to send a webpage to a victim’s browser that contains malicious
script or HTML of the intruder’s choosing ([Raf01])” Cross-site scripting
attacks, XSS for short, can be traced to a CERT advisory in early 2000
([Cen00]). A pragmatic example is that of guest books, visitors (users) will
submit input data to the web application which is later included in the web
application’s repository and presented to other users. If this data is not
properly sanitized before being forwarded to end users, an attacker may be
able to post in the forum arbitrary text containing HTML tags or script,
which would result in the unintended execution of scripts on other visitors’
browsers5.

These attacks are one of the most dangerous, yet common vulnerabilities,
which have a devastating impact over the affected target. A successful attack
may result in the execution of arbitrary code (script code) inside another
users’ browser, leading to credential theft or impersonation. For example,
an attacker could exploit a XXS attack in an etailer web application so
that any user that connects to the etailer will execute a script while buying
certain products using their own credentials (username / password / credit
card), but sending the products to the attacker’s home.

2.1.3 Shell-injection attacks

In some web applications the middle end server will access a computer in the
back end and run shell commands (e.g., in order to access mail services or
handle files.) These commands may take parameters provided by the web
application’s users. These parameters need to be checked and sanitized.
Shell-code injection attacks occur when the attacker provides parameters
for a shell command, that contain malicious code, and the parameters are
forwarded (and executed) without being checked. For example, if an at-
tacker executes this attack he can compromise the back end and thus all the
applications running in it.

2.1.4 Directory-traversal attacks

A web application may require to access the file system in the back end, e.g.,
while some user is submitting a file. These accesses, are made by provid-

5Of course, visitors might disable the scripting functionality in their browsers. However,
this poses a usability burden to users that typically choose to enable scripting.

6

ing certain parametric information in URL requests or cookies. Directory-
traversal attacks occur when an attacker is able to access restricted directo-
ries or execute arbitrary commands in the file system. As a result, he can
compromise the entire back end server.

2.2 Privacy threats

Web-scripting languages, as those cited above, do not include any mech-
anisms to distinguish sensitive information of what an attacker may take
advantage of a security glitch in the application business-logic or presenta-
tion layer and steal, delete or manipulate sensitive information.

Web applications typically access sensitive data through some applica-
tions in the back end for processing, however this data should never be
available to users. For example, credit card information for the clients of
an etailer will be available to the business application in charge of process-
ing sale transactions; it might also happen that the personal credit card
information is partially available to its owner during his visit to the web ap-
plication; however, no user should be able to access credit card information
for other users.

On the other hand, it sometimes happens that users are able to access
debug data, which should only be available to developers. Attackers can then
use debug data to learn structural information of the web application which
might help them to craft an attack. Hence, the threat of not restricting the
access to debug data.

2.3 Countermeasures

While trying to protect web applications, during development, from the
afore-mentioned attacks, developers include checks and workarounds spe-
cially designed for the affected web application. These countermeasures
include: harmful character escaping (such as ′, ”, \, ., ∗,), URL encoding,
harmful character filtering, regular expression (hereafter RegEx) matching
for allowed input, and others.

These workarounds present different weaknesses. RegEx validation can
lead to a false sense of security since if a developer fails to consider all the
possible syntactic formations for a given input, the security check tends
to fail. Most of the times RegEx validation requires careful attention and
forces the developer to take into account lots of variants. Sometimes (due
to developing deadlines) checks are not properly designed. As an exam-
ple, let us consider case unsensitive RegEx which can be bypassed by using

7

lower/upper case input. Sometimes depending on the programming lan-
guage, %0d%0a (carriage return, line feed) can be inserted in the middle of
a string, thus, non-multiline RegEx would validate the string’s prefix, ignor-
ing its tail. Another example we can consider is the known case of strings in
ASP 3.0 applications, which allow %00 characters among valid characters.
A c-coded protection library would check the string until it reaches the ma-
licious character, reporting it is safe as it reached end of string, but the ASP
application will still be using the malicious string. As every workaround
is designed only for the affected application it does not provide a definite
solution to the injection vulnerabilities problem.

