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Abstract

A known-plaintext attack against SSH protocol version 1.5 is described
that allows an attacker to insert arbitrary commands in the stream regard-

less of the authentication protocol used, the block cipher or the key. The
attack is based on weakneses of the integrity function used (CRC-32) that
become exploitable due to the use of CBC and CFB feedback modes.
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1 CFB and CBC feedback modes

We suppose the readers are familiar with the most common modes of

operation of symmetric cryptography algorithms, a brief description of
two of them follows: Cipher FeedBack (CFB) and Cipher Block Chaining
(CBC).

Given a symmetric cipher, the CBC mode of operation is de�ned as:

C0 = IV

Ci = Ek(PixorCi�1)

Pi = E
�1
k (Ci)xorCi�1

while CFB is de�ned as:

C0 = IV

Ci = Ek(Ci�1)xorPi

Pi = Ek(Ci�1)xorCi

Where Ci is the ith block of the ciphertext, Pi is the ith block of the
plaintext, Ek(x) is the encryption with the cipher of the block x using the
key k and xor is the exclusive or operation. IV is an arbitrary initializa-

tion vector.

Normally, feedback modes are used to strengthen a block cipher be-

haviour by randomizing it's input and reducing the information an eaves-
dropper can get from repeated plaintext blocks. However, using this feed-
back modes does not protect the information being transmited against

replay or cut-and-paste attacks. For example: if a message consisting
of the plaintext blocks P1; : : : ; Pm is encrypted to the ciphertext blocks
C1; : : : ; Cm using either one of this modes, a malicious attacker with ac-

cess to the ciphertext can easily launch the following attacks:
a) reduce the length of the message by erasing the last ciphertext blocks.
b) replay some part of the message, appending repeated ciphertext blocks

at the end. When the receiver gets the new formed message C1; : : : ; Cm,
Ci; : : : ; Ci+l and tries to decrypt it he gets a block of gibberish in the
m+1 place, but from there on Cm+2; : : : ; Cm+l�i are decrypted correctly

to Pi+1; : : : ; Pi+l.

A more dangerous attack can be launched if the attacker knows one

pair of plaintext-ciphertext (both Ci and Pi). Here is what she can do.
CBC) append two blocks to the ciphertext blocks:

Cm+1 = X

Cm+2 = Ci

that will be decrypted to:

Pm+1 = CjxorE
�1
k (X) =?

Pm+2 = XxorE
�1
k (Ci) = XxorCi�1xorPi
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CFB) append two ciphertext blocks:

Cm+1 = Ci�1

Cm+2 = X

that will be decrypted to:

Pm+1 = Ci�1xorEk(Cj) =?

Pm+2 = XxorEk(Ci�1) = XxorPixorCi

In both cases, the attacker cannot control Pm+1, but as she knows Pi,
Ci and Ci=1 she can select X so that Pm+2 results in any block she wants.

This are all attacks against the integrity of the message being trans-
mited. The integrity of the message should be assured by the means of

a cryptographically secure integrity function (such as one-way hash func-
tions or message authentication codes). However, this cryptographically
secure integrity functions are time-consuming and there are implementa-

tions that assume that appending a less time-consuming and less secure
integrity function to the message before encryption is enough to guaran-
tee the integrity. Among the products that follow this assumption are the

widely distributed Secure Shell (SSH) up to protocol version 1.5, some
modes of operation of Kerberos and PPTP. To that end, one of the most
used integrity functions is CRC-32, originally designed for error detection.
In the next section we analyze cyclic redundancy checks and some of their

properties.

2 Cyclic redundancy checks

First, we de�ne a bijective mapping between Zn
2 and Z2[X]:

'n : Zn
2 �! Z2[X]

(a1; : : : ; an) �! X
m
X

aiX
n�i

We'll note with rm the rest of dividing by the polynomial m(x) ;

and we'll note with Jm the canonical isomorphism between Zm
2 and the

polynomials of degree � m. (Zm
2 [X])

Given m(x) 2 Z2[X] an irreducible polinomial of degree m, we de�ne
the cyclic redundancy check associated with m(x) (�) as the following
composition:

Z
n
2

'n
�! Z2[X]

rm
�! Z

m
2 [X]

J�1
m

�! Z
m
2

�(a) = J
�1
m (rm('n(a)))

Let a = (a1; : : : ; an) 2 Zn
2 , �a = �(a) = (�a1; : : : ; �am). Then for � the

following properties hold:

Property 1. � is a morphism of Z2 vector spaces.
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Proof. this is derived directly from the de�nition. (Note that rm is an
aditive morphism).

