
What is the Universal Hooker? 

The Universal Hooker is a tool to intercept execution of programs. It enables the user to intercept calls to API calls 
inside DLLs, and also arbitrary addresses within the executable file in memory. 

Why is it 'Universal'? There are different ways of hooking functions in a program, for example, it can be done by setting 
software breakpoints (int 3h), hardware breakpoints (cpu regs), or overwriting the prologue of a function to jump to a 
'stub', etc. All the methods mentioned required above, specially the latter, require the programmer of the code 
creating the hook to have certain knowledge of the function it is intercepting. If the code is written in a programming 
language like C/C++, the code will need to be recompiled for every function one wants to intercept, etc. 

The Universal Hooker tries to create very simple abstractions that allow a user of the tool to write hooks for different 
API and non-API functions using an interpreted language (python), without the need to compile anything, and with the 
possibility of changing the code that gets executed whent the hooked function is called in run-time. 

The Universal Hooker builds on the idea that the function handling the hook is the one with the knowledge about the 
parameters type of the function it is handling. The Universal Hooker only knows the number of parameters of the 
function, and obtains them from the stack (all DWORDS). The hook handler is the one that will interpret those DWORDS 
as the types received by the function. 

The hook handlers are written in python, what eliminates the need for recompiling the handlers when a modification is 
required. And also, the hook handlers (executed by the server) are reloaded from disk every time a hook handler is 
called; this means that one can change the behavior of the hook handler without the need to recompile the code, or 
having to restart the application being analyzed. 

How does it work? 

I have written several versions of the Universal Hooker, using different techniques to hook 
functions such as implementing my own 'debugger', modifying prologue of functions, etc. The 
version available at this web page is implemented as an OllyDbg plugin, so the hooking of 
functions are taken care by the OllyDbg Debugger (using software breakpoints). 

The basic components of the Universal Hooker are: 

 The universal hooker core, implemented as a OllyDbg plugin (uhooker.dll) 
 A Configuration File (e.g: hook.cfg) 
 a Server (server.py) written in python that handles communication with the universal hooker core 
 a library written in python (proxy.py) that contains different functions to communicate with the universal 

hooker core. 

These functions allow the developer to perform different actions on the intercepted process, for example: read 
memory, write memory, etc. 

 A python module written by the developer that contains the code that handles the hooked functions/addresses. 
This module uses the python library proxy.py to perform actions on the intercepted process. 
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 hookcall.sendacknocont(): handlers can also end with a call to this function. This function does the same 

thing as hookcall.sendack(), but it DOES NOT resume execution of the debugged program. This is good, for example, 
for scripts that want to check for certain condition, and then stop the debugger to allow the user to continue 
debugging manually. 

A hook handler can also read and write memory of the intercepted process, allocate memory, etc. All these functions 
are available from the Proxy.py module, so all hook handler also import and create an instance of the 'Proxy' object. 

Next is a sample hook handler: 

def CreateFileA_handler(hookcall): 
    myproxy = hookcall.proxy 
    print "bughandler running..." 
    print "esp = %X" % hookcall.regs['esp'] 
    print "retaddr = %X" % hookcall.retaddr 
    print "arg0 = %X" % hookcall.params[0] 
    buffer = myproxy.readasciiz( hookcall.params[0] ) 
    print buffer 
    hookcall.sendack() 
    return 

This handler: 

 Obtains an instance of the 'Proxy' object. (*IMPORTANT*: before uhooker v1.2, you needed to create the 
instance by doing a 'myproxy = proxy.Proxy()', ths is no longer the case, if you are using uhooker v1.2, please 
change your scripts to use this new method) 

 Prints meaningless information to the console ("CreateFileA handler running...") 
 Prints to the console the value of the ESP register, the return address of the function, and the value (DWORD) 

of the first parameter of the function. 
 Since this is a handler for the CreateFileA function, and the first parameter (hookcall.params[0]) is a pointer to 

an ASCII string indicating the file to open, it uses the 'readascizz' function, to read that ascii string and prints it 
to the console. 

 Finally, it calls sendack() to inform to the uhooker core that it has finished processing the hook, and returns. 

Using the Universal Hooker 

To use uhooker the steps that need to be done are: 

 Have a valid configuration file defining what functions/address to hook and indicating which are the handlers 
for those hooks 

 Have a .py file with the hook handlers indicated in the configuration file 
 Start OllyDbg, load or attach to the process to intercept 
 Load the configuration file. The uhooker core will set the breakpoints, start the python server automatically 

and send the hook information to the server. 
 That's all. Every time the function/address is called, the proper hook handler will be executed. 