Other countermeasures that can be considered as testing tools include
source-code auditing, running vulnerability scanners, and testing the devel-
oped applications with IDSs/IPSs, but they also fail in completely solving
the problem.

3 Grasp for PHP

We implemented a modification of the PHP interpreter which incorporates
protection for injection vulnerabilities and a mechanism for enforcing pri-
vacy policies. It replaces the original PHP interpreter and the installation
procedure is the same as the one required for a normal PHP installation (see
[PHP]). Once installed, it starts protecting all deployed web applications
without any source code modification.

The implemented security features allow the modified interpreter to de-
tect and block attacks on the fly. This is achieved by deterministic security
checks based on data security information. Privacy policies can be defined
by a security officer responsible for the site (e.g., declaring some stored data
is private, public, accessible by owner only, etcetera) being automatically
enforced at run-time.

We first explain how does the technique underlying our solution work
and show that it prevents the previously described attacks. We then give
details as to implement it, estimate its performance, and end this section’s
discussion on the security and performance given by a prototype we imple-
mented for PHP that runs in all platforms (i.e., win32, all BSD, and most
Linux distributions) and handles MySQL databases.

Briefly speaking, Grasp stores the source of each data entering the inter-
preter/VM (e.g., users, databases) and uses this information to perform
checks before using it in a potentially dangerous context (e.g., sending
queries to a database engine.)

8

The data operators/functions inside the interpreter/VM can be divided
in three groups: sensitive sources, sensitive sinks and data manipulation op-
erations. The sensitive sources are those functions or entry points to the
execution environment (VM/Interpreter) where data should be considered
untrusted, for example, when retrieving data from GET/POST/COOKIES,
all data can be controlled by a potential attacker, though, our prototype
treats as dangerous all data incoming from these sources. Data manipu-
lation operations are those operations inside the application which handles
and combines data. Finally sensitive sinks are those functions/modules that
forward and execute operations in the back-end (e.g., database queries, API
communication.)

Every character received and processed by the modified script inter-
preter is labeled, character by character, with any combination of the labels
untrusted or private/trusted. Both user-supplied data and user-controlled
data within the back end (e.g., those fields within database that store user-
supplied information) are labeled as untrusted; the script interpreters will
also access an initialization file that stores which fields in each database con-
tain private information and mark this data as private for the VM. On the
other hand, the modifications in the interpreter/VM will propagate marks
after any manipulation on local variables, i.e., the result of every data manip-
ulation operation, that is affected by local data containing untrusted charac-
ters, is labeled as untrusted and the result of every operation that is affected
by local data containing characters labeled as private/trusted is labeled as
private/trusted (more details follow in the next section) keeping always per-
character information.

For example, if we represent variables inside the interpreter as a tuple
(type, value,< length >, < securityMark >), we can consider the concate-
nation function that, given two local variables computes their concatena-
tion, which is modified to propagate marks, as follows: Say, for example
that a=(char,“hello”,5,.....) and
b=(char,“;kill app”,9,XXXXXXXXX), then their concatenation is
a||b=(char,“hello;kill app”,14,.....XXXXXXXXX). With X meaning that char-
acter’s mark is untrusted and . trusted.

To avert database-injection attacks, a module will prevent the middle-end
server from sending the database engine commands containing characters
marked as untrusted that could affect its syntactic structure. More explic-
itly, once the command is parsed by the middle end server, but before it is
sent to a sensitive sink (e.g., database engine), it is parsed and analyzed by
the modified VM so that all meta characters6that are labeled as untrusted
are blocked. To avert shell-injection attacks, a module will block the middle

9

end from sending special meta characters as commands to the shell API sen-
sitive sink, i.e., commands comprising untrusted meta characters are blocked
and only inoffensive parameters are permitted. To avert directory-traversal
attacks a module will block the middle-end server from sending untrusted
characters, comprising special meta characters, to the file-system API sen-
sitive sink. To avert cross-site scripting attacks in our method, a module
will prevent the front end to send scripting tags and code, to users, if they
contain characters labeled as untrusted.