Property 2. �((0; a2; : : : ; an)) = �((a2; : : : ; an))

Proof. 'n((0; a2; : : : ; an)) = Xm (0Xn+a2X
n�1+� � �+an) = Xm (a2X

n�1+

� � �+ an) = 'n�1((a2; : : : ; an)) ) �((0; a2; : : : ; an)) = �((a2; : : : ; an))

Property 3. �((a1; : : : ; an; �a1; : : : ; �am)) = 0

Proof.

'n+m((a1; : : : ; an; �a1; : : : ; �am)) = X
m [ (
X

aiX
n�i)Xm +

X
�aiX

m�i]

= X
m [m(x)h(x) +

X
�aiX

m�i +
X

�aiX
m�i]

= X
m
m(x)h(x) � 0 (mod m(x))

Property 4. �(a1; : : : ; an) 6= 0 , �(a1; : : : ; an; 0) 6= 0

Proof. m(x) is irreducible, then:

�(a1; : : : ; an; 0) = 0 ,

'n+1(a1; : : : ; an; 0) = [Xm (
X

aiX
n�i) ]X � 0 (mod m(x)) ,

X
m (
X

aiX
n�i) � 0 (mod m(x)) , �((a1; : : : ; an)) = 0

De�nition. Given X;V 2 Zn
2 and M 2 Zm+1

2 we de�ne CM(X;V ) 2

Z
(m+1)n

2 as:

CM(X;V ) := (A1 1; : : : ; A1n; A2 1; : : : : : : ; Am+1n)

where

Ai j =

(
Xj if Mi = 1

Vj if Mi = 0

If M := (M1; : : : ;Mm+1). Then we have that:

CM (X;V ) =M1 � (X; 0; : : : ; 0) + (1 �M1) � (V; 0; : : : ; 0) + � � �

� � �+Mm+1 � (0; : : : ; X) + (1�Mm+1) � (0; : : : ; V )

Proposition 1. given m(x) an irreducible polynomial in Z2[x] , of de-
gree m , 9 M 2 Zm+1

2 such that: �(CM(X;V )) = �(CM(0; V )) 8X 2

Zn
2 ; 8V 2 Zn

2
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Proof. Property 1 tells us that � is a morphism so we have:

�(CM(X;V )) = �(CM(0; V )) , �(CM(X;V )� CM (0; V )) = 0

, �(CM (X;V ) + CM(0; V )) = 0

(we are working over Z2)

We must see that CM(X;V ) + CM(0; V ) 2 Ker(�).
For X;V 2 Zn

2 , we are going to write (X;V ) for (X1; : : : ; Xn; V1; : : : ; Vn).

If M = (M1; : : : ;Mm+1),we have that:

CM(X;V ) =M1 � (X; 0; : : : ; 0) + (1�M1) � (V; 0; : : : ; 0) + � � �

� � �+Mm+1 � (0; : : : ; X) + (1�Mm+1) � (0; : : : ; V ) )

CM(X;V ) + CM(0; V ) =M1 � (X; 0; : : : ; 0) + � � � +Mm+1 � (0; : : : ; X) =

= (M1X; : : : ;Mm+1X)

So, what we have to prove is that 9 M such that �(M1X; : : : ;Mm+1X) =
0 , 8X (Note that this doesn't depend on V)

It's enough to prove it in a base of Zn
2 , because � is a morphism.

Let feig be the canonical base.

�(M1ei; : : : ;Mm+1ei) = 0 , rm('n(M1ei; : : : ;Mm+1ei) = 0

, m(x)n'n(M1ei; : : : ;Mm+1ei)

But

'n(M1ei; : : : ;Mm+1ei) = x
m
� (M1x

(m+1)n�i +M2x
mn�i + � � �+Mm+1x

n�i) =

= x
m+n�i

� (M1x
mn +M2x

(m�1)n + � � �+Mmx
n +Mm+1)

Then, as m(x) is irreducible, it's enough to �nd M such that

m(x)n(M1x
mn +M2x

(m�1)n + � � �+Mmx
n +Mm+1):

By Euclid's algorithm:

(M1x
mn +M2x

(m�1)n + � � �+Mmx
n +Mm+1) = m � q + r with deg(r) � m� 1

Asking r = 0 we have an homogeneous linear system with m+1 variables

(Mi)and deg(r) equations. Such a system has a non-trivial solution.

Corolary. �(CM(X;V )) = �(CM(0; V )) 8X;V 2 Zn
2 , �(CM(X;V ); 0; : : : ; 0) =

�(CM(0; V ); 0; : : : ; 0) 8X;V 2 Zn
2 .

