
What is the Universal Hooker? 

The Universal Hooker is a tool to intercept execution of programs. It enables the user to intercept calls to API calls 
inside DLLs, and also arbitrary addresses within the executable file in memory. 

Why is it 'Universal'? There are different ways of hooking functions in a program, for example, it can be done by setting 
software breakpoints (int 3h), hardware breakpoints (cpu regs), or overwriting the prologue of a function to jump to a 
'stub', etc. All the methods mentioned required above, specially the latter, require the programmer of the code 
creating the hook to have certain knowledge of the function it is intercepting. If the code is written in a programming 
language like C/C++, the code will need to be recompiled for every function one wants to intercept, etc. 

The Universal Hooker tries to create very simple abstractions that allow a user of the tool to write hooks for different 
API and non-API functions using an interpreted language (python), without the need to compile anything, and with the 
possibility of changing the code that gets executed whent the hooked function is called in run-time. 

The Universal Hooker builds on the idea that the function handling the hook is the one with the knowledge about the 
parameters type of the function it is handling. The Universal Hooker only knows the number of parameters of the 
function, and obtains them from the stack (all DWORDS). The hook handler is the one that will interpret those DWORDS 
as the types received by the function. 

The hook handlers are written in python, what eliminates the need for recompiling the handlers when a modification is 
required. And also, the hook handlers (executed by the server) are reloaded from disk every time a hook handler is 
called; this means that one can change the behavior of the hook handler without the need to recompile the code, or 
having to restart the application being analyzed. 

How does it work? 

I have written several versions of the Universal Hooker, using different techniques to hook 
functions such as implementing my own 'debugger', modifying prologue of functions, etc. The 
version available at this web page is implemented as an OllyDbg plugin, so the hooking of 
functions are taken care by the OllyDbg Debugger (using software breakpoints). 

The basic components of the Universal Hooker are: 

 The universal hooker core, implemented as a OllyDbg plugin (uhooker.dll) 
 A Configuration File (e.g: hook.cfg) 
 a Server (server.py) written in python that handles communication with the universal hooker core 
 a library written in python (proxy.py) that contains different functions to communicate with the universal 

hooker core. 

These functions allow the developer to perform different actions on the intercepted process, for example: read 
memory, write memory, etc. 

 A python module written by the developer that contains the code that handles the hooked functions/addresses. 
This module uses the python library proxy.py to perform actions on the intercepted process. 



A con
confi
is trig
and t

The

The c
begin

There

1
2
3

To in

name

for e
a han

kern

As ex
break

field

So, fo
mym
dumm

Next 

# B 
# A 
# * 
kern
dumm

nfiguration fi
iguration file 
ggered, the u
the server ex

e configur

configuration
nning with '#' 

e are 3 differ

1. Hook Befo
2. Hook Afte
3. Hook whe

ntercept func

e_of_dll:func

example, to h
ndler called 'C

el32.dll:Crea

xplained abov
kpoint on an 

_not_used:a

or example, t
odule.py file
my.dll:0x401

 is a sample o

= hook bef
= hook AFT
= hook whe
nel32.dll:C
my.dll:0x40

le is loaded f
 the uhooker 
uhooker core 
ecutes the co

ration file

n files is a reg
 are treated a

rent types of 

ore Entering t
er the functio
en executing 

tions exporte

ction_name:

ook 'CreateFi
CreateFileA_h

ateFileA:7:m

ve, it is possib
 address): 

address_to_h

to hook exec
: 
1000:0:mym

of a configura

fore enter
TER functi
en an addr
CreateFile
01000:0:my

from Ollydbg 
 core connect
 communicate
orresponding 

e 

gular text file
as comments

 hooks: 

the function 
on returns (ty
reaches this a

ed from a DLL

number_of_

ileA' (which h
handler' impl

mymodule.Cre

ble to hook a

hook_in_hex:

ution at 0x40

odule.anybp

ation file: 

ring functi
ion returns
ress is exe
eA:7:mymodu
ymodule.any

 that defines 
ts to the serv
es with the se
 hook handler

e where each 
). 

(type 'B') 
ype 'A') 
address (type

L the syntax i

_parametes:p

has 7 paramet
emented in t

eateFileA_ha

ny 'executab

:field_not_us

01000 handled

p:* 

ion 
s 
ecuted 
ule.Create
ybp:* 

 what functio
ver and sends
erver sending
r as defined i

 line defines 

e '*') 

s: 

python_modu

ters) before i
the file mymo

andler:B 

le' address of

sed:python_

d by the hook

eFileA_hand

 

ons/addresses
s the hook inf
g information
in the configu

the functions

ule.hook_han

it is executed
odule.py: 

f a process (w

_module.hook

k handler call

dler:B 

s to hook, aft
formation. Ev
n about the fu
uration files. 

s/addresses t

ndler_name:

d with 

which is basic

k_handler_n

led 'anybp' im

ter parsing th
very time a fu
unction/addre
 

to intercept (

:hook_type 

cally the same

name:hook_ty

mplemented i

e 
unction hook 
ess hooked, 

All lines 

e as setting a

ype 

n the 

 



The c
See t

A file

configuration
the screensho

e dialog will b

n file can be l
ot below. 

be displayed 

oaded from O

from which a

OllyDbg by go

a .cfg file (in 

oing to the 'pl

fact any nam

lugins->uhook

me can be use

ker' menu, an

ed) can be loa

nd selecting 'L

aded. 