The quality of these checks can be measured by the false positive and
false negative alarms they provide or fail to provide, and it depends on how
accurately does the analysis check for an exploit. In the above cases, it
appears that the extra information provided by the marks (which should be
100% accurate) is enough to describe known attacks. In our prototype we
modified the MySQL module to perform specially designed checks. These
checks take into account per-character security labels and the specific SQL
language structure so it can distinguish a dangerous query before it is exe-
cuted.

One may also log occurrences of any of these potentially-dangerous ac-
tions in order to enrich forensic information. Furthermore, our method does
not limit to forestalling the four above-mentioned vulnerabilities, but may
prevent others which fall in the category we defined in Section 2.1. Namely,
our method allows the developer to define, for each new API, the tools for
parsing and analyzing the input for this API (e.g., this analysis profiting
from the augmented input information), and therefore decide whether to let
pass or block these inputs, or whether to log them. On the other hand, this
logging capabilities can be used to obtain signatures7of new attacks.

The protection mechanism for injection attacks can be modeled by a
Finite State Machine (FSM for short) which allow a formal representation of
well-formed strings. The FSM evaluates a predicate and then answers true if
the string does not represent an exploit, and false if it does. We can design a
FSM for each kind of vulnerability, allowing a precise per-character analysis

6Meta characters are those characters which have a “special meaning” in the underlying
language API. For example, “;” and quotes are SQL meta characters since in the SQL
language semi-colon means that the command line finishes and quotes are for enclosing
string constants. With our method, meta characters are defined once and for all per
language in a special configuration file.

7A signature is a string which identifies the structure of a malicious input. For example
a string beginning with a single quote and ending with a double dash can be considered
an attack (of course this is not precise.)

10

in order to perform security checks detecting vulnerabilities in cross language
boundaries (e.g., SQL inside PHP, Javascript inside HTML, etcetera.)

Another aspect of our method will provide the privacy-enhancement ca-
pabilities [FW05]. On setup, the system owner (or the developer) can label
sensitive fields within each database as private, it will also define the private
directories in the file system, defining if a given action can be performed over
that data (e.g., the field credit card can never be sent to the users’ browser.)
This information is stored in an write-protected configuration file. Once the
web application is deployed, a module will mark as private all characters
that enter the VM and come from these private “data sources”, and another
module will block characters marked as private from being sent from the
front end to the user’s browser (e.g., forwarding credit card numbers to the
user’s browser). These actions, again, can be logged.

3.1 Prototype

Our current prototype is an instrumentation of PHP 5.2.1 which implements
SQL injection protection against MySQL databases. The FSM for this pro-
tection was based on MySQL’s lexical analyzer. This allowed us to develop
a security-aware query checker.

In order to cover sensitive sources, sensitive sinks and data manipulation
operations we modified PHP’s interpreter. We will now describe some of the
modifications that we made.

One of the key decisions on the prototype was where to store per char-
acter security information. One of PHP’s central data structures are zvals.
Every variable inside the interpreter is represented by a zval. We decided
to augment this structure by adding two values, which we call secmark and
secinit. The former stores the mark for the string and the latter is for in-
tegrity purposes (it acts as a magic number that determines zval’s security
mark). A naive implementation would cause a doubling in the memory re-
quired so the mark storage was optimized to prevent this while storing a
string.

Sensitive sources were covered by marking as untrusted all data incoming
from GET/POST/COOKIES (GPC for short) and every time a script loads
GPC variables, they automatically become marked as untrusted.

The only sensitive sink implemented was in the MySQL module. We
developed a FSM inspired, as we said, in MySQLs lexical analyzer. We then
instrumented the MySQL module by prepending the FSM check before each
command is sent to the MySQL engine.

