
Strong payload obfuscation and encryption

Strong payload obfuscation and encryption

Ariel Waissbein

Core Security Technologies
Humboldt 1967 2

Cda. de Buenos Aires, Argentina
Ph: (5411) 5556-2673
www.coresecurity.com

PacSec, Japan · November 29, 2006 · Tokio, Japan

Strong payload obfuscation and encryption

Introduction

 Networked computing devices are
exploitable.

 If the attacker can access the computer
through a wire, wirelessly or physically, he
might exploit it.

ABOUT

Strong payload obfuscation and encryption

Introduction

 Understanding the attacker, yes.

 Once the attacker has compromised the
network, the Security Officer in charge must
know
– What has happened?
– Could the attack have been avoided?
– Is there any legal evidence?
– What were the attacker’s plans?

NEXT

Strong payload obfuscation and encryption

The Anatomy of an Attack

Strong payload obfuscation and encryption

The Beginning of an Attack

 The attacker exploits a bug in a vulnerable system.

 This also means that the exploit evaded the computer’s
protection.

 We must admit that this will happen.
– 0-days
– Unpatched systems

Caveat: all the following attacks require that the attacker
has the ability to run his code in the hacked system.

THE EXPLOIT

Strong payload obfuscation and encryption

The Second Step of an Attack

 Targeting step:
– Search for a specific user/system, email account, etc.
– Or grow a well-sized network of attacked systems.

 Execution step(s):
– Steal credentials, credit cards, source code or

contacts.
– DDoS a list of IP addresses.
– Delete all databases; etcetera.
– Spying

THE PAYLOAD

Strong payload obfuscation and encryption

Detection

 The hacked network can have some detection
programs that log security-related events.

 Paradigm:
– some attacks can be stopped, those we stop.
– Others are detected with some innocent behavior,

this we log.

 The Security Officer (SO) inspects these logs
periodically, looking for suspicious information.

TUNING UP

Strong payload obfuscation and encryption

After detection, Investigation

 Logs and all the forensic information allow
the SO to answer:
– What has the attacker done?
– Could it be prevented in the future?
– Did he leave any evidence? Backdoors?
– What was his aim?

 Let’s say the attacker is caught in the act:
– Same questions as above.

WHAT’S DONE

Strong payload obfuscation and encryption

Let’s study attacks!

Strong payload obfuscation and encryption

Attack 1: will do anything

 The payload is a system call (syscall) proxying server.

 Through a syscall-proxying client the attacker sends syscalls to
the target, which are executed there, and the result is
returned.

 It is a lightweight payload injected in a running process.

 No data is written to disk!

 Communications
– Go through standard channels
– encrypted with AES.

A FIRST PAYLOAD EXAMPLE

Strong payload obfuscation and encryption

Defense

 Only a combination of reverse engineering and a log-
everything approach will work.
– A word on host-IDSs that monitor syscalls

 The SO must read IDS logs and locate the syscall-
proxying server, the encrypted commands and the
returned answers.

 Reverse engineering will help to
– understand that the payload is a syscall-proxying server and
– recover the AES key.

DETECTING ATTACK 1

Strong payload obfuscation and encryption

Attack 2: with one goal in mind

 The attacker
– Generates an AES key K,
– Computes c:=SHA-1(K)
– Encrypts his code as encryptedCode:=AES(K,code)

 The payload is embedded in a process
– It listens in a fixed port for all incomming packets
For every packet x it computes SHA-1(x)

If SHA-1(x)=c then

 execute AES-1(x,encryptedCode)

A 2nd EXAMPLE

Strong payload obfuscation and encryption

Attack 2’: with n goals in mind

 In fact, there are many keys k1,...k15

 Each encrypting a different functionality.

 The hashes ci:=SHA-1(ki) are stored in a
hash table together with many nonces.

 The encrypted functions are stored one after the
other in memory, and its startpoint and endpoint
is computed from the keys.

A 2nd EXAMPLE (revisited)

Strong payload obfuscation and encryption

After detection, what?

 Now the SO has to reverse engineer the
obfuscated payload, and find out what it does.

 Look for (candidate) keys, i.e., every string that
entered the network.

 Brute force the encrypted functions.

 But he doesn’t know n! In fact, it could be made
worse...

Strong payload obfuscation and encryption

Attack techniques

Before things get too complicated,
let’s check two useful tricks

Strong payload obfuscation and encryption

Trick 1: Cryptography, use cryptography

Strong payload obfuscation and encryption

The attacker can use cryptography

 An authentication/key generation to authenticate
agent with the attacker and ensure
confidentiality.

 An encryption scheme with backwards secrecy
to prevent the SO from obtaining old messages.

 MACs to ensure the integrity of communication.

Strong payload obfuscation and encryption

Implementing Cryptography in Agents

 V1: The attacker must do some pre-processing:
– Compile it using shellforge ([P. Biondi]) or Gera’s

magic makefile ([Gera]).
– Send the source code for a C implementation of this

crypto functions.