Proof. Let k be the number of zeros in the expresion above.
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�(CM(X;V ); 0; : : : ; 0) = �(CM(0; V ); 0; : : : ; 0),

, �((CM(X;V ); 0; : : : ; 0) + (CM (0; V ); 0; : : : ; 0)) = 0

, �((CM(X;V ) + CM (0; V ); 0; : : : ; 0) = 0

, m(x)n xm 'n(CM(X;V ) + CM(0; V ))xk

, m(x)n xm+k
'n(CM (X;V ) +CM (0; V ))

, m(x)n'n(CM (X;V ) +CM (0; V ))

, �((CM(X;V ) + (CM (0; V )) = 0 , �(CM (X;V )) = �(CM(0; V ))

Proposition 2. If C;D 2 Zn
2 and �(C) 6= �(D) ) 8A 2 Zm

2 9M 2 Zm
2

such that �(CM (C;D); C; C) = A if n = 2r.

Proof. Let's call:

� : Zm
2 �! Z

m
2

(a1; : : : ; am) �! �(a1C + (1 + a1)D; : : : ; am C + (1 + am)D)

� = �(C(a1;:::;am)(C;D))

�(CM(C;D); C; C) = �(CM(C;D); 0; : : : ; 0) + �(0; : : : ; 0; C; C)

Then it's enough to prove that � is biyective. But #Zm
2 = #Zm

2 <1

then all we have to prove is that � is inyective.

�(a1; : : : ; am) = �(b1; : : : ; bm) ,

�(a1 C + (1 + a1)D; : : : ; am C + (1 + am)D) = �(b1 C + (1 + b1)D; : : : ; bm C + (1 + bm)D)

, �((a1 + b1)C + (a1 + b1)D; : : : ; (am + bm)C + (am + bm)D) = 0

, �((a1 + b1) (C +D); : : : ; (am + bm) (C +D)) = 0

Let's call hi = ai + bi. Then:

�(a1; : : : ; am) = �(b1; : : : ; bm) ,

, m(x)n xm 'n(C+D) (h1 x
n (m�1)+h2 x

n (m�2)+� � �+hm�1 x
n+hm)

Now we 're going to use that n = 2r , because in Z2 we have:

(a+ b)2 = a
2 + b

2

Square is an isomorphism in Z2 spaces.Then:

(h1 x
2r (m�1)+h2 x

2r (m�2)+� � �+hm�1 x
2r+hm) = (h1 x

(m�1)+h2 x
(m�2)+� � �+hm�1 x+hm)

2r

6



Using that m(x) is irreducible , we have that:

m(x) n (h1 x
(m�1) + h2 x

(m�2) + � � �+ hm�1 x+ hm)

Which is a polynomial of degree < deg(m(x))) hi = 0 8i ) ai =
bi 8i

Note. the last proposition is not valid if n 6= 2r.

Let's take m(x) = x6 + x3 + 1 which is irreducible in Z2[x].

Then taking n = 3 we have that:

�(C;D;D; C;D;C) = �(C;D;D;D; C;D) , �(0; 0; 0; C+D;C+D;C+D) = 0 ,

, m(x) nx6 'n(C+D) (x6+x3+1) what means that � is not inyective.

Now we need to �nd a way to construct the mask M .

Proposition 3. �(a1+ b1; : : : ; am+ bm) = �(a1; : : : ; am)+�(b1+ : : :+
bm) + �(0; : : : ; 0).

Proof.

�(a1 + b1; : : : ; am + bm) = �((a1 + b1)C + (1 + a1 + b1)D; : : : ; (am + bm)C + (1 + am + bm)D)

= �((a1 + b1)C + (a1 + b1)D; : : : ; (am + bm)C + (am + bm)D) + �(D; : : : ; D)

= �(a1; : : : ; am) + �(b1; : : : ; bm) + �(0; : : : ; 0)

Construction.

Let p 2 Z
m
2 and l 2 Z

m
2 such that�(l1; : : : ; lm) = (p1; : : : ; pm)

) �(l1; : : : ; lm) = �(l1; 0; : : : ; 0) + �(0; l2; : : : ; lm) + �(0; : : : ; 0) =

= l1�(e1) + l1�(0) + �(0; l2; : : : ; lm) =

= l1 �(e1) + � � �+ lm �(em) + (l1 + � � �+ lm) �(0)

Where ei are the elements of the canonical base of Zm
2 .

Calling am+1 = l1 + � � �+ lm , we have to solve the following system:

(
l1 �(e1) + � � �+ am �(em) + am+1 �(0) = p

a1 + � � �+ am + am+1 = 0

Which has an unique solution because � is biyective.
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3 A known-plaintext attack on SSH pro-

tocol version 1.5

The SSH protocol, up to version 1.5, used a CRC-32 appended to a packet
before encryption to check for integrity. CRC-32 is the 32-bits cyclic

redundancy check associated with the polynomial m(x) = x32 + x26 +
x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x1 + 1.
From here on, we assume that the packets are encrypted using CFB or

CBC modes with a 64-bit block cipher, as in the DES-CBC and IDEA-
CFB standard modes of SSH. The attack will take place after both ends
have been authenticated and a session key negotiated.