11

digit

marked ’−’

! digit &&
marked

! marked
! digit &&

! digit && marked

’\’ mark

!mark

’ && ! mark

’ && ! mark
’\’

’ && mark

" && mark

" && ! mark

" && ! mark

’\’

 ATTACK

Figure 1: SQL check FSM. The leftmost state is the initial state. Each
transition occurs when a new character is analyzed. The only state which
causes the system to block the query is the ATTACK state. Any other state
is considered safe.

Data manipulation operations are of course the central part of the imple-
mentation, since it has to ensure accurate mark propagation inside the inter-
preter. The main modifications were made in functions that create/destroy/
copy zvals and inside the native string operations (such as implode, explode
and concatenation, not all of them in this prototype). Another important
modification of PHP’s implementation is the concatenation functions, im-
plemented in a module called smart str, which handles all types of concate-
nation (string to string, char to string, etcetera).

The prototype also includes new functions to the PHP core. Although
the prototype’s protection is automatic, it provides several functions that
could allow a developer to interact directly with security marks: grasp setmark

12

sets full untrusted mark to the passed parameter, grasp clearmark sets full
trusted mark to the passed parameter, grasp getmark returns the parame-
ter’s security mark represented by a string. Finally, a statistic function was
added graspinfo which returns a summary including configuration parame-
ters, attack rates and a detailed list of the attacked files lines inside them
where the attack took place.

Several configuration parameters can be adjusted. Logging and blocking
capabilities can be disabled independently and allow different combinations
of logging attacks, logging queries and blocking attacks.

3.2 Implementation and performance

Our method was implemented in PHP5 version 5.2.1 with protection for
MySQL databases. We also developed the protection for earlier versions
4.4.3, 5.0.4, 5.0.5, 5.1.2 both for Win32 and Unix/Linux systems.

Since PHP is open source software, its source code is available and one
can methodically go through the labyrinths of lines in order to modify every
macro in the virtual machine. Cautious auditing and testing will confirm
this.

GRASP for PHP requires only a brief install, almost identical to the clas-
sical PHP install. The private information functionalities will start working
as soon as the configuration file contains the private specifications.

We tested GRASP for PHP by launching the 10 latest SQL-injection
exploitable vulnerabilities against a vulnerable (unpatched) version of PHP,
protected by Grasp: as a result we confirmed that no exploit was successfully
deployed.

Web applications deployed on the Internet running on Grasp for PHP
performed smoothly, only a minor efficiency loss was verified in normal pro-
gram behavior. Additionally, the logging capabilities were helpful to identify
development errors in one web application, which could be exploited before
GRASP was installed.

Stress tests were performed and showed (as expected) a double overhead
while performing a very big amount (≈10000) of queries in a row with mixed
database query strings, i.e. strings composed by both dangerous and safe
characters (which demand double work while copying strings). This is not
a common situation, and full-marked (dangerous and safe) database query
strings showed a 30% penalty in run time.

13

4 Other Implementations - Future Work

Implementing this protection technique over other web development lan-
guages might be possible but requires a careful design. For example, for
ASP we could encapsulate the underlying virtual machine with a GRASP
module (cf. [NS05]).

Although we did not implement them, on languages like ASP.NET or
Java, the technique can also be implemented through reflection, and by
wrapping the class loaders of native classes and data types, replacing them
with mark-aware versions.

Other uses can be devised for this technique. A classical taint-mode
can be used by developers while in development phase. [Ven06] proposed it
should be useful such a mode and we are envisioning future collaboration.

Grasp’s attack blocking can be disabled, turning it into a very powerful
logging tool. This logs can be used to feed log analyzers. This would help
in forensic activities and also might help in testing during the development
cycle.

Per-page protection is another feature we think would be very useful.
Grasp could allow a server administrator to define per-page protection rules.
For example, disable blocking for certain back-end pages which need to
execute user-provided queries.

In privacy means, we could manually define privacy policies over fields
directly in the database. Allowing the system to store privacy policies avail-
able for different web applications in different web servers that connect to
the same database.