 V2: Using Virtual machines for remote execution
– Install an agent in the target machine that runs

Mosquito
– Send the source code for a Lisp1 implementation of

this crypto functions

THREE VARIANTS

Strong payload obfuscation and encryption

Implementing Cryptography in Agents

 V3: Save the trouble, but spend some more
bandwith:
– In a first stage send a compiled userland exec. This is

an agent that receives any executable (in the targeted
machine) and runs it.

– Next compile in his machine all the crypto functions,
and send the .exe to the port where userland exec
listens.

Note: In the future, when we need to execute any functionality, we
shall use one of these techniques.

THREE VARIANTS

Strong payload obfuscation and encryption

Trick 2: Obfuscation with Secure Triggers

Strong payload obfuscation and encryption

Program Obfuscation

 Informally, a program in binary or source code
form is said obfuscated if it cannot be analyzed.

 Historically:
– There are many ad hoc methods for obfuscating

code.
– Theoretical results imply that obfuscation is not

possible in a general setting.

 We have a practical and theoretically secure
obfuscation method for the attack scenario.

Strong payload obfuscation and encryption

Code obfuscation (2)

 Let k be an AES key and c:=SHA-1(k) its hash.

 Let P be data (e.g., computer code) and let
e:=AES(k,P) be its encryption with k.

 Consider the program
INPUT x
 if SHA-1(x)=c then execute AES-1(x,e);

 Assume you are analyzing this code without
further info. What does it do?

Strong payload obfuscation and encryption

More triggering criteria

 Simple trigger: the input mathces a given bitstring

 Subset trigger: the input is a bitstring where certain bits
contain a prespecified value (e.g., the input (x1,...,xn) in
{0,1}n verifies x11=1, x25=1, x72=0, ...).

 Multiple-strings trigger: the input bitstring contains a set
of presepcified sub-strings

 Fuzzy combinations, operations, ...

Strong payload obfuscation and encryption

Payload obfuscation and cryptography
in the benefit of the attacker

Strong payload obfuscation and encryption

Private information stealing

 Is the analog of Private Information Retrieval.
– Search: The attacker is searches for a directory/file or email

account, and he knows its name.
– Privacy: He doesn’t want anyone to analyse the code and

guess what it is looking for.

 Next, the attacker wants to mail him this file, encrypted.

 A simple trigger can be used to this end!

Setup
K:=filename;
hk:=Hash(K);

C:=E(K,mailingProgram)

Code
Scan the hard drive;
For every file found do:
 If Hash(file)=hk then

execute D(file, C);

Strong payload obfuscation and encryption

Private information stealing: analysis

 This program makes little noise (in terms of generating
security logs).

 An a priori analysis will render that the code is searching
for something, and after it is found it will execute some
functionality.

 To learn the some, first we must discover the
something.

 Finding something:
– Bootstrap the code and wait for the something to be found
– Attempt to guess what it is looking for.

Strong payload obfuscation and encryption

More searching

 Actually, using the bit-string trigger the attacker
can also look for
– Specially-formed packets or files (protocols)
– Use combinations (e.g., an email from X to Y)

 Similar analyses apply to this variants.
– Only that the brute force search can be made more

difficult!

Strong payload obfuscation and encryption

Time bombs

 A TRC encryption scheme
– allows to set a “time counter” and then encrypt a secret, so

that it can be decrypted after the counter reaches zero.
– It relies on un-parallelizable number theory computations (i.e.,

g^(2^22.

 The attacker develops a worm that
a) spreads
b) “starts the counter” in order to decryt the secret (an executable

functionality).
c) When the secret is decrypted, it executes the functionality and

broadcasts the key to other bots

USING TIME-RELEASED CRYPTO [Rivest-Shamir-Wagner 96]

Strong payload obfuscation and encryption

Time bombs: analysis

 The computations will require little prorcessor
time and memory.

 There is always the sit-and-wait approach.

 There is no brute-forcing (too big key space)

 Breaking the crypto scheme

Strong payload obfuscation and encryption

Anonymization: analysis

 If the SO captures the bots/agents
– Stop messages from being delivered (in both

directions)
– he can witness what they encrypt before it is done
– Then try to catch the attacker when he connects to

the forum. Although this approach has some
problems.

 Else, there’s little he can do!

Strong payload obfuscation and encryption

Anonymization of the attacker

 The attacker can be anonymized when he sends and
receives messages.

 Say we are in the setting of Example 2 (many triggers)

 He communicates with his bots through public forums,
there’s a preset list.
– Messages from bots are posted encrypted.
– “Orders” for the bots are posted in the forum as links:

http://wormIP/key , and indexers take care of the rest!

Strong payload obfuscation and encryption

Coercion attacks

 The attacker can make any “good-willed” entity
surrender their private key.

 He simply makes a worm that
– Spreads as much as possible
– Enrypts the hard drive using the underlying public

key
– Then prints the message: Call target entity and ask

them for the key.

 That’s it!

Strong payload obfuscation and encryption

In closing...

 Reminder: know your enemy

 Studying how harmful can attacks be.

 About logging: what and where?

 Reverse engineering

 We need better detection mechanisms

Strong payload obfuscation and encryption

Any questions?

So long and many thanks.

(c) 2006 Core Security Technologies