3.1 Description of an SSH packet

A packet is formed by the following �elds: a 4-bytes data length �eld, 1
to 8 bytes of padding, a 1-byte type �eld, the data and a 4-byte CRC-32
�eld.

The data length �eld is unencrypted, while the padding, type, data

and CRC-32 �elds are encrypted. The last block of the previous packet is
used as IV for the feedback, in the �rst packet of a connection the IV is
set to zero. The padding is added to make the packet size be a multiple

of 64-bits, and to include at least one padding byte (i.e. if the original
packet is a multiple of 64 bits, then 64 bits of padding are prepended to
the message). The CRC-32 is calculated over the padding, type and data

�elds.
The data �eld structure depends on the type of the message, there are two
type of messages that are of a particular interest for us and can be directly

used for the attack: SSH STDIN DATA and SSH STDOUT DATA. Both
this message types de�ne the following data structure:

As the size of the ciphertext blocks is 64-bits, within 2 ciphertext
blocks we can include:

8



+ 8 bytes of padding

+ 1 byte type (SSH STDIN DATA or SSH STDOUT DATA)

+ 4 bytes message len

+ 3 bytes of message data

SSH will choose to close the connection in one of this three cases:

- The CRC �eld does not match the CRC of the decrypted packet.

- The 32-bit message length 6=data length�length of padding�1

- The message type is invalid

3.2 The attack

3.2.1 CBC mode

The attacker needs two known plaintext/ciphertext blocks (Ci,Pi and
Cj ,Pj). Then the following steps can be used to forge a valid packet
into the encrypted stream:

I The attacker chooses the packet length to be a multiple of 64-bits,

so the padding will be 64-bits (1 ciphertext block).

II She starts the packet with two ciphertext blocks:

C1 = X

C2 = Ci

Where X is choosen to make P2 a block with a valid type, a valid message
length and 3 bytes of selected data. Pl will be unknown to the attacker,
but it will �t into the padding �eld of the packet, and it will not used in

the protocol (except for the CRC-32 computation).

III The attacker uses the mask M from Proposition 1 to append
32 64-bits ciphertext blocks (C3; : : : ; C34), each block either X or Ci, to

make the �nal CRC-32 of the decrypted packet independent of the value
of E�1k (X).

IV The attacker appends 32 64-bits blocks to the cipher stream
(C35; : : : ; C66), each block either Ci or Cj , to �x the CRC-32 result to
the value PixorCi (as is described in proposition 2 and the construction

at the end of the previous section). Note that for proposition 2 to be valid
we need that �(Ci) 6= phi(Cj), but the probability of �(Ci) being equal
to �(Cj) is small enough to be ignored (� frac1232).

V The attacker appends two Ci blocks to the cipherstream:

C67 = Ci

C68 = Ci

This packet has a valid type, a valid message length and a valid CRC-
32 �eld, and the �rst 3 bytes of data in the packet can be selected by the

attacker. Moreover this procedure can be repeated as many times as the
attacker wants.
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3.2.2 CFB-64 mode

The attacker needs only one pair of known plaintext/ciphertext blocks (Ci,
Pi), she needs to know Ci+1 and needs to know the last ciphertext block
of the last transmited packet which is going to be used as the initialization

vector for the feedback (we will call this ciphertext block I). To forge a
valid packet, the attacker can follow the following steps:

I The attacker chooses the packet length to be a multiple of 64-bits,
so there will be 64-bits of padding.

II She starts the packet with two ciphertext blocks:

C1 = Ci

C2 = X

The attacker selects X to make P2 have a valid type, message length and
3 bytes of selected data. P1 is unknown to the attacker, but is entirely

contained in the padding �eld.

III The attacker uses the mask M from proposition 1 to append 32
64-bit ciphertext blocks, each block either I or Ci, de�ning a particular
pattern that will make the �nal CRC-32 independent of Ek(I).

IV The attacker uses the mask M to append 32 64-bit ciphertext

blocks, each block either Ci or X, so that the CRC-32 of the decrypted
packet does not depend on the value of E�1k (X).

V The attacker appends two ciphertext blocks: C67 = Ci andC68 = Y .
Y is selected so that Y xor Ci+1 equals the CRC-32 of the constructed
packet. The CRC-32 can be calculated because it only depends on I and

Pi both of which are known to the attacker.
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