We could also want to automatically determine data’s security (e.g., by
analyzing valid queries sent to a database with data marked as dangerous)
and set which database columns must be considered as dangerous, automat-
ically generating a the security marks for this column while being selected
into the web application.

As we publish this article, Grasp’s source code is being released for free
use open source, hoping interested people in the community can join us
in completing and augmenting the solution, since it has demonstrated its
effectiveness and ease-of-use.

References

[Air05] Airlock. Web-application security, January 2005. URL: http://www.
seclutions.com/en/ct_products_en.htm.

14

[BK04] Stephen Boyd and Angelos Keromytis. SQLrand: Preventing SQL In-
jection Attacks. In Markus Jakobsson, Moti Yung, and Jianying Zhou,
editors, Proceedings of the 2nd Applied Cryptography and Network Secu-
rity (ACNS) Conference, volume 3089 of LNCS, Yellow Mountain, China,
June 2004. Springer.

[Cen00] CERT(R) Coordination Center. Cert advisory ca-2000-02 malicious html
tags embedded in client web requests., February 2000.

[CER00] CERT. CERT Advisory CA-2000-02 Malicious HTML Tags Embedded in
Client Web Requests. http://www.cert.org/advisories/CA-2000-02.
html, 2000.

[DG71] P. Deutsch and C.A. Grant. A flexible measurement tool for software
systems 71. In Proceedings of the IFIP Congress, pages TA–3–7–TA–3–
12, Ljubljana, Yugoslavia, 1971.

[Fow03] Martin Fowler. Patterns of Enterprise Application Architecture. Addison-
Wesley, 2003.

[FW05] Ariel Futoransky and Ariel Waissbein. Enforcing privacy in web applica-
tions. In Third Annual Conference on Privacy, Security and Trust, Octo-
ber 12-14, 2005, The Fairmont Algonquin, St. Andrews, New Brunswick,
Canada, Proceedings, 2005. URL: http://www.coresecurity.com/
index.php5?module=ContentMod&action=item&id=1385.

[Imp05] Imperva Software. Total application security, January 2005. URL: http:
//www.imperva.com.

[JS06] Caleb Sima Joel Scambray, Mike Shema. Hacking Exposed Web Applica-
tions, 2nd Edition. McGraw-Hill Osborne Media, 2006.

[LBW05] Jay Ligatti, Lujo Bauer, and David Walker. Edit automata: Enforce-
ment mechanisms for run-time security policies. International Journal of
Information Security, Feb 2005. To appear.

[Mit04] Robert L. Mitchell. Q&A: WebCohort’s Shlomo Kramer on the app-layer
battleground. Computerworld, February 2004.

[NS05] James Newsome and Dawn Song. Dynamic taint analysis for automatic
detection, analysis, and signature generation of exploits on commodity
software. In 12th Annual Network and Distributed System Security Sym-
posium (NDSS ’05), Proceedings, San Diego, California, USA, February
2005.

[PHP] PHP Installation requirements. Php’s official site. URL: http://www.
php.net/manual/en/install.unix.php.

[Raf01] Jason Rafail. Cross-site scripting vulnerabilities. Cert Coordination Cen-
ter, Technical Report, 2001.

15

[Rai98] Rain Forest Puppy. NT web technology vulnerabilities. Phrack Magazine,
8(54), 1998.

[SS02] Joel Scambray and Mike Shema. Web Applications (Hacking Exposed).
McGraw-Hill Osborne Media, 2002.

[Ter05] Teros. Web-application security and performance, January 2005. URL:
http://www.teros.com.

[Ven06] Wietse Venema. Php internals mailing list, Dec 2006. URL: http://www.
mail-archive.com/internals@lists.php.net/msg25405.html.

[vWW07] Andrew van der Stock, Jeff Williams, and Dave Wichers. The
ten most critical web-application security vulnerabities (2007 update).
OWASP technical report. URL: http://www.owasp.org/index.php/
Top_10, 2007.

16