Load Cfg File''. 

 



After
in the
in the

The

A hoo
the f
def h
The h
conta
exam









r parsing the 
e configurati
e debugger o

e Hooks H

ok handler is 
following defi
hook_name(h
hookcall para
ains useful in

mple: 

 hookcall.
 hookcall.

only DWO
hook hand
is zero-ba

 hookcall.
 hookcall.
 hookcall.
 hookcall.

hang fore

 configuration
on file, for th

or the debugg

Handlers 

 basically a p
inition: 
hookcall): 
ameter is an o
formation ab

regs: contain
params: cont

ORDs as far as
dler must inte
ased, meaning

retaddr: con
threadid: co
procid: conta
sendack(): A
ver. This fun

n file, the uho
hat reason be
er should be 

ython script t

object passed
bout the inter

ns the conten
tains parame
 the uhooker 
erpret as cha
g hookcall.pa

ntains the retu
ntains thread
ains process i

All hook handl
ction returns

ooker core w
efore loading 
 attached to t

that is called

d by the serve
rcept function

nt of the regis
ters of the in
 core knows, 

ar*, ints, or an
arams[0] is th

urn address o
d id of curren
id of current 
lers must end
 control to ol

ill try to set b
 the configura
the process. 

d every time t

er to the hoo
n and process

sters of the in
ntercepted fu
 so this 'param
ny other type
e first param

of the functio
nt thread 
 process 
d with a call t
llydbg and re

breakpoints o
ation file the

the intercept

k handler tha
s. For 

ntecepted pro
unction. As ex
ms' list conta
e depending o
meter to the f

on. 

to this functio
esumes execu

on the functio
e process to in

ted function/

at 

ocess (e.g.: h
xplained abov
ains basically 
on the functio
function. 

on. Otherwise
tion of the pr

ons/addresse
ntercept shou

address is ca

hookcall.regs
ve, the param
 a list of DWO
on it is handli

e, the uhooke
rogram being

 

es indicated 
uld be loaded

lled. It has 

['eax']). 
meters are 
ORDs that the
ing. The list 

er core will 
g debugged. 

d 

 



 hookcall.sendacknocont(): handlers can also end with a call to this function. This function does the same 

thing as hookcall.sendack(), but it DOES NOT resume execution of the debugged program. This is good, for example, 
for scripts that want to check for certain condition, and then stop the debugger to allow the user to continue 
debugging manually. 

A hook handler can also read and write memory of the intercepted process, allocate memory, etc. All these functions 
are available from the Proxy.py module, so all hook handler also import and create an instance of the 'Proxy' object. 

Next is a sample hook handler: 

def CreateFileA_handler(hookcall): 
    myproxy = hookcall.proxy 
    print "bughandler running..." 
    print "esp = %X" % hookcall.regs['esp'] 
    print "retaddr = %X" % hookcall.retaddr 
    print "arg0 = %X" % hookcall.params[0] 
    buffer = myproxy.readasciiz( hookcall.params[0] ) 
    print buffer 
    hookcall.sendack() 
    return 

This handler: 

 Obtains an instance of the 'Proxy' object. (*IMPORTANT*: before uhooker v1.2, you needed to create the 
instance by doing a 'myproxy = proxy.Proxy()', ths is no longer the case, if you are using uhooker v1.2, please 
change your scripts to use this new method) 

 Prints meaningless information to the console ("CreateFileA handler running...") 
 Prints to the console the value of the ESP register, the return address of the function, and the value (DWORD) 

of the first parameter of the function. 
 Since this is a handler for the CreateFileA function, and the first parameter (hookcall.params[0]) is a pointer to 

an ASCII string indicating the file to open, it uses the 'readascizz' function, to read that ascii string and prints it 
to the console. 

 Finally, it calls sendack() to inform to the uhooker core that it has finished processing the hook, and returns. 

Using the Universal Hooker 

To use uhooker the steps that need to be done are: 

 Have a valid configuration file defining what functions/address to hook and indicating which are the handlers 
for those hooks 

 Have a .py file with the hook handlers indicated in the configuration file 
 Start OllyDbg, load or attach to the process to intercept 
 Load the configuration file. The uhooker core will set the breakpoints, start the python server automatically 

and send the hook information to the server. 
 That's all. Every time the function/address is called, the proper hook handler will be executed. 